
The University of Alabama in Huntsville

~ 08/29/2019 ~

PCCC.cpp

Reference Manual

A comprehensive documentation of pccc.cpp during the period of its

development phase.

The PCCC.cpp file executes all of the EtherNet/IP Function supported by the

OpenPLC. Within this report, each functionality, code structure, and version updates

will be detailed.

Page 1

The University of Alabama in Huntsville

Table of Contents

Requirements

Struct Declarations

Pccc_Header

Protected_Logical_Read_Command

Protected_Logical_Write_Command

Functions

Command Protocol Switch

Parsing PCCC Data

ProcessPCCCMessage

Protected_Logical_Read_Reply

Protected_Logical_Write_Reply

PCCC_ReadCoil

PCCC_ReadDiscreteInputs

PCCC_ReadHoldingRegisters

PCCC_WriteCoil

PCCC_WriteRegister

Word_Pccc

An_Word_Pccc

#Define Functions

#define bitRead

#define bitSet

#define bitClear

#define bitWrite

#define lowByte

#define highByte

Version Updates

Future Work

Page 2

The University of Alabama in Huntsville

Requirements

The PCCC.cpp file is run through OpenPLC. OpenPLC is an open-source Programmable Logic
Controller developed by Thiago Alves at the University of Alabama in Huntsville. The project is
dedicated to provide a low cost industrial solution for automation and research. This required software is
free to ​download​. More information regarding OpenPLC may be viewed ​here​.

Struct Declarations

The received data from the network is parsed into structures by its attribute. The

structures contain pointer to the specific byte where the attribute begins. Due to numerous types

in which data may be presented, various structs were utilized to hold data within the respected

EtherNet/IP format to uphold the network’s integrity.

Note: ​The number of bytes taken by each attribute within each struct is denoted by //[?]

Pccc_Header

This struct holds the data that is similar across the PCCC type packet. The position may

vary, but these variables are consistent across the Command and Reply Packet Structure in

PCCC. The temporary reply packet variables are also part of the structure.

Note: HD ​stands for Header information in structures, ​CMD​ stands for Command packet
information, and ​RP​ stands for Reply packet information.

struct pccc_header

{

unsigned char *Data;

unsigned char *Data_Size;

unsigned char *header_length = 5;

unsigned char *HD_CMD_Code;

 unsigned char *HD_Status;

 unsigned char *HD_TransactionNum;

unsigned char *HD_Data_Function_Code;

unsigned char *HD_Ext_Status;

 unsigned char *RP_CMD_T;

unsigned char *RP_STS_T;

unsigned char *RP_TRNS_T;

unsigned char temp = 0x4f;

https://www.openplcproject.com/runtime
https://www.openplcproject.com/

Page 3

The University of Alabama in Huntsville

unsigned char *RP_CMD_Code = &temp;

unsigned char temp2 = 0x00;

unsigned char *DATA_CONST = &temp2;

};

Protected_Logical_Read_Command

This struct holds data associated with the communication command Protected Typed

Logical Read with Three Address Fields (Command Code – 0x0f; Function Code – 0xA2) for

both the Command Data Packet (denoted CMD) and the Reply Data Packet (denoted RP).

Note: HD ​stands for Header information in structures, ​CMD​ stands for Command packet
information, and ​RP​ stands for Reply packet information.

struct protected_logical_read_command

{

 unsigned char *CMD_Byte_Size;//[1]

unsigned char *CMD_File_Num;//[1]

unsigned char *CMD_File_Type;//[1]

 unsigned char *CMD_Element_Num;//[1]

 unsigned char *CMD_SubElement_Num;//[1]

unsigned char *RP_EXT_Status;//[1]

unsigned char *pccc_data_length;

};

Protected_Logical_Write_Command

This struct holds data associated with the communication command Protected Typed

Logical Write with Three Address Fields (Command Code – 0x0f; Function Code – 0xAA) for

both the Command Data Packet (denoted CMD) and the Reply Data Packet (denoted RP).

Note: HD ​stands for Header information in structures, ​CMD​ stands for Command packet
information, and ​RP​ stands for Reply packet information.

struct protected_logical_write_command

{

unsigned char *CMD_Byte_Size;//[1]

unsigned char *CMD_File_Num;//[1]

unsigned char *CMD_File_Type;//[1]

 unsigned char *CMD_Element_Num;//[1]

 unsigned char *CMD_SubElement_Num;//[1]

unsigned char *RP_EXT_Status;//[1]

unsigned char *pccc_data_length;

};

Page 4

The University of Alabama in Huntsville

Functions

The PCCC.cpp file contains numerous functions to accomplish various tasks. Therefore,

this section will be broken into different types as may be seen below.

Note: ​The number of bytes taken by each attribute within each struct is denoted by //[--]

Command Protocol Switch

Command_Protocol ()
Description

This function determines the command that is being sent via the Command Packet so that it can
switch to the appropriate function to create the Reply Packet.

Parameters

● header – ​Instance of struct object pccc_header containing needed data size
● buffer – ​The whole packet data of PCCC
● buffer_size –​ The size of the buffer

Return

Return -1 ​[if command not found]
OR

return temp_var1​ [the length of the reply packet]

Page 5

The University of Alabama in Huntsville

Parsing PCCC Data

ParsePCCCData()
Description

This function was created to separate the values inside the buffer into the appropriate structure
variables and calls on the Command_Protocol() function. Once we get enip.cpp and pccc.cpp passing the
right data and data length, this function will no longer be necessary

Parameters

● buffer_size – ​Size of the data that is being passed
● buffer – ​The whole packet data of PCCC
●

Return
New_pccc_length

ProcessPCCCMessage

processPCCCMessage()
Description

This ​function is the main call function for enip.cpp. The function takes in the data from
enip.cpp and places the data in the appropriate structure variables. It also begins the call to the
other functions in pccc.cpp to begin crafting the reply packet and determining its length.

Parameters

● buffer_size – ​Size of the data that is being passed
● buffer – ​The whole packet data of PCCC

Return

New_pccc_length

Page 6

The University of Alabama in Huntsville

Protected_Logical_Read_Reply

Protected_Logical_Read_Reply()
Description

This function creates the reply packet for the ​Protected Typed Logical Read with Three
Address Fields ​(Command Code – 0x0f; Function Code – 0xA2) and determines the length of
the reply packet. The length of the reply packet is the value that is returned at the end of the
function.

Parameters

● header – ​The struct pccc_header
● buffer – ​The whole data packet of PCCC
● buffer_size –​ The size of the buffer

Return

len [reply packet length]

Protected_Logical_Write_Reply

Protected_Logical_Write_Reply()
Description

This function creates the reply packet for the ​Protected Typed Logical Write with Three
Address Fields ​(Command Code – 0x0f; Function Code – 0xAA) and determines the length of
the reply packet. The length of the reply packet is the value that is returned at the end of the
function.

Parameters

● header – ​The struct pccc_header
● buffer – ​The whole data packet of PCCC
● buffer_size –​ The size of the buffer

Return

len [reply packet length]

Page 7

The University of Alabama in Huntsville

PCCC_ReadCoil

Pccc_ReadCoils()
Description

This function accesses the data inside the PLC Address and stores the information in an output
buffer. Then it writes that data into the buffer so that the reply packet can be crafted. This is for digital
information.
Parameters

● buffer – ​The whole data packet of PCCC
● buffer_size –​ The size of the buffer

Return

Void

PCCC_ReadDiscreteInputs

Pccc_​ ​ReadDiscreteInputs()
Description

This function accesses the data inside the PLC Address and stores the information in an input
buffer. Then it writes that data into the buffer so that the reply packet can be crafted. This is for digital
information.
Parameters

● buffer – ​The whole data packet of PCCC
● buffer_size –​ The size of the buffer

Return

Void

Page 8

The University of Alabama in Huntsville

PCCC_ReadHoldingRegisters

Pccc_ReadHoldingRegisters ()
Description

This function accesses the data inside the PLC Address and stores the information in an output
buffer. Then it writes that data into the buffer so that the reply packet can be crafted. This is for analog
information.
Parameters

● buffer – ​The whole data packet of PCCC
● buffer_size –​ The size of the buffer

Return

Void

PCCC_WriteCoil

Pccc_WriteCoil ()
Description

This function accesses the data inside the PLC Address and writes either a 0 or 1 to the data in
PCCC buffer. This decision is based on the contents of the PLC Address. This is for digital information.
Parameters

● buffer – ​The whole data packet of PCCC
● buffer_size –​ The size of the buffer

Return

Void

Page 9

The University of Alabama in Huntsville

PCCC_WriteRegister

Pccc_WriteRegister ()
Description

This function accesses the data inside the PLC Address and writes that data to equivalent PCCC
buffer. This is for analog information.
Parameters

● buffer – ​The whole data packet of PCCC
● buffer_size –​ The size of the buffer

Return

Void

Word_Pccc

word_pccc ()
Description

This function executes the OR operation of two bytes that is passed through the function and
returns the result.
Parameters

● byte1 – ​First byte that is passed through the function
● byte2–​ Second byte that is passed through the function

Return

Void

Page 10

The University of Alabama in Huntsville

An_Word_Pccc

an_word_pccc ()
Description

This function concatenates two bytes and returns the result. This is use in the reading and writing
of integer values.
Parameters

● byte1 – ​First byte that is passed through the function
● byte2–​ Second byte that is passed through the function

Return

Void

#Define Functions

The PCCC.cpp file contains numerous #define functions to accomplish various bit and

byte manipulation throughout the program. Therefore, this section will give a brief description

on what each of these #define functions accomplish.

#define bitRead

bitRead()
Description

This function reads the specified ​bit​ in the ​value​ passed through in order to achieve a reading of a
single bit instead of the whole byte/word/etc.

Parameters

● value – ​The data to execute the operations specified in the define on.
● bit – ​The specified bit you wish to change.

Page 11

The University of Alabama in Huntsville

#define bitSet

bitSet()
Description

This function sets a specific ​bit​ in the ​value​ passed through in order to achieve a bit setting of a
single bit. This function is necessary in the bitWrite function.

Parameters

● value – ​The data to execute the operations specified in the define on.
● bit – ​The specified bit you wish to change.

#define bitClear

bitClear()
Description

This function clears a specific ​bit​ in the ​value​ passed through in order to achieve a bit clearing of
a single bit. This function is necessary in the ​bitWrite​ function.

Parameters

● value – ​The data to execute the operations specified in the define on.
● bit –​ The specified bit you wish to change.

Page 12

The University of Alabama in Huntsville

#define bitWrite

bitWrite()
Description

This function takes in a ​value​, writes the ​bitvalue​ to a specific ​bit​ in the ​value​ passed through in
order to achieve a bit write of a single bit.

Parameters

● value – ​The data to execute the operations specified in the define on.
● bit – ​The specified bit you wish to change.
● bitvalue – ​The bit data value that will be written to value

#define lowByte

lowByte()
Description

This function takes a word that is passed in and grabs the low byte of the word.

Parameters

● W (Word-16 bits) – ​Data that has a size of 16-bits.

#define highByte

highByte()
Description

This function takes a word that is passed in and grabs the high byte of the word.

Parameters

● W (Word-16 bits) – ​Data that has a size of 16-bits.

Page 13

The University of Alabama in Huntsville

Version Updates

Latest Update: Version 0.6

Version 0.1 (??/??/????) The first version of ENIP.cpp documented featuring:

● Support of command code 0x65

Version 0.2 (05/16/2019) Additional functionality added:

● Support of command code 0x6f with Enip Type:

Unknown

● Output file functionality testing

Version 0.3 (05/30/2019) Additional functionality added:

● Support of command code 0x6f with Enip Type:

Unconnected

● Output file test for Type: Unconnected

● Added mechanism to determine which Enip Type is

exhibited

● Added mechanism to select corresponding response

based on Enip Type

● enip_Data struct implemented

● Some function parameters have been modified

Version 0.4 (06/28/2019) Additional functionality added:

● Support of command code 0x6f with Enip Type:

Connected

● Support of command code 0x70 with Enip Type:

Connected

● Output file test for Type: Connected

Version 0.5 (07/09/2019) Additional functionality added:

● Refactored command code functions

● Added support for PCCC.cpp to allow for variable and

dynamic PCCC response messages

● Removed hard coded PCCC response

Version 0.6 (07/09/2019) Additional functionality added:

● Refactored code into three files

○ enipStruct.h

○ outputFileFunctions.cpp

○ enip.cpp

Page 14

The University of Alabama in Huntsville

Version 0.7 (08/01/2019) Additional functionality added:

● Work in Progress

○ pccc.cpp

● pccc.cpp – develop functionality

○ Read/Write from PLC Address

○ Digital/Analog Read/Write

○ Craft complete response packet

Version 0.8 (08/16/2019) Additional functionality added:

● Work in Progress

○ ReadInputReg - Read Analog Input

○

● Pccc.cpp – adding functionality

○ Read Digital Input and Output

○ Write Digital Input and Output

Version 0.9 (08/28/2019) Additional functionality added:

● Work in Progress

○

● Pccc.cpp – adding functionality

○ Floating Point Supported (32-bit)

○ Integers Supported (16-bit)

● Pccc.cpp-​Removed Function(Analog Input)

○ Removed Analog Input functionality

from pccc.cpp. PCCC as a protocol

does not have a way to access that part

of the PLC’s memory. It was also

discovered that Analog Input is read

only and in theory is more protected

due to this fact.

Page 15

The University of Alabama in Huntsville

Future Work

This list details the work that is currently being worked on and discusses the

future works for the OpenPLC Project and PCCC Protocol.

● Error Handling

o Check to make sure pccc buffer size is not to small

o Add Status (STS) bit functionality

▪ This bit will allow us to receive errors that the PLC will throw

o Add Extended Status (EXT STS) bit functionality

▪ This bit will allow us to receive more detailed errors from the PLC via

the response packet

● Functionality

o 64-bit memory (ML) support

o Cycle Times: Have OpenPLC operate at the same speed as the Allen Bradley

in terms of clock speed

o Timeouts: Have OpenPLC and Protocols determine Timeouts based on

unresponsive system/user.

● Unconnected Type

o Develop a tool to test Unconnected Type to verify that this type is supported

with the current code

