re-removing aes ecdsa

This commit is contained in:
thomasv 2012-06-13 09:38:36 +02:00
parent 354f1e2177
commit 48516e0fcb
10 changed files with 0 additions and 3320 deletions

View File

@ -1,656 +0,0 @@
#!/usr/bin/python
#
# aes.py: implements AES - Advanced Encryption Standard
# from the SlowAES project, http://code.google.com/p/slowaes/
#
# Copyright (c) 2008 Josh Davis ( http://www.josh-davis.org ),
# Alex Martelli ( http://www.aleax.it )
#
# Ported from C code written by Laurent Haan ( http://www.progressive-coding.com )
#
# Licensed under the Apache License, Version 2.0
# http://www.apache.org/licenses/
#
import os
import sys
import math
def append_PKCS7_padding(s):
"""return s padded to a multiple of 16-bytes by PKCS7 padding"""
numpads = 16 - (len(s)%16)
return s + numpads*chr(numpads)
def strip_PKCS7_padding(s):
"""return s stripped of PKCS7 padding"""
if len(s)%16 or not s:
raise ValueError("String of len %d can't be PCKS7-padded" % len(s))
numpads = ord(s[-1])
if numpads > 16:
raise ValueError("String ending with %r can't be PCKS7-padded" % s[-1])
return s[:-numpads]
class AES(object):
# valid key sizes
keySize = dict(SIZE_128=16, SIZE_192=24, SIZE_256=32)
# Rijndael S-box
sbox = [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67,
0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59,
0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7,
0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1,
0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05,
0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83,
0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29,
0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa,
0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c,
0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc,
0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19,
0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee,
0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49,
0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4,
0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6,
0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70,
0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9,
0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e,
0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1,
0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0,
0x54, 0xbb, 0x16]
# Rijndael Inverted S-box
rsbox = [0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3,
0x9e, 0x81, 0xf3, 0xd7, 0xfb , 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f,
0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb , 0x54,
0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b,
0x42, 0xfa, 0xc3, 0x4e , 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24,
0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25 , 0x72, 0xf8,
0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d,
0x65, 0xb6, 0x92 , 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84 , 0x90, 0xd8, 0xab,
0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3,
0x45, 0x06 , 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1,
0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b , 0x3a, 0x91, 0x11, 0x41,
0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6,
0x73 , 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9,
0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e , 0x47, 0xf1, 0x1a, 0x71, 0x1d,
0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b ,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0,
0xfe, 0x78, 0xcd, 0x5a, 0xf4 , 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07,
0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f , 0x60,
0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f,
0x93, 0xc9, 0x9c, 0xef , 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5,
0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61 , 0x17, 0x2b,
0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55,
0x21, 0x0c, 0x7d]
def getSBoxValue(self,num):
"""Retrieves a given S-Box Value"""
return self.sbox[num]
def getSBoxInvert(self,num):
"""Retrieves a given Inverted S-Box Value"""
return self.rsbox[num]
def rotate(self, word):
""" Rijndael's key schedule rotate operation.
Rotate a word eight bits to the left: eg, rotate(1d2c3a4f) == 2c3a4f1d
Word is an char list of size 4 (32 bits overall).
"""
return word[1:] + word[:1]
# Rijndael Rcon
Rcon = [0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97,
0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72,
0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66,
0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d,
0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61,
0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40,
0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc,
0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5,
0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a,
0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d,
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c,
0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4,
0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d,
0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2,
0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74,
0xe8, 0xcb ]
def getRconValue(self, num):
"""Retrieves a given Rcon Value"""
return self.Rcon[num]
def core(self, word, iteration):
"""Key schedule core."""
# rotate the 32-bit word 8 bits to the left
word = self.rotate(word)
# apply S-Box substitution on all 4 parts of the 32-bit word
for i in range(4):
word[i] = self.getSBoxValue(word[i])
# XOR the output of the rcon operation with i to the first part
# (leftmost) only
word[0] = word[0] ^ self.getRconValue(iteration)
return word
def expandKey(self, key, size, expandedKeySize):
"""Rijndael's key expansion.
Expands an 128,192,256 key into an 176,208,240 bytes key
expandedKey is a char list of large enough size,
key is the non-expanded key.
"""
# current expanded keySize, in bytes
currentSize = 0
rconIteration = 1
expandedKey = [0] * expandedKeySize
# set the 16, 24, 32 bytes of the expanded key to the input key
for j in range(size):
expandedKey[j] = key[j]
currentSize += size
while currentSize < expandedKeySize:
# assign the previous 4 bytes to the temporary value t
t = expandedKey[currentSize-4:currentSize]
# every 16,24,32 bytes we apply the core schedule to t
# and increment rconIteration afterwards
if currentSize % size == 0:
t = self.core(t, rconIteration)
rconIteration += 1
# For 256-bit keys, we add an extra sbox to the calculation
if size == self.keySize["SIZE_256"] and ((currentSize % size) == 16):
for l in range(4): t[l] = self.getSBoxValue(t[l])
# We XOR t with the four-byte block 16,24,32 bytes before the new
# expanded key. This becomes the next four bytes in the expanded
# key.
for m in range(4):
expandedKey[currentSize] = expandedKey[currentSize - size] ^ \
t[m]
currentSize += 1
return expandedKey
def addRoundKey(self, state, roundKey):
"""Adds (XORs) the round key to the state."""
for i in range(16):
state[i] ^= roundKey[i]
return state
def createRoundKey(self, expandedKey, roundKeyPointer):
"""Create a round key.
Creates a round key from the given expanded key and the
position within the expanded key.
"""
roundKey = [0] * 16
for i in range(4):
for j in range(4):
roundKey[j*4+i] = expandedKey[roundKeyPointer + i*4 + j]
return roundKey
def galois_multiplication(self, a, b):
"""Galois multiplication of 8 bit characters a and b."""
p = 0
for counter in range(8):
if b & 1: p ^= a
hi_bit_set = a & 0x80
a <<= 1
# keep a 8 bit
a &= 0xFF
if hi_bit_set:
a ^= 0x1b
b >>= 1
return p
#
# substitute all the values from the state with the value in the SBox
# using the state value as index for the SBox
#
def subBytes(self, state, isInv):
if isInv: getter = self.getSBoxInvert
else: getter = self.getSBoxValue
for i in range(16): state[i] = getter(state[i])
return state
# iterate over the 4 rows and call shiftRow() with that row
def shiftRows(self, state, isInv):
for i in range(4):
state = self.shiftRow(state, i*4, i, isInv)
return state
# each iteration shifts the row to the left by 1
def shiftRow(self, state, statePointer, nbr, isInv):
for i in range(nbr):
if isInv:
state[statePointer:statePointer+4] = \
state[statePointer+3:statePointer+4] + \
state[statePointer:statePointer+3]
else:
state[statePointer:statePointer+4] = \
state[statePointer+1:statePointer+4] + \
state[statePointer:statePointer+1]
return state
# galois multiplication of the 4x4 matrix
def mixColumns(self, state, isInv):
# iterate over the 4 columns
for i in range(4):
# construct one column by slicing over the 4 rows
column = state[i:i+16:4]
# apply the mixColumn on one column
column = self.mixColumn(column, isInv)
# put the values back into the state
state[i:i+16:4] = column
return state
# galois multiplication of 1 column of the 4x4 matrix
def mixColumn(self, column, isInv):
if isInv: mult = [14, 9, 13, 11]
else: mult = [2, 1, 1, 3]
cpy = list(column)
g = self.galois_multiplication
column[0] = g(cpy[0], mult[0]) ^ g(cpy[3], mult[1]) ^ \
g(cpy[2], mult[2]) ^ g(cpy[1], mult[3])
column[1] = g(cpy[1], mult[0]) ^ g(cpy[0], mult[1]) ^ \
g(cpy[3], mult[2]) ^ g(cpy[2], mult[3])
column[2] = g(cpy[2], mult[0]) ^ g(cpy[1], mult[1]) ^ \
g(cpy[0], mult[2]) ^ g(cpy[3], mult[3])
column[3] = g(cpy[3], mult[0]) ^ g(cpy[2], mult[1]) ^ \
g(cpy[1], mult[2]) ^ g(cpy[0], mult[3])
return column
# applies the 4 operations of the forward round in sequence
def aes_round(self, state, roundKey):
state = self.subBytes(state, False)
state = self.shiftRows(state, False)
state = self.mixColumns(state, False)
state = self.addRoundKey(state, roundKey)
return state
# applies the 4 operations of the inverse round in sequence
def aes_invRound(self, state, roundKey):
state = self.shiftRows(state, True)
state = self.subBytes(state, True)
state = self.addRoundKey(state, roundKey)
state = self.mixColumns(state, True)
return state
# Perform the initial operations, the standard round, and the final
# operations of the forward aes, creating a round key for each round
def aes_main(self, state, expandedKey, nbrRounds):
state = self.addRoundKey(state, self.createRoundKey(expandedKey, 0))
i = 1
while i < nbrRounds:
state = self.aes_round(state,
self.createRoundKey(expandedKey, 16*i))
i += 1
state = self.subBytes(state, False)
state = self.shiftRows(state, False)
state = self.addRoundKey(state,
self.createRoundKey(expandedKey, 16*nbrRounds))
return state
# Perform the initial operations, the standard round, and the final
# operations of the inverse aes, creating a round key for each round
def aes_invMain(self, state, expandedKey, nbrRounds):
state = self.addRoundKey(state,
self.createRoundKey(expandedKey, 16*nbrRounds))
i = nbrRounds - 1
while i > 0:
state = self.aes_invRound(state,
self.createRoundKey(expandedKey, 16*i))
i -= 1
state = self.shiftRows(state, True)
state = self.subBytes(state, True)
state = self.addRoundKey(state, self.createRoundKey(expandedKey, 0))
return state
# encrypts a 128 bit input block against the given key of size specified
def encrypt(self, iput, key, size):
output = [0] * 16
# the number of rounds
nbrRounds = 0
# the 128 bit block to encode
block = [0] * 16
# set the number of rounds
if size == self.keySize["SIZE_128"]: nbrRounds = 10
elif size == self.keySize["SIZE_192"]: nbrRounds = 12
elif size == self.keySize["SIZE_256"]: nbrRounds = 14
else: return None
# the expanded keySize
expandedKeySize = 16*(nbrRounds+1)
# Set the block values, for the block:
# a0,0 a0,1 a0,2 a0,3
# a1,0 a1,1 a1,2 a1,3
# a2,0 a2,1 a2,2 a2,3
# a3,0 a3,1 a3,2 a3,3
# the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
#
# iterate over the columns
for i in range(4):
# iterate over the rows
for j in range(4):
block[(i+(j*4))] = iput[(i*4)+j]
# expand the key into an 176, 208, 240 bytes key
# the expanded key
expandedKey = self.expandKey(key, size, expandedKeySize)
# encrypt the block using the expandedKey
block = self.aes_main(block, expandedKey, nbrRounds)
# unmap the block again into the output
for k in range(4):
# iterate over the rows
for l in range(4):
output[(k*4)+l] = block[(k+(l*4))]
return output
# decrypts a 128 bit input block against the given key of size specified
def decrypt(self, iput, key, size):
output = [0] * 16
# the number of rounds
nbrRounds = 0
# the 128 bit block to decode
block = [0] * 16
# set the number of rounds
if size == self.keySize["SIZE_128"]: nbrRounds = 10
elif size == self.keySize["SIZE_192"]: nbrRounds = 12
elif size == self.keySize["SIZE_256"]: nbrRounds = 14
else: return None
# the expanded keySize
expandedKeySize = 16*(nbrRounds+1)
# Set the block values, for the block:
# a0,0 a0,1 a0,2 a0,3
# a1,0 a1,1 a1,2 a1,3
# a2,0 a2,1 a2,2 a2,3
# a3,0 a3,1 a3,2 a3,3
# the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
# iterate over the columns
for i in range(4):
# iterate over the rows
for j in range(4):
block[(i+(j*4))] = iput[(i*4)+j]
# expand the key into an 176, 208, 240 bytes key
expandedKey = self.expandKey(key, size, expandedKeySize)
# decrypt the block using the expandedKey
block = self.aes_invMain(block, expandedKey, nbrRounds)
# unmap the block again into the output
for k in range(4):
# iterate over the rows
for l in range(4):
output[(k*4)+l] = block[(k+(l*4))]
return output
class AESModeOfOperation(object):
aes = AES()
# structure of supported modes of operation
modeOfOperation = dict(OFB=0, CFB=1, CBC=2)
# converts a 16 character string into a number array
def convertString(self, string, start, end, mode):
if end - start > 16: end = start + 16
if mode == self.modeOfOperation["CBC"]: ar = [0] * 16
else: ar = []
i = start
j = 0
while len(ar) < end - start:
ar.append(0)
while i < end:
ar[j] = ord(string[i])
j += 1
i += 1
return ar
# Mode of Operation Encryption
# stringIn - Input String
# mode - mode of type modeOfOperation
# hexKey - a hex key of the bit length size
# size - the bit length of the key
# hexIV - the 128 bit hex Initilization Vector
def encrypt(self, stringIn, mode, key, size, IV):
if len(key) % size:
return None
if len(IV) % 16:
return None
# the AES input/output
plaintext = []
iput = [0] * 16
output = []
ciphertext = [0] * 16
# the output cipher string
cipherOut = []
# char firstRound
firstRound = True
if stringIn != None:
for j in range(int(math.ceil(float(len(stringIn))/16))):
start = j*16
end = j*16+16
if end > len(stringIn):
end = len(stringIn)
plaintext = self.convertString(stringIn, start, end, mode)
# print 'PT@%s:%s' % (j, plaintext)
if mode == self.modeOfOperation["CFB"]:
if firstRound:
output = self.aes.encrypt(IV, key, size)
firstRound = False
else:
output = self.aes.encrypt(iput, key, size)
for i in range(16):
if len(plaintext)-1 < i:
ciphertext[i] = 0 ^ output[i]
elif len(output)-1 < i:
ciphertext[i] = plaintext[i] ^ 0
elif len(plaintext)-1 < i and len(output) < i:
ciphertext[i] = 0 ^ 0
else:
ciphertext[i] = plaintext[i] ^ output[i]
for k in range(end-start):
cipherOut.append(ciphertext[k])
iput = ciphertext
elif mode == self.modeOfOperation["OFB"]:
if firstRound:
output = self.aes.encrypt(IV, key, size)
firstRound = False
else:
output = self.aes.encrypt(iput, key, size)
for i in range(16):
if len(plaintext)-1 < i:
ciphertext[i] = 0 ^ output[i]
elif len(output)-1 < i:
ciphertext[i] = plaintext[i] ^ 0
elif len(plaintext)-1 < i and len(output) < i:
ciphertext[i] = 0 ^ 0
else:
ciphertext[i] = plaintext[i] ^ output[i]
for k in range(end-start):
cipherOut.append(ciphertext[k])
iput = output
elif mode == self.modeOfOperation["CBC"]:
for i in range(16):
if firstRound:
iput[i] = plaintext[i] ^ IV[i]
else:
iput[i] = plaintext[i] ^ ciphertext[i]
# print 'IP@%s:%s' % (j, iput)
firstRound = False
ciphertext = self.aes.encrypt(iput, key, size)
# always 16 bytes because of the padding for CBC
for k in range(16):
cipherOut.append(ciphertext[k])
return mode, len(stringIn), cipherOut
# Mode of Operation Decryption
# cipherIn - Encrypted String
# originalsize - The unencrypted string length - required for CBC
# mode - mode of type modeOfOperation
# key - a number array of the bit length size
# size - the bit length of the key
# IV - the 128 bit number array Initilization Vector
def decrypt(self, cipherIn, originalsize, mode, key, size, IV):
# cipherIn = unescCtrlChars(cipherIn)
if len(key) % size:
return None
if len(IV) % 16:
return None
# the AES input/output
ciphertext = []
iput = []
output = []
plaintext = [0] * 16
# the output plain text string
stringOut = ''
# char firstRound
firstRound = True
if cipherIn != None:
for j in range(int(math.ceil(float(len(cipherIn))/16))):
start = j*16
end = j*16+16
if j*16+16 > len(cipherIn):
end = len(cipherIn)
ciphertext = cipherIn[start:end]
if mode == self.modeOfOperation["CFB"]:
if firstRound:
output = self.aes.encrypt(IV, key, size)
firstRound = False
else:
output = self.aes.encrypt(iput, key, size)
for i in range(16):
if len(output)-1 < i:
plaintext[i] = 0 ^ ciphertext[i]
elif len(ciphertext)-1 < i:
plaintext[i] = output[i] ^ 0
elif len(output)-1 < i and len(ciphertext) < i:
plaintext[i] = 0 ^ 0
else:
plaintext[i] = output[i] ^ ciphertext[i]
for k in range(end-start):
stringOut += chr(plaintext[k])
iput = ciphertext
elif mode == self.modeOfOperation["OFB"]:
if firstRound:
output = self.aes.encrypt(IV, key, size)
firstRound = False
else:
output = self.aes.encrypt(iput, key, size)
for i in range(16):
if len(output)-1 < i:
plaintext[i] = 0 ^ ciphertext[i]
elif len(ciphertext)-1 < i:
plaintext[i] = output[i] ^ 0
elif len(output)-1 < i and len(ciphertext) < i:
plaintext[i] = 0 ^ 0
else:
plaintext[i] = output[i] ^ ciphertext[i]
for k in range(end-start):
stringOut += chr(plaintext[k])
iput = output
elif mode == self.modeOfOperation["CBC"]:
output = self.aes.decrypt(ciphertext, key, size)
for i in range(16):
if firstRound:
plaintext[i] = IV[i] ^ output[i]
else:
plaintext[i] = iput[i] ^ output[i]
firstRound = False
if originalsize is not None and originalsize < end:
for k in range(originalsize-start):
stringOut += chr(plaintext[k])
else:
for k in range(end-start):
stringOut += chr(plaintext[k])
iput = ciphertext
return stringOut
def encryptData(key, data, mode=AESModeOfOperation.modeOfOperation["CBC"]):
"""encrypt `data` using `key`
`key` should be a string of bytes.
returned cipher is a string of bytes prepended with the initialization
vector.
"""
key = map(ord, key)
if mode == AESModeOfOperation.modeOfOperation["CBC"]:
data = append_PKCS7_padding(data)
keysize = len(key)
assert keysize in AES.keySize.values(), 'invalid key size: %s' % keysize
# create a new iv using random data
iv = [ord(i) for i in os.urandom(16)]
moo = AESModeOfOperation()
(mode, length, ciph) = moo.encrypt(data, mode, key, keysize, iv)
# With padding, the original length does not need to be known. It's a bad
# idea to store the original message length.
# prepend the iv.
return ''.join(map(chr, iv)) + ''.join(map(chr, ciph))
def decryptData(key, data, mode=AESModeOfOperation.modeOfOperation["CBC"]):
"""decrypt `data` using `key`
`key` should be a string of bytes.
`data` should have the initialization vector prepended as a string of
ordinal values.
"""
key = map(ord, key)
keysize = len(key)
assert keysize in AES.keySize.values(), 'invalid key size: %s' % keysize
# iv is first 16 bytes
iv = map(ord, data[:16])
data = map(ord, data[16:])
moo = AESModeOfOperation()
decr = moo.decrypt(data, None, mode, key, keysize, iv)
if mode == AESModeOfOperation.modeOfOperation["CBC"]:
decr = strip_PKCS7_padding(decr)
return decr
def generateRandomKey(keysize):
"""Generates a key from random data of length `keysize`.
The returned key is a string of bytes.
"""
if keysize not in (16, 24, 32):
emsg = 'Invalid keysize, %s. Should be one of (16, 24, 32).'
raise ValueError, emsg % keysize
return os.urandom(keysize)
if __name__ == "__main__":
moo = AESModeOfOperation()
cleartext = "This is a test!"
cypherkey = [143,194,34,208,145,203,230,143,177,246,97,206,145,92,255,84]
iv = [103,35,148,239,76,213,47,118,255,222,123,176,106,134,98,92]
mode, orig_len, ciph = moo.encrypt(cleartext, moo.modeOfOperation["CBC"],
cypherkey, moo.aes.keySize["SIZE_128"], iv)
print 'm=%s, ol=%s (%s), ciph=%s' % (mode, orig_len, len(cleartext), ciph)
decr = moo.decrypt(ciph, orig_len, mode, cypherkey,
moo.aes.keySize["SIZE_128"], iv)
print decr

View File

@ -1,16 +0,0 @@
from keys import SigningKey, VerifyingKey, BadSignatureError, BadDigestError
from curves import NIST192p, NIST224p, NIST256p, NIST384p, NIST521p
_hush_pyflakes = [SigningKey, VerifyingKey, BadSignatureError, BadDigestError,
NIST192p, NIST224p, NIST256p, NIST384p, NIST521p]
del _hush_pyflakes
# This code comes from http://github.com/warner/python-ecdsa
try:
from _version import __version__ as v
__version__ = v
del v
except ImportError:
__version__ = "UNKNOWN"

View File

@ -1,41 +0,0 @@
import der, ecdsa
class UnknownCurveError(Exception):
pass
def orderlen(order):
return (1+len("%x"%order))//2 # bytes
# the NIST curves
class Curve:
def __init__(self, name, curve, generator, oid):
self.name = name
self.curve = curve
self.generator = generator
self.order = generator.order()
self.baselen = orderlen(self.order)
self.verifying_key_length = 2*self.baselen
self.signature_length = 2*self.baselen
self.oid = oid
self.encoded_oid = der.encode_oid(*oid)
NIST192p = Curve("NIST192p", ecdsa.curve_192, ecdsa.generator_192,
(1, 2, 840, 10045, 3, 1, 1))
NIST224p = Curve("NIST224p", ecdsa.curve_224, ecdsa.generator_224,
(1, 3, 132, 0, 33))
NIST256p = Curve("NIST256p", ecdsa.curve_256, ecdsa.generator_256,
(1, 2, 840, 10045, 3, 1, 7))
NIST384p = Curve("NIST384p", ecdsa.curve_384, ecdsa.generator_384,
(1, 3, 132, 0, 34))
NIST521p = Curve("NIST521p", ecdsa.curve_521, ecdsa.generator_521,
(1, 3, 132, 0, 35))
curves = [NIST192p, NIST224p, NIST256p, NIST384p, NIST521p]
def find_curve(oid_curve):
for c in curves:
if c.oid == oid_curve:
return c
raise UnknownCurveError("I don't know about the curve with oid %s."
"I only know about these: %s" %
(oid_curve, [c.name for c in curves]))

View File

@ -1,190 +0,0 @@
import binascii
import base64
class UnexpectedDER(Exception):
pass
def encode_constructed(tag, value):
return chr(0xa0+tag) + encode_length(len(value)) + value
def encode_integer(r):
assert r >= 0 # can't support negative numbers yet
h = "%x" % r
if len(h)%2:
h = "0" + h
s = binascii.unhexlify(h)
if ord(s[0]) <= 0x7f:
return "\x02" + chr(len(s)) + s
else:
# DER integers are two's complement, so if the first byte is
# 0x80-0xff then we need an extra 0x00 byte to prevent it from
# looking negative.
return "\x02" + chr(len(s)+1) + "\x00" + s
def encode_bitstring(s):
return "\x03" + encode_length(len(s)) + s
def encode_octet_string(s):
return "\x04" + encode_length(len(s)) + s
def encode_oid(first, second, *pieces):
assert first <= 2
assert second <= 39
encoded_pieces = [chr(40*first+second)] + [encode_number(p)
for p in pieces]
body = "".join(encoded_pieces)
return "\x06" + encode_length(len(body)) + body
def encode_sequence(*encoded_pieces):
total_len = sum([len(p) for p in encoded_pieces])
return "\x30" + encode_length(total_len) + "".join(encoded_pieces)
def encode_number(n):
b128_digits = []
while n:
b128_digits.insert(0, (n & 0x7f) | 0x80)
n = n >> 7
if not b128_digits:
b128_digits.append(0)
b128_digits[-1] &= 0x7f
return "".join([chr(d) for d in b128_digits])
def remove_constructed(string):
s0 = ord(string[0])
if (s0 & 0xe0) != 0xa0:
raise UnexpectedDER("wanted constructed tag (0xa0-0xbf), got 0x%02x"
% s0)
tag = s0 & 0x1f
length, llen = read_length(string[1:])
body = string[1+llen:1+llen+length]
rest = string[1+llen+length:]
return tag, body, rest
def remove_sequence(string):
if not string.startswith("\x30"):
raise UnexpectedDER("wanted sequence (0x30), got 0x%02x" %
ord(string[0]))
length, lengthlength = read_length(string[1:])
endseq = 1+lengthlength+length
return string[1+lengthlength:endseq], string[endseq:]
def remove_octet_string(string):
if not string.startswith("\x04"):
raise UnexpectedDER("wanted octetstring (0x04), got 0x%02x" %
ord(string[0]))
length, llen = read_length(string[1:])
body = string[1+llen:1+llen+length]
rest = string[1+llen+length:]
return body, rest
def remove_object(string):
if not string.startswith("\x06"):
raise UnexpectedDER("wanted object (0x06), got 0x%02x" %
ord(string[0]))
length, lengthlength = read_length(string[1:])
body = string[1+lengthlength:1+lengthlength+length]
rest = string[1+lengthlength+length:]
numbers = []
while body:
n, ll = read_number(body)
numbers.append(n)
body = body[ll:]
n0 = numbers.pop(0)
first = n0//40
second = n0-(40*first)
numbers.insert(0, first)
numbers.insert(1, second)
return tuple(numbers), rest
def remove_integer(string):
if not string.startswith("\x02"):
raise UnexpectedDER("wanted integer (0x02), got 0x%02x" %
ord(string[0]))
length, llen = read_length(string[1:])
numberbytes = string[1+llen:1+llen+length]
rest = string[1+llen+length:]
assert ord(numberbytes[0]) < 0x80 # can't support negative numbers yet
return int(binascii.hexlify(numberbytes), 16), rest
def read_number(string):
number = 0
llen = 0
# base-128 big endian, with b7 set in all but the last byte
while True:
if llen > len(string):
raise UnexpectedDER("ran out of length bytes")
number = number << 7
d = ord(string[llen])
number += (d & 0x7f)
llen += 1
if not d & 0x80:
break
return number, llen
def encode_length(l):
assert l >= 0
if l < 0x80:
return chr(l)
s = "%x" % l
if len(s)%2:
s = "0"+s
s = binascii.unhexlify(s)
llen = len(s)
return chr(0x80|llen) + s
def read_length(string):
if not (ord(string[0]) & 0x80):
# short form
return (ord(string[0]) & 0x7f), 1
# else long-form: b0&0x7f is number of additional base256 length bytes,
# big-endian
llen = ord(string[0]) & 0x7f
if llen > len(string)-1:
raise UnexpectedDER("ran out of length bytes")
return int(binascii.hexlify(string[1:1+llen]), 16), 1+llen
def remove_bitstring(string):
if not string.startswith("\x03"):
raise UnexpectedDER("wanted bitstring (0x03), got 0x%02x" %
ord(string[0]))
length, llen = read_length(string[1:])
body = string[1+llen:1+llen+length]
rest = string[1+llen+length:]
return body, rest
# SEQUENCE([1, STRING(secexp), cont[0], OBJECT(curvename), cont[1], BINTSTRING)
# signatures: (from RFC3279)
# ansi-X9-62 OBJECT IDENTIFIER ::= {
# iso(1) member-body(2) us(840) 10045 }
#
# id-ecSigType OBJECT IDENTIFIER ::= {
# ansi-X9-62 signatures(4) }
# ecdsa-with-SHA1 OBJECT IDENTIFIER ::= {
# id-ecSigType 1 }
## so 1,2,840,10045,4,1
## so 0x42, .. ..
# Ecdsa-Sig-Value ::= SEQUENCE {
# r INTEGER,
# s INTEGER }
# id-public-key-type OBJECT IDENTIFIER ::= { ansi-X9.62 2 }
#
# id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 }
# I think the secp224r1 identifier is (t=06,l=05,v=2b81040021)
# secp224r1 OBJECT IDENTIFIER ::= {
# iso(1) identified-organization(3) certicom(132) curve(0) 33 }
# and the secp384r1 is (t=06,l=05,v=2b81040022)
# secp384r1 OBJECT IDENTIFIER ::= {
# iso(1) identified-organization(3) certicom(132) curve(0) 34 }
def unpem(pem):
d = "".join([l.strip() for l in pem.split("\n")
if l and not l.startswith("-----")])
return base64.b64decode(d)
def topem(der, name):
b64 = base64.b64encode(der)
lines = ["-----BEGIN %s-----\n" % name]
lines.extend([b64[start:start+64]+"\n"
for start in range(0, len(b64), 64)])
lines.append("-----END %s-----\n" % name)
return "".join(lines)

View File

@ -1,560 +0,0 @@
#! /usr/bin/env python
"""
Implementation of Elliptic-Curve Digital Signatures.
Classes and methods for elliptic-curve signatures:
private keys, public keys, signatures,
NIST prime-modulus curves with modulus lengths of
192, 224, 256, 384, and 521 bits.
Example:
# (In real-life applications, you would probably want to
# protect against defects in SystemRandom.)
from random import SystemRandom
randrange = SystemRandom().randrange
# Generate a public/private key pair using the NIST Curve P-192:
g = generator_192
n = g.order()
secret = randrange( 1, n )
pubkey = Public_key( g, g * secret )
privkey = Private_key( pubkey, secret )
# Signing a hash value:
hash = randrange( 1, n )
signature = privkey.sign( hash, randrange( 1, n ) )
# Verifying a signature for a hash value:
if pubkey.verifies( hash, signature ):
print "Demo verification succeeded."
else:
print "*** Demo verification failed."
# Verification fails if the hash value is modified:
if pubkey.verifies( hash-1, signature ):
print "**** Demo verification failed to reject tampered hash."
else:
print "Demo verification correctly rejected tampered hash."
Version of 2009.05.16.
Revision history:
2005.12.31 - Initial version.
2008.11.25 - Substantial revisions introducing new classes.
2009.05.16 - Warn against using random.randrange in real applications.
2009.05.17 - Use random.SystemRandom by default.
Written in 2005 by Peter Pearson and placed in the public domain.
"""
import ellipticcurve
import numbertheory
import random
class Signature( object ):
"""ECDSA signature.
"""
def __init__( self, r, s ):
self.r = r
self.s = s
class Public_key( object ):
"""Public key for ECDSA.
"""
def __init__( self, generator, point ):
"""generator is the Point that generates the group,
point is the Point that defines the public key.
"""
self.curve = generator.curve()
self.generator = generator
self.point = point
n = generator.order()
if not n:
raise RuntimeError, "Generator point must have order."
if not n * point == ellipticcurve.INFINITY:
raise RuntimeError, "Generator point order is bad."
if point.x() < 0 or n <= point.x() or point.y() < 0 or n <= point.y():
raise RuntimeError, "Generator point has x or y out of range."
def verifies( self, hash, signature ):
"""Verify that signature is a valid signature of hash.
Return True if the signature is valid.
"""
# From X9.62 J.3.1.
G = self.generator
n = G.order()
r = signature.r
s = signature.s
if r < 1 or r > n-1: return False
if s < 1 or s > n-1: return False
c = numbertheory.inverse_mod( s, n )
u1 = ( hash * c ) % n
u2 = ( r * c ) % n
xy = u1 * G + u2 * self.point
v = xy.x() % n
return v == r
class Private_key( object ):
"""Private key for ECDSA.
"""
def __init__( self, public_key, secret_multiplier ):
"""public_key is of class Public_key;
secret_multiplier is a large integer.
"""
self.public_key = public_key
self.secret_multiplier = secret_multiplier
def sign( self, hash, random_k ):
"""Return a signature for the provided hash, using the provided
random nonce. It is absolutely vital that random_k be an unpredictable
number in the range [1, self.public_key.point.order()-1]. If
an attacker can guess random_k, he can compute our private key from a
single signature. Also, if an attacker knows a few high-order
bits (or a few low-order bits) of random_k, he can compute our private
key from many signatures. The generation of nonces with adequate
cryptographic strength is very difficult and far beyond the scope
of this comment.
May raise RuntimeError, in which case retrying with a new
random value k is in order.
"""
G = self.public_key.generator
n = G.order()
k = random_k % n
p1 = k * G
r = p1.x()
if r == 0: raise RuntimeError, "amazingly unlucky random number r"
s = ( numbertheory.inverse_mod( k, n ) * \
( hash + ( self.secret_multiplier * r ) % n ) ) % n
if s == 0: raise RuntimeError, "amazingly unlucky random number s"
return Signature( r, s )
def int_to_string( x ):
"""Convert integer x into a string of bytes, as per X9.62."""
assert x >= 0
if x == 0: return chr(0)
result = ""
while x > 0:
q, r = divmod( x, 256 )
result = chr( r ) + result
x = q
return result
def string_to_int( s ):
"""Convert a string of bytes into an integer, as per X9.62."""
result = 0L
for c in s: result = 256 * result + ord( c )
return result
def digest_integer( m ):
"""Convert an integer into a string of bytes, compute
its SHA-1 hash, and convert the result to an integer."""
#
# I don't expect this function to be used much. I wrote
# it in order to be able to duplicate the examples
# in ECDSAVS.
#
from hashlib import sha1
return string_to_int( sha1( int_to_string( m ) ).digest() )
def point_is_valid( generator, x, y ):
"""Is (x,y) a valid public key based on the specified generator?"""
# These are the tests specified in X9.62.
n = generator.order()
curve = generator.curve()
if x < 0 or n <= x or y < 0 or n <= y:
return False
if not curve.contains_point( x, y ):
return False
if not n*ellipticcurve.Point( curve, x, y ) == \
ellipticcurve.INFINITY:
return False
return True
# NIST Curve P-192:
_p = 6277101735386680763835789423207666416083908700390324961279L
_r = 6277101735386680763835789423176059013767194773182842284081L
# s = 0x3045ae6fc8422f64ed579528d38120eae12196d5L
# c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65L
_b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1L
_Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012L
_Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811L
curve_192 = ellipticcurve.CurveFp( _p, -3, _b )
generator_192 = ellipticcurve.Point( curve_192, _Gx, _Gy, _r )
# NIST Curve P-224:
_p = 26959946667150639794667015087019630673557916260026308143510066298881L
_r = 26959946667150639794667015087019625940457807714424391721682722368061L
# s = 0xbd71344799d5c7fcdc45b59fa3b9ab8f6a948bc5L
# c = 0x5b056c7e11dd68f40469ee7f3c7a7d74f7d121116506d031218291fbL
_b = 0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4L
_Gx =0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21L
_Gy = 0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34L
curve_224 = ellipticcurve.CurveFp( _p, -3, _b )
generator_224 = ellipticcurve.Point( curve_224, _Gx, _Gy, _r )
# NIST Curve P-256:
_p = 115792089210356248762697446949407573530086143415290314195533631308867097853951L
_r = 115792089210356248762697446949407573529996955224135760342422259061068512044369L
# s = 0xc49d360886e704936a6678e1139d26b7819f7e90L
# c = 0x7efba1662985be9403cb055c75d4f7e0ce8d84a9c5114abcaf3177680104fa0dL
_b = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604bL
_Gx = 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296L
_Gy = 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5L
curve_256 = ellipticcurve.CurveFp( _p, -3, _b )
generator_256 = ellipticcurve.Point( curve_256, _Gx, _Gy, _r )
# NIST Curve P-384:
_p = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319L
_r = 39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643L
# s = 0xa335926aa319a27a1d00896a6773a4827acdac73L
# c = 0x79d1e655f868f02fff48dcdee14151ddb80643c1406d0ca10dfe6fc52009540a495e8042ea5f744f6e184667cc722483L
_b = 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aefL
_Gx = 0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7L
_Gy = 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5fL
curve_384 = ellipticcurve.CurveFp( _p, -3, _b )
generator_384 = ellipticcurve.Point( curve_384, _Gx, _Gy, _r )
# NIST Curve P-521:
_p = 6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151L
_r = 6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449L
# s = 0xd09e8800291cb85396cc6717393284aaa0da64baL
# c = 0x0b48bfa5f420a34949539d2bdfc264eeeeb077688e44fbf0ad8f6d0edb37bd6b533281000518e19f1b9ffbe0fe9ed8a3c2200b8f875e523868c70c1e5bf55bad637L
_b = 0x051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00L
_Gx = 0xc6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66L
_Gy = 0x11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650L
curve_521 = ellipticcurve.CurveFp( _p, -3, _b )
generator_521 = ellipticcurve.Point( curve_521, _Gx, _Gy, _r )
def __main__():
class TestFailure(Exception): pass
def test_point_validity( generator, x, y, expected ):
"""generator defines the curve; is (x,y) a point on
this curve? "expected" is True if the right answer is Yes."""
if point_is_valid( generator, x, y ) == expected:
print "Point validity tested as expected."
else:
raise TestFailure("*** Point validity test gave wrong result.")
def test_signature_validity( Msg, Qx, Qy, R, S, expected ):
"""Msg = message, Qx and Qy represent the base point on
elliptic curve c192, R and S are the signature, and
"expected" is True iff the signature is expected to be valid."""
pubk = Public_key( generator_192,
ellipticcurve.Point( curve_192, Qx, Qy ) )
got = pubk.verifies( digest_integer( Msg ), Signature( R, S ) )
if got == expected:
print "Signature tested as expected: got %s, expected %s." % \
( got, expected )
else:
raise TestFailure("*** Signature test failed: got %s, expected %s." % \
( got, expected ))
print "NIST Curve P-192:"
p192 = generator_192
# From X9.62:
d = 651056770906015076056810763456358567190100156695615665659L
Q = d * p192
if Q.x() != 0x62B12D60690CDCF330BABAB6E69763B471F994DD702D16A5L:
raise TestFailure("*** p192 * d came out wrong.")
else:
print "p192 * d came out right."
k = 6140507067065001063065065565667405560006161556565665656654L
R = k * p192
if R.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEADL \
or R.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835L:
raise TestFailure("*** k * p192 came out wrong.")
else:
print "k * p192 came out right."
u1 = 2563697409189434185194736134579731015366492496392189760599L
u2 = 6266643813348617967186477710235785849136406323338782220568L
temp = u1 * p192 + u2 * Q
if temp.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEADL \
or temp.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835L:
raise TestFailure("*** u1 * p192 + u2 * Q came out wrong.")
else:
print "u1 * p192 + u2 * Q came out right."
e = 968236873715988614170569073515315707566766479517L
pubk = Public_key( generator_192, generator_192 * d )
privk = Private_key( pubk, d )
sig = privk.sign( e, k )
r, s = sig.r, sig.s
if r != 3342403536405981729393488334694600415596881826869351677613L \
or s != 5735822328888155254683894997897571951568553642892029982342L:
raise TestFailure("*** r or s came out wrong.")
else:
print "r and s came out right."
valid = pubk.verifies( e, sig )
if valid: print "Signature verified OK."
else: raise TestFailure("*** Signature failed verification.")
valid = pubk.verifies( e-1, sig )
if not valid: print "Forgery was correctly rejected."
else: raise TestFailure("*** Forgery was erroneously accepted.")
print "Testing point validity, as per ECDSAVS.pdf B.2.2:"
test_point_validity( \
p192, \
0xcd6d0f029a023e9aaca429615b8f577abee685d8257cc83aL, \
0x00019c410987680e9fb6c0b6ecc01d9a2647c8bae27721bacdfcL, \
False )
test_point_validity(
p192, \
0x00017f2fce203639e9eaf9fb50b81fc32776b30e3b02af16c73bL, \
0x95da95c5e72dd48e229d4748d4eee658a9a54111b23b2adbL, \
False )
test_point_validity(
p192, \
0x4f77f8bc7fccbadd5760f4938746d5f253ee2168c1cf2792L, \
0x000147156ff824d131629739817edb197717c41aab5c2a70f0f6L, \
False )
test_point_validity(
p192, \
0xc58d61f88d905293bcd4cd0080bcb1b7f811f2ffa41979f6L, \
0x8804dc7a7c4c7f8b5d437f5156f3312ca7d6de8a0e11867fL, \
True )
test_point_validity(
p192, \
0xcdf56c1aa3d8afc53c521adf3ffb96734a6a630a4a5b5a70L, \
0x97c1c44a5fb229007b5ec5d25f7413d170068ffd023caa4eL, \
True )
test_point_validity(
p192, \
0x89009c0dc361c81e99280c8e91df578df88cdf4b0cdedcedL, \
0x27be44a529b7513e727251f128b34262a0fd4d8ec82377b9L, \
True )
test_point_validity(
p192, \
0x6a223d00bd22c52833409a163e057e5b5da1def2a197dd15L, \
0x7b482604199367f1f303f9ef627f922f97023e90eae08abfL, \
True )
test_point_validity(
p192, \
0x6dccbde75c0948c98dab32ea0bc59fe125cf0fb1a3798edaL, \
0x0001171a3e0fa60cf3096f4e116b556198de430e1fbd330c8835L, \
False )
test_point_validity(
p192, \
0xd266b39e1f491fc4acbbbc7d098430931cfa66d55015af12L, \
0x193782eb909e391a3148b7764e6b234aa94e48d30a16dbb2L, \
False )
test_point_validity(
p192, \
0x9d6ddbcd439baa0c6b80a654091680e462a7d1d3f1ffeb43L, \
0x6ad8efc4d133ccf167c44eb4691c80abffb9f82b932b8caaL, \
False )
test_point_validity(
p192, \
0x146479d944e6bda87e5b35818aa666a4c998a71f4e95edbcL, \
0xa86d6fe62bc8fbd88139693f842635f687f132255858e7f6L, \
False )
test_point_validity(
p192, \
0xe594d4a598046f3598243f50fd2c7bd7d380edb055802253L, \
0x509014c0c4d6b536e3ca750ec09066af39b4c8616a53a923L, \
False )
print "Trying signature-verification tests from ECDSAVS.pdf B.2.4:"
print "P-192:"
Msg = 0x84ce72aa8699df436059f052ac51b6398d2511e49631bcb7e71f89c499b9ee425dfbc13a5f6d408471b054f2655617cbbaf7937b7c80cd8865cf02c8487d30d2b0fbd8b2c4e102e16d828374bbc47b93852f212d5043c3ea720f086178ff798cc4f63f787b9c2e419efa033e7644ea7936f54462dc21a6c4580725f7f0e7d158L
Qx = 0xd9dbfb332aa8e5ff091e8ce535857c37c73f6250ffb2e7acL
Qy = 0x282102e364feded3ad15ddf968f88d8321aa268dd483ebc4L
R = 0x64dca58a20787c488d11d6dd96313f1b766f2d8efe122916L
S = 0x1ecba28141e84ab4ecad92f56720e2cc83eb3d22dec72479L
test_signature_validity( Msg, Qx, Qy, R, S, True )
Msg = 0x94bb5bacd5f8ea765810024db87f4224ad71362a3c28284b2b9f39fab86db12e8beb94aae899768229be8fdb6c4f12f28912bb604703a79ccff769c1607f5a91450f30ba0460d359d9126cbd6296be6d9c4bb96c0ee74cbb44197c207f6db326ab6f5a659113a9034e54be7b041ced9dcf6458d7fb9cbfb2744d999f7dfd63f4L
Qx = 0x3e53ef8d3112af3285c0e74842090712cd324832d4277ae7L
Qy = 0xcc75f8952d30aec2cbb719fc6aa9934590b5d0ff5a83adb7L
R = 0x8285261607283ba18f335026130bab31840dcfd9c3e555afL
S = 0x356d89e1b04541afc9704a45e9c535ce4a50929e33d7e06cL
test_signature_validity( Msg, Qx, Qy, R, S, True )
Msg = 0xf6227a8eeb34afed1621dcc89a91d72ea212cb2f476839d9b4243c66877911b37b4ad6f4448792a7bbba76c63bdd63414b6facab7dc71c3396a73bd7ee14cdd41a659c61c99b779cecf07bc51ab391aa3252386242b9853ea7da67fd768d303f1b9b513d401565b6f1eb722dfdb96b519fe4f9bd5de67ae131e64b40e78c42ddL
Qx = 0x16335dbe95f8e8254a4e04575d736befb258b8657f773cb7L
Qy = 0x421b13379c59bc9dce38a1099ca79bbd06d647c7f6242336L
R = 0x4141bd5d64ea36c5b0bd21ef28c02da216ed9d04522b1e91L
S = 0x159a6aa852bcc579e821b7bb0994c0861fb08280c38daa09L
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0x16b5f93afd0d02246f662761ed8e0dd9504681ed02a253006eb36736b563097ba39f81c8e1bce7a16c1339e345efabbc6baa3efb0612948ae51103382a8ee8bc448e3ef71e9f6f7a9676694831d7f5dd0db5446f179bcb737d4a526367a447bfe2c857521c7f40b6d7d7e01a180d92431fb0bbd29c04a0c420a57b3ed26ccd8aL
Qx = 0xfd14cdf1607f5efb7b1793037b15bdf4baa6f7c16341ab0bL
Qy = 0x83fa0795cc6c4795b9016dac928fd6bac32f3229a96312c4L
R = 0x8dfdb832951e0167c5d762a473c0416c5c15bc1195667dc1L
S = 0x1720288a2dc13fa1ec78f763f8fe2ff7354a7e6fdde44520L
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0x08a2024b61b79d260e3bb43ef15659aec89e5b560199bc82cf7c65c77d39192e03b9a895d766655105edd9188242b91fbde4167f7862d4ddd61e5d4ab55196683d4f13ceb90d87aea6e07eb50a874e33086c4a7cb0273a8e1c4408f4b846bceae1ebaac1b2b2ea851a9b09de322efe34cebe601653efd6ddc876ce8c2f2072fbL
Qx = 0x674f941dc1a1f8b763c9334d726172d527b90ca324db8828L
Qy = 0x65adfa32e8b236cb33a3e84cf59bfb9417ae7e8ede57a7ffL
R = 0x9508b9fdd7daf0d8126f9e2bc5a35e4c6d800b5b804d7796L
S = 0x36f2bf6b21b987c77b53bb801b3435a577e3d493744bfab0L
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0x1843aba74b0789d4ac6b0b8923848023a644a7b70afa23b1191829bbe4397ce15b629bf21a8838298653ed0c19222b95fa4f7390d1b4c844d96e645537e0aae98afb5c0ac3bd0e4c37f8daaff25556c64e98c319c52687c904c4de7240a1cc55cd9756b7edaef184e6e23b385726e9ffcba8001b8f574987c1a3fedaaa83ca6dL
Qx = 0x10ecca1aad7220b56a62008b35170bfd5e35885c4014a19fL
Qy = 0x04eb61984c6c12ade3bc47f3c629ece7aa0a033b9948d686L
R = 0x82bfa4e82c0dfe9274169b86694e76ce993fd83b5c60f325L
S = 0xa97685676c59a65dbde002fe9d613431fb183e8006d05633L
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0x5a478f4084ddd1a7fea038aa9732a822106385797d02311aeef4d0264f824f698df7a48cfb6b578cf3da416bc0799425bb491be5b5ecc37995b85b03420a98f2c4dc5c31a69a379e9e322fbe706bbcaf0f77175e05cbb4fa162e0da82010a278461e3e974d137bc746d1880d6eb02aa95216014b37480d84b87f717bb13f76e1L
Qx = 0x6636653cb5b894ca65c448277b29da3ad101c4c2300f7c04L
Qy = 0xfdf1cbb3fc3fd6a4f890b59e554544175fa77dbdbeb656c1L
R = 0xeac2ddecddfb79931a9c3d49c08de0645c783a24cb365e1cL
S = 0x3549fee3cfa7e5f93bc47d92d8ba100e881a2a93c22f8d50L
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0xc598774259a058fa65212ac57eaa4f52240e629ef4c310722088292d1d4af6c39b49ce06ba77e4247b20637174d0bd67c9723feb57b5ead232b47ea452d5d7a089f17c00b8b6767e434a5e16c231ba0efa718a340bf41d67ea2d295812ff1b9277daacb8bc27b50ea5e6443bcf95ef4e9f5468fe78485236313d53d1c68f6ba2L
Qx = 0xa82bd718d01d354001148cd5f69b9ebf38ff6f21898f8aaaL
Qy = 0xe67ceede07fc2ebfafd62462a51e4b6c6b3d5b537b7caf3eL
R = 0x4d292486c620c3de20856e57d3bb72fcde4a73ad26376955L
S = 0xa85289591a6081d5728825520e62ff1c64f94235c04c7f95L
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0xca98ed9db081a07b7557f24ced6c7b9891269a95d2026747add9e9eb80638a961cf9c71a1b9f2c29744180bd4c3d3db60f2243c5c0b7cc8a8d40a3f9a7fc910250f2187136ee6413ffc67f1a25e1c4c204fa9635312252ac0e0481d89b6d53808f0c496ba87631803f6c572c1f61fa049737fdacce4adff757afed4f05beb658L
Qx = 0x7d3b016b57758b160c4fca73d48df07ae3b6b30225126c2fL
Qy = 0x4af3790d9775742bde46f8da876711be1b65244b2b39e7ecL
R = 0x95f778f5f656511a5ab49a5d69ddd0929563c29cbc3a9e62L
S = 0x75c87fc358c251b4c83d2dd979faad496b539f9f2ee7a289L
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0x31dd9a54c8338bea06b87eca813d555ad1850fac9742ef0bbe40dad400e10288acc9c11ea7dac79eb16378ebea9490e09536099f1b993e2653cd50240014c90a9c987f64545abc6a536b9bd2435eb5e911fdfde2f13be96ea36ad38df4ae9ea387b29cced599af777338af2794820c9cce43b51d2112380a35802ab7e396c97aL
Qx = 0x9362f28c4ef96453d8a2f849f21e881cd7566887da8beb4aL
Qy = 0xe64d26d8d74c48a024ae85d982ee74cd16046f4ee5333905L
R = 0xf3923476a296c88287e8de914b0b324ad5a963319a4fe73bL
S = 0xf0baeed7624ed00d15244d8ba2aede085517dbdec8ac65f5L
test_signature_validity( Msg, Qx, Qy, R, S, True )
Msg = 0xb2b94e4432267c92f9fdb9dc6040c95ffa477652761290d3c7de312283f6450d89cc4aabe748554dfb6056b2d8e99c7aeaad9cdddebdee9dbc099839562d9064e68e7bb5f3a6bba0749ca9a538181fc785553a4000785d73cc207922f63e8ce1112768cb1de7b673aed83a1e4a74592f1268d8e2a4e9e63d414b5d442bd0456dL
Qx = 0xcc6fc032a846aaac25533eb033522824f94e670fa997ecefL
Qy = 0xe25463ef77a029eccda8b294fd63dd694e38d223d30862f1L
R = 0x066b1d07f3a40e679b620eda7f550842a35c18b80c5ebe06L
S = 0xa0b0fb201e8f2df65e2c4508ef303bdc90d934016f16b2dcL
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0x4366fcadf10d30d086911de30143da6f579527036937007b337f7282460eae5678b15cccda853193ea5fc4bc0a6b9d7a31128f27e1214988592827520b214eed5052f7775b750b0c6b15f145453ba3fee24a085d65287e10509eb5d5f602c440341376b95c24e5c4727d4b859bfe1483d20538acdd92c7997fa9c614f0f839d7L
Qx = 0x955c908fe900a996f7e2089bee2f6376830f76a19135e753L
Qy = 0xba0c42a91d3847de4a592a46dc3fdaf45a7cc709b90de520L
R = 0x1f58ad77fc04c782815a1405b0925e72095d906cbf52a668L
S = 0xf2e93758b3af75edf784f05a6761c9b9a6043c66b845b599L
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0x543f8af57d750e33aa8565e0cae92bfa7a1ff78833093421c2942cadf9986670a5ff3244c02a8225e790fbf30ea84c74720abf99cfd10d02d34377c3d3b41269bea763384f372bb786b5846f58932defa68023136cd571863b304886e95e52e7877f445b9364b3f06f3c28da12707673fecb4b8071de06b6e0a3c87da160cef3L
Qx = 0x31f7fa05576d78a949b24812d4383107a9a45bb5fccdd835L
Qy = 0x8dc0eb65994a90f02b5e19bd18b32d61150746c09107e76bL
R = 0xbe26d59e4e883dde7c286614a767b31e49ad88789d3a78ffL
S = 0x8762ca831c1ce42df77893c9b03119428e7a9b819b619068L
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0xd2e8454143ce281e609a9d748014dcebb9d0bc53adb02443a6aac2ffe6cb009f387c346ecb051791404f79e902ee333ad65e5c8cb38dc0d1d39a8dc90add5023572720e5b94b190d43dd0d7873397504c0c7aef2727e628eb6a74411f2e400c65670716cb4a815dc91cbbfeb7cfe8c929e93184c938af2c078584da045e8f8d1L
Qx = 0x66aa8edbbdb5cf8e28ceb51b5bda891cae2df84819fe25c0L
Qy = 0x0c6bc2f69030a7ce58d4a00e3b3349844784a13b8936f8daL
R = 0xa4661e69b1734f4a71b788410a464b71e7ffe42334484f23L
S = 0x738421cf5e049159d69c57a915143e226cac8355e149afe9L
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0x6660717144040f3e2f95a4e25b08a7079c702a8b29babad5a19a87654bc5c5afa261512a11b998a4fb36b5d8fe8bd942792ff0324b108120de86d63f65855e5461184fc96a0a8ffd2ce6d5dfb0230cbbdd98f8543e361b3205f5da3d500fdc8bac6db377d75ebef3cb8f4d1ff738071ad0938917889250b41dd1d98896ca06fbL
Qx = 0xbcfacf45139b6f5f690a4c35a5fffa498794136a2353fc77L
Qy = 0x6f4a6c906316a6afc6d98fe1f0399d056f128fe0270b0f22L
R = 0x9db679a3dafe48f7ccad122933acfe9da0970b71c94c21c1L
S = 0x984c2db99827576c0a41a5da41e07d8cc768bc82f18c9da9L
test_signature_validity( Msg, Qx, Qy, R, S, False )
print "Testing the example code:"
# Building a public/private key pair from the NIST Curve P-192:
g = generator_192
n = g.order()
# (random.SystemRandom is supposed to provide
# crypto-quality random numbers, but as Debian recently
# illustrated, a systems programmer can accidentally
# demolish this security, so in serious applications
# further precautions are appropriate.)
randrange = random.SystemRandom().randrange
secret = randrange( 1, n )
pubkey = Public_key( g, g * secret )
privkey = Private_key( pubkey, secret )
# Signing a hash value:
hash = randrange( 1, n )
signature = privkey.sign( hash, randrange( 1, n ) )
# Verifying a signature for a hash value:
if pubkey.verifies( hash, signature ):
print "Demo verification succeeded."
else:
raise TestFailure("*** Demo verification failed.")
if pubkey.verifies( hash-1, signature ):
raise TestFailure( "**** Demo verification failed to reject tampered hash.")
else:
print "Demo verification correctly rejected tampered hash."
if __name__ == "__main__":
__main__()

View File

@ -1,290 +0,0 @@
#! /usr/bin/env python
#
# Implementation of elliptic curves, for cryptographic applications.
#
# This module doesn't provide any way to choose a random elliptic
# curve, nor to verify that an elliptic curve was chosen randomly,
# because one can simply use NIST's standard curves.
#
# Notes from X9.62-1998 (draft):
# Nomenclature:
# - Q is a public key.
# The "Elliptic Curve Domain Parameters" include:
# - q is the "field size", which in our case equals p.
# - p is a big prime.
# - G is a point of prime order (5.1.1.1).
# - n is the order of G (5.1.1.1).
# Public-key validation (5.2.2):
# - Verify that Q is not the point at infinity.
# - Verify that X_Q and Y_Q are in [0,p-1].
# - Verify that Q is on the curve.
# - Verify that nQ is the point at infinity.
# Signature generation (5.3):
# - Pick random k from [1,n-1].
# Signature checking (5.4.2):
# - Verify that r and s are in [1,n-1].
#
# Version of 2008.11.25.
#
# Revision history:
# 2005.12.31 - Initial version.
# 2008.11.25 - Change CurveFp.is_on to contains_point.
#
# Written in 2005 by Peter Pearson and placed in the public domain.
import numbertheory
class CurveFp( object ):
"""Elliptic Curve over the field of integers modulo a prime."""
def __init__( self, p, a, b ):
"""The curve of points satisfying y^2 = x^3 + a*x + b (mod p)."""
self.__p = p
self.__a = a
self.__b = b
def p( self ):
return self.__p
def a( self ):
return self.__a
def b( self ):
return self.__b
def contains_point( self, x, y ):
"""Is the point (x,y) on this curve?"""
return ( y * y - ( x * x * x + self.__a * x + self.__b ) ) % self.__p == 0
class Point( object ):
"""A point on an elliptic curve. Altering x and y is forbidding,
but they can be read by the x() and y() methods."""
def __init__( self, curve, x, y, order = None ):
"""curve, x, y, order; order (optional) is the order of this point."""
self.__curve = curve
self.__x = x
self.__y = y
self.__order = order
# self.curve is allowed to be None only for INFINITY:
if self.__curve: assert self.__curve.contains_point( x, y )
if order: assert self * order == INFINITY
def __cmp__( self, other ):
"""Return 0 if the points are identical, 1 otherwise."""
if self.__curve == other.__curve \
and self.__x == other.__x \
and self.__y == other.__y:
return 0
else:
return 1
def __add__( self, other ):
"""Add one point to another point."""
# X9.62 B.3:
if other == INFINITY: return self
if self == INFINITY: return other
assert self.__curve == other.__curve
if self.__x == other.__x:
if ( self.__y + other.__y ) % self.__curve.p() == 0:
return INFINITY
else:
return self.double()
p = self.__curve.p()
l = ( ( other.__y - self.__y ) * \
numbertheory.inverse_mod( other.__x - self.__x, p ) ) % p
x3 = ( l * l - self.__x - other.__x ) % p
y3 = ( l * ( self.__x - x3 ) - self.__y ) % p
return Point( self.__curve, x3, y3 )
def __mul__( self, other ):
"""Multiply a point by an integer."""
def leftmost_bit( x ):
assert x > 0
result = 1L
while result <= x: result = 2 * result
return result // 2
e = other
if self.__order: e = e % self.__order
if e == 0: return INFINITY
if self == INFINITY: return INFINITY
assert e > 0
# From X9.62 D.3.2:
e3 = 3 * e
negative_self = Point( self.__curve, self.__x, -self.__y, self.__order )
i = leftmost_bit( e3 ) // 2
result = self
# print "Multiplying %s by %d (e3 = %d):" % ( self, other, e3 )
while i > 1:
result = result.double()
if ( e3 & i ) != 0 and ( e & i ) == 0: result = result + self
if ( e3 & i ) == 0 and ( e & i ) != 0: result = result + negative_self
# print ". . . i = %d, result = %s" % ( i, result )
i = i // 2
return result
def __rmul__( self, other ):
"""Multiply a point by an integer."""
return self * other
def __str__( self ):
if self == INFINITY: return "infinity"
return "(%d,%d)" % ( self.__x, self.__y )
def double( self ):
"""Return a new point that is twice the old."""
if self == INFINITY:
return INFINITY
# X9.62 B.3:
p = self.__curve.p()
a = self.__curve.a()
l = ( ( 3 * self.__x * self.__x + a ) * \
numbertheory.inverse_mod( 2 * self.__y, p ) ) % p
x3 = ( l * l - 2 * self.__x ) % p
y3 = ( l * ( self.__x - x3 ) - self.__y ) % p
return Point( self.__curve, x3, y3 )
def x( self ):
return self.__x
def y( self ):
return self.__y
def curve( self ):
return self.__curve
def order( self ):
return self.__order
# This one point is the Point At Infinity for all purposes:
INFINITY = Point( None, None, None )
def __main__():
class FailedTest(Exception): pass
def test_add( c, x1, y1, x2, y2, x3, y3 ):
"""We expect that on curve c, (x1,y1) + (x2, y2 ) = (x3, y3)."""
p1 = Point( c, x1, y1 )
p2 = Point( c, x2, y2 )
p3 = p1 + p2
print "%s + %s = %s" % ( p1, p2, p3 ),
if p3.x() != x3 or p3.y() != y3:
raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 ))
else:
print " Good."
def test_double( c, x1, y1, x3, y3 ):
"""We expect that on curve c, 2*(x1,y1) = (x3, y3)."""
p1 = Point( c, x1, y1 )
p3 = p1.double()
print "%s doubled = %s" % ( p1, p3 ),
if p3.x() != x3 or p3.y() != y3:
raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 ))
else:
print " Good."
def test_double_infinity( c ):
"""We expect that on curve c, 2*INFINITY = INFINITY."""
p1 = INFINITY
p3 = p1.double()
print "%s doubled = %s" % ( p1, p3 ),
if p3.x() != INFINITY.x() or p3.y() != INFINITY.y():
raise FailedTest("Failure: should give (%d,%d)." % ( INFINITY.x(), INFINITY.y() ))
else:
print " Good."
def test_multiply( c, x1, y1, m, x3, y3 ):
"""We expect that on curve c, m*(x1,y1) = (x3,y3)."""
p1 = Point( c, x1, y1 )
p3 = p1 * m
print "%s * %d = %s" % ( p1, m, p3 ),
if p3.x() != x3 or p3.y() != y3:
raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 ))
else:
print " Good."
# A few tests from X9.62 B.3:
c = CurveFp( 23, 1, 1 )
test_add( c, 3, 10, 9, 7, 17, 20 )
test_double( c, 3, 10, 7, 12 )
test_add( c, 3, 10, 3, 10, 7, 12 ) # (Should just invoke double.)
test_multiply( c, 3, 10, 2, 7, 12 )
test_double_infinity(c)
# From X9.62 I.1 (p. 96):
g = Point( c, 13, 7, 7 )
check = INFINITY
for i in range( 7 + 1 ):
p = ( i % 7 ) * g
print "%s * %d = %s, expected %s . . ." % ( g, i, p, check ),
if p == check:
print " Good."
else:
raise FailedTest("Bad.")
check = check + g
# NIST Curve P-192:
p = 6277101735386680763835789423207666416083908700390324961279L
r = 6277101735386680763835789423176059013767194773182842284081L
#s = 0x3045ae6fc8422f64ed579528d38120eae12196d5L
c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65L
b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1L
Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012L
Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811L
c192 = CurveFp( p, -3, b )
p192 = Point( c192, Gx, Gy, r )
# Checking against some sample computations presented
# in X9.62:
d = 651056770906015076056810763456358567190100156695615665659L
Q = d * p192
if Q.x() != 0x62B12D60690CDCF330BABAB6E69763B471F994DD702D16A5L:
raise FailedTest("p192 * d came out wrong.")
else:
print "p192 * d came out right."
k = 6140507067065001063065065565667405560006161556565665656654L
R = k * p192
if R.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEADL \
or R.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835L:
raise FailedTest("k * p192 came out wrong.")
else:
print "k * p192 came out right."
u1 = 2563697409189434185194736134579731015366492496392189760599L
u2 = 6266643813348617967186477710235785849136406323338782220568L
temp = u1 * p192 + u2 * Q
if temp.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEADL \
or temp.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835L:
raise FailedTest("u1 * p192 + u2 * Q came out wrong.")
else:
print "u1 * p192 + u2 * Q came out right."
if __name__ == "__main__":
__main__()

View File

@ -1,252 +0,0 @@
import binascii
import ecdsa
import der
from curves import NIST192p, find_curve
from util import string_to_number, number_to_string, randrange
from util import sigencode_string, sigdecode_string
from util import oid_ecPublicKey, encoded_oid_ecPublicKey
from hashlib import sha1
class BadSignatureError(Exception):
pass
class BadDigestError(Exception):
pass
class VerifyingKey:
def __init__(self, _error__please_use_generate=None):
if not _error__please_use_generate:
raise TypeError("Please use SigningKey.generate() to construct me")
@classmethod
def from_public_point(klass, point, curve=NIST192p, hashfunc=sha1):
self = klass(_error__please_use_generate=True)
self.curve = curve
self.default_hashfunc = hashfunc
self.pubkey = ecdsa.Public_key(curve.generator, point)
self.pubkey.order = curve.order
return self
@classmethod
def from_string(klass, string, curve=NIST192p, hashfunc=sha1):
order = curve.order
assert len(string) == curve.verifying_key_length, \
(len(string), curve.verifying_key_length)
xs = string[:curve.baselen]
ys = string[curve.baselen:]
assert len(xs) == curve.baselen, (len(xs), curve.baselen)
assert len(ys) == curve.baselen, (len(ys), curve.baselen)
x = string_to_number(xs)
y = string_to_number(ys)
assert ecdsa.point_is_valid(curve.generator, x, y)
import ellipticcurve
point = ellipticcurve.Point(curve.curve, x, y, order)
return klass.from_public_point(point, curve, hashfunc)
@classmethod
def from_pem(klass, string):
return klass.from_der(der.unpem(string))
@classmethod
def from_der(klass, string):
# [[oid_ecPublicKey,oid_curve], point_str_bitstring]
s1,empty = der.remove_sequence(string)
if empty != "":
raise der.UnexpectedDER("trailing junk after DER pubkey: %s" %
binascii.hexlify(empty))
s2,point_str_bitstring = der.remove_sequence(s1)
# s2 = oid_ecPublicKey,oid_curve
oid_pk, rest = der.remove_object(s2)
oid_curve, empty = der.remove_object(rest)
if empty != "":
raise der.UnexpectedDER("trailing junk after DER pubkey objects: %s" %
binascii.hexlify(empty))
assert oid_pk == oid_ecPublicKey, (oid_pk, oid_ecPublicKey)
curve = find_curve(oid_curve)
point_str, empty = der.remove_bitstring(point_str_bitstring)
if empty != "":
raise der.UnexpectedDER("trailing junk after pubkey pointstring: %s" %
binascii.hexlify(empty))
assert point_str.startswith("\x00\x04")
return klass.from_string(point_str[2:], curve)
def to_string(self):
# VerifyingKey.from_string(vk.to_string()) == vk as long as the
# curves are the same: the curve itself is not included in the
# serialized form
order = self.pubkey.order
x_str = number_to_string(self.pubkey.point.x(), order)
y_str = number_to_string(self.pubkey.point.y(), order)
return x_str + y_str
def to_pem(self):
return der.topem(self.to_der(), "PUBLIC KEY")
def to_der(self):
order = self.pubkey.order
x_str = number_to_string(self.pubkey.point.x(), order)
y_str = number_to_string(self.pubkey.point.y(), order)
point_str = "\x00\x04" + x_str + y_str
return der.encode_sequence(der.encode_sequence(encoded_oid_ecPublicKey,
self.curve.encoded_oid),
der.encode_bitstring(point_str))
def verify(self, signature, data, hashfunc=None, sigdecode=sigdecode_string):
hashfunc = hashfunc or self.default_hashfunc
digest = hashfunc(data).digest()
return self.verify_digest(signature, digest, sigdecode)
def verify_digest(self, signature, digest, sigdecode=sigdecode_string):
if len(digest) > self.curve.baselen:
raise BadDigestError("this curve (%s) is too short "
"for your digest (%d)" % (self.curve.name,
8*len(digest)))
number = string_to_number(digest)
r, s = sigdecode(signature, self.pubkey.order)
sig = ecdsa.Signature(r, s)
if self.pubkey.verifies(number, sig):
return True
raise BadSignatureError
class SigningKey:
def __init__(self, _error__please_use_generate=None):
if not _error__please_use_generate:
raise TypeError("Please use SigningKey.generate() to construct me")
@classmethod
def generate(klass, curve=NIST192p, entropy=None, hashfunc=sha1):
secexp = randrange(curve.order, entropy)
return klass.from_secret_exponent(secexp, curve, hashfunc)
# to create a signing key from a short (arbitrary-length) seed, convert
# that seed into an integer with something like
# secexp=util.randrange_from_seed__X(seed, curve.order), and then pass
# that integer into SigningKey.from_secret_exponent(secexp, curve)
@classmethod
def from_secret_exponent(klass, secexp, curve=NIST192p, hashfunc=sha1):
self = klass(_error__please_use_generate=True)
self.curve = curve
self.default_hashfunc = hashfunc
self.baselen = curve.baselen
n = curve.order
assert 1 <= secexp < n
pubkey_point = curve.generator*secexp
pubkey = ecdsa.Public_key(curve.generator, pubkey_point)
pubkey.order = n
self.verifying_key = VerifyingKey.from_public_point(pubkey_point, curve,
hashfunc)
self.privkey = ecdsa.Private_key(pubkey, secexp)
self.privkey.order = n
return self
@classmethod
def from_string(klass, string, curve=NIST192p, hashfunc=sha1):
assert len(string) == curve.baselen, (len(string), curve.baselen)
secexp = string_to_number(string)
return klass.from_secret_exponent(secexp, curve, hashfunc)
@classmethod
def from_pem(klass, string, hashfunc=sha1):
# the privkey pem file has two sections: "EC PARAMETERS" and "EC
# PRIVATE KEY". The first is redundant.
privkey_pem = string[string.index("-----BEGIN EC PRIVATE KEY-----"):]
return klass.from_der(der.unpem(privkey_pem), hashfunc)
@classmethod
def from_der(klass, string, hashfunc=sha1):
# SEQ([int(1), octetstring(privkey),cont[0], oid(secp224r1),
# cont[1],bitstring])
s, empty = der.remove_sequence(string)
if empty != "":
raise der.UnexpectedDER("trailing junk after DER privkey: %s" %
binascii.hexlify(empty))
one, s = der.remove_integer(s)
if one != 1:
raise der.UnexpectedDER("expected '1' at start of DER privkey,"
" got %d" % one)
privkey_str, s = der.remove_octet_string(s)
tag, curve_oid_str, s = der.remove_constructed(s)
if tag != 0:
raise der.UnexpectedDER("expected tag 0 in DER privkey,"
" got %d" % tag)
curve_oid, empty = der.remove_object(curve_oid_str)
if empty != "":
raise der.UnexpectedDER("trailing junk after DER privkey "
"curve_oid: %s" % binascii.hexlify(empty))
curve = find_curve(curve_oid)
# we don't actually care about the following fields
#
#tag, pubkey_bitstring, s = der.remove_constructed(s)
#if tag != 1:
# raise der.UnexpectedDER("expected tag 1 in DER privkey, got %d"
# % tag)
#pubkey_str = der.remove_bitstring(pubkey_bitstring)
#if empty != "":
# raise der.UnexpectedDER("trailing junk after DER privkey "
# "pubkeystr: %s" % binascii.hexlify(empty))
# our from_string method likes fixed-length privkey strings
if len(privkey_str) < curve.baselen:
privkey_str = "\x00"*(curve.baselen-len(privkey_str)) + privkey_str
return klass.from_string(privkey_str, curve, hashfunc)
def to_string(self):
secexp = self.privkey.secret_multiplier
s = number_to_string(secexp, self.privkey.order)
return s
def to_pem(self):
# TODO: "BEGIN ECPARAMETERS"
return der.topem(self.to_der(), "EC PRIVATE KEY")
def to_der(self):
# SEQ([int(1), octetstring(privkey),cont[0], oid(secp224r1),
# cont[1],bitstring])
encoded_vk = "\x00\x04" + self.get_verifying_key().to_string()
return der.encode_sequence(der.encode_integer(1),
der.encode_octet_string(self.to_string()),
der.encode_constructed(0, self.curve.encoded_oid),
der.encode_constructed(1, der.encode_bitstring(encoded_vk)),
)
def get_verifying_key(self):
return self.verifying_key
def sign(self, data, entropy=None, hashfunc=None, sigencode=sigencode_string):
"""
hashfunc= should behave like hashlib.sha1 . The output length of the
hash (in bytes) must not be longer than the length of the curve order
(rounded up to the nearest byte), so using SHA256 with nist256p is
ok, but SHA256 with nist192p is not. (In the 2**-96ish unlikely event
of a hash output larger than the curve order, the hash will
effectively be wrapped mod n).
Use hashfunc=hashlib.sha1 to match openssl's -ecdsa-with-SHA1 mode,
or hashfunc=hashlib.sha256 for openssl-1.0.0's -ecdsa-with-SHA256.
"""
hashfunc = hashfunc or self.default_hashfunc
h = hashfunc(data).digest()
return self.sign_digest(h, entropy, sigencode)
def sign_digest(self, digest, entropy=None, sigencode=sigencode_string):
if len(digest) > self.curve.baselen:
raise BadDigestError("this curve (%s) is too short "
"for your digest (%d)" % (self.curve.name,
8*len(digest)))
number = string_to_number(digest)
r, s = self.sign_number(number, entropy)
return sigencode(r, s, self.privkey.order)
def sign_number(self, number, entropy=None):
# returns a pair of numbers
order = self.privkey.order
# privkey.sign() may raise RuntimeError in the amazingly unlikely
# (2**-192) event that r=0 or s=0, because that would leak the key.
# We could re-try with a different 'k', but we couldn't test that
# code, so I choose to allow the signature to fail instead.
k = randrange(order, entropy)
assert 1 <= k < order
sig = self.privkey.sign(number, k)
return sig.r, sig.s

View File

@ -1,614 +0,0 @@
#! /usr/bin/env python
#
# Provide some simple capabilities from number theory.
#
# Version of 2008.11.14.
#
# Written in 2005 and 2006 by Peter Pearson and placed in the public domain.
# Revision history:
# 2008.11.14: Use pow( base, exponent, modulus ) for modular_exp.
# Make gcd and lcm accept arbitrarly many arguments.
import math
import types
class Error( Exception ):
"""Base class for exceptions in this module."""
pass
class SquareRootError( Error ):
pass
class NegativeExponentError( Error ):
pass
def modular_exp( base, exponent, modulus ):
"Raise base to exponent, reducing by modulus"
if exponent < 0:
raise NegativeExponentError( "Negative exponents (%d) not allowed" \
% exponent )
return pow( base, exponent, modulus )
# result = 1L
# x = exponent
# b = base + 0L
# while x > 0:
# if x % 2 > 0: result = (result * b) % modulus
# x = x // 2
# b = ( b * b ) % modulus
# return result
def polynomial_reduce_mod( poly, polymod, p ):
"""Reduce poly by polymod, integer arithmetic modulo p.
Polynomials are represented as lists of coefficients
of increasing powers of x."""
# This module has been tested only by extensive use
# in calculating modular square roots.
# Just to make this easy, require a monic polynomial:
assert polymod[-1] == 1
assert len( polymod ) > 1
while len( poly ) >= len( polymod ):
if poly[-1] != 0:
for i in range( 2, len( polymod ) + 1 ):
poly[-i] = ( poly[-i] - poly[-1] * polymod[-i] ) % p
poly = poly[0:-1]
return poly
def polynomial_multiply_mod( m1, m2, polymod, p ):
"""Polynomial multiplication modulo a polynomial over ints mod p.
Polynomials are represented as lists of coefficients
of increasing powers of x."""
# This is just a seat-of-the-pants implementation.
# This module has been tested only by extensive use
# in calculating modular square roots.
# Initialize the product to zero:
prod = ( len( m1 ) + len( m2 ) - 1 ) * [0]
# Add together all the cross-terms:
for i in range( len( m1 ) ):
for j in range( len( m2 ) ):
prod[i+j] = ( prod[i+j] + m1[i] * m2[j] ) % p
return polynomial_reduce_mod( prod, polymod, p )
def polynomial_exp_mod( base, exponent, polymod, p ):
"""Polynomial exponentiation modulo a polynomial over ints mod p.
Polynomials are represented as lists of coefficients
of increasing powers of x."""
# Based on the Handbook of Applied Cryptography, algorithm 2.227.
# This module has been tested only by extensive use
# in calculating modular square roots.
assert exponent < p
if exponent == 0: return [ 1 ]
G = base
k = exponent
if k%2 == 1: s = G
else: s = [ 1 ]
while k > 1:
k = k // 2
G = polynomial_multiply_mod( G, G, polymod, p )
if k%2 == 1: s = polynomial_multiply_mod( G, s, polymod, p )
return s
def jacobi( a, n ):
"""Jacobi symbol"""
# Based on the Handbook of Applied Cryptography (HAC), algorithm 2.149.
# This function has been tested by comparison with a small
# table printed in HAC, and by extensive use in calculating
# modular square roots.
assert n >= 3
assert n%2 == 1
a = a % n
if a == 0: return 0
if a == 1: return 1
a1, e = a, 0
while a1%2 == 0:
a1, e = a1//2, e+1
if e%2 == 0 or n%8 == 1 or n%8 == 7: s = 1
else: s = -1
if a1 == 1: return s
if n%4 == 3 and a1%4 == 3: s = -s
return s * jacobi( n % a1, a1 )
def square_root_mod_prime( a, p ):
"""Modular square root of a, mod p, p prime."""
# Based on the Handbook of Applied Cryptography, algorithms 3.34 to 3.39.
# This module has been tested for all values in [0,p-1] for
# every prime p from 3 to 1229.
assert 0 <= a < p
assert 1 < p
if a == 0: return 0
if p == 2: return a
jac = jacobi( a, p )
if jac == -1: raise SquareRootError( "%d has no square root modulo %d" \
% ( a, p ) )
if p % 4 == 3: return modular_exp( a, (p+1)//4, p )
if p % 8 == 5:
d = modular_exp( a, (p-1)//4, p )
if d == 1: return modular_exp( a, (p+3)//8, p )
if d == p-1: return ( 2 * a * modular_exp( 4*a, (p-5)//8, p ) ) % p
raise RuntimeError, "Shouldn't get here."
for b in range( 2, p ):
if jacobi( b*b-4*a, p ) == -1:
f = ( a, -b, 1 )
ff = polynomial_exp_mod( ( 0, 1 ), (p+1)//2, f, p )
assert ff[1] == 0
return ff[0]
raise RuntimeError, "No b found."
def inverse_mod( a, m ):
"""Inverse of a mod m."""
if a < 0 or m <= a: a = a % m
# From Ferguson and Schneier, roughly:
c, d = a, m
uc, vc, ud, vd = 1, 0, 0, 1
while c != 0:
q, c, d = divmod( d, c ) + ( c, )
uc, vc, ud, vd = ud - q*uc, vd - q*vc, uc, vc
# At this point, d is the GCD, and ud*a+vd*m = d.
# If d == 1, this means that ud is a inverse.
assert d == 1
if ud > 0: return ud
else: return ud + m
def gcd2(a, b):
"""Greatest common divisor using Euclid's algorithm."""
while a:
a, b = b%a, a
return b
def gcd( *a ):
"""Greatest common divisor.
Usage: gcd( [ 2, 4, 6 ] )
or: gcd( 2, 4, 6 )
"""
if len( a ) > 1: return reduce( gcd2, a )
if hasattr( a[0], "__iter__" ): return reduce( gcd2, a[0] )
return a[0]
def lcm2(a,b):
"""Least common multiple of two integers."""
return (a*b)//gcd(a,b)
def lcm( *a ):
"""Least common multiple.
Usage: lcm( [ 3, 4, 5 ] )
or: lcm( 3, 4, 5 )
"""
if len( a ) > 1: return reduce( lcm2, a )
if hasattr( a[0], "__iter__" ): return reduce( lcm2, a[0] )
return a[0]
def factorization( n ):
"""Decompose n into a list of (prime,exponent) pairs."""
assert isinstance( n, types.IntType ) or isinstance( n, types.LongType )
if n < 2: return []
result = []
d = 2
# Test the small primes:
for d in smallprimes:
if d > n: break
q, r = divmod( n, d )
if r == 0:
count = 1
while d <= n:
n = q
q, r = divmod( n, d )
if r != 0: break
count = count + 1
result.append( ( d, count ) )
# If n is still greater than the last of our small primes,
# it may require further work:
if n > smallprimes[-1]:
if is_prime( n ): # If what's left is prime, it's easy:
result.append( ( n, 1 ) )
else: # Ugh. Search stupidly for a divisor:
d = smallprimes[-1]
while 1:
d = d + 2 # Try the next divisor.
q, r = divmod( n, d )
if q < d: break # n < d*d means we're done, n = 1 or prime.
if r == 0: # d divides n. How many times?
count = 1
n = q
while d <= n: # As long as d might still divide n,
q, r = divmod( n, d ) # see if it does.
if r != 0: break
n = q # It does. Reduce n, increase count.
count = count + 1
result.append( ( d, count ) )
if n > 1: result.append( ( n, 1 ) )
return result
def phi( n ):
"""Return the Euler totient function of n."""
assert isinstance( n, types.IntType ) or isinstance( n, types.LongType )
if n < 3: return 1
result = 1
ff = factorization( n )
for f in ff:
e = f[1]
if e > 1:
result = result * f[0] ** (e-1) * ( f[0] - 1 )
else:
result = result * ( f[0] - 1 )
return result
def carmichael( n ):
"""Return Carmichael function of n.
Carmichael(n) is the smallest integer x such that
m**x = 1 mod n for all m relatively prime to n.
"""
return carmichael_of_factorized( factorization( n ) )
def carmichael_of_factorized( f_list ):
"""Return the Carmichael function of a number that is
represented as a list of (prime,exponent) pairs.
"""
if len( f_list ) < 1: return 1
result = carmichael_of_ppower( f_list[0] )
for i in range( 1, len( f_list ) ):
result = lcm( result, carmichael_of_ppower( f_list[i] ) )
return result
def carmichael_of_ppower( pp ):
"""Carmichael function of the given power of the given prime.
"""
p, a = pp
if p == 2 and a > 2: return 2**(a-2)
else: return (p-1) * p**(a-1)
def order_mod( x, m ):
"""Return the order of x in the multiplicative group mod m.
"""
# Warning: this implementation is not very clever, and will
# take a long time if m is very large.
if m <= 1: return 0
assert gcd( x, m ) == 1
z = x
result = 1
while z != 1:
z = ( z * x ) % m
result = result + 1
return result
def largest_factor_relatively_prime( a, b ):
"""Return the largest factor of a relatively prime to b.
"""
while 1:
d = gcd( a, b )
if d <= 1: break
b = d
while 1:
q, r = divmod( a, d )
if r > 0:
break
a = q
return a
def kinda_order_mod( x, m ):
"""Return the order of x in the multiplicative group mod m',
where m' is the largest factor of m relatively prime to x.
"""
return order_mod( x, largest_factor_relatively_prime( m, x ) )
def is_prime( n ):
"""Return True if x is prime, False otherwise.
We use the Miller-Rabin test, as given in Menezes et al. p. 138.
This test is not exact: there are composite values n for which
it returns True.
In testing the odd numbers from 10000001 to 19999999,
about 66 composites got past the first test,
5 got past the second test, and none got past the third.
Since factors of 2, 3, 5, 7, and 11 were detected during
preliminary screening, the number of numbers tested by
Miller-Rabin was (19999999 - 10000001)*(2/3)*(4/5)*(6/7)
= 4.57 million.
"""
# (This is used to study the risk of false positives:)
global miller_rabin_test_count
miller_rabin_test_count = 0
if n <= smallprimes[-1]:
if n in smallprimes: return True
else: return False
if gcd( n, 2*3*5*7*11 ) != 1: return False
# Choose a number of iterations sufficient to reduce the
# probability of accepting a composite below 2**-80
# (from Menezes et al. Table 4.4):
t = 40
n_bits = 1 + int( math.log( n, 2 ) )
for k, tt in ( ( 100, 27 ),
( 150, 18 ),
( 200, 15 ),
( 250, 12 ),
( 300, 9 ),
( 350, 8 ),
( 400, 7 ),
( 450, 6 ),
( 550, 5 ),
( 650, 4 ),
( 850, 3 ),
( 1300, 2 ),
):
if n_bits < k: break
t = tt
# Run the test t times:
s = 0
r = n - 1
while ( r % 2 ) == 0:
s = s + 1
r = r // 2
for i in xrange( t ):
a = smallprimes[ i ]
y = modular_exp( a, r, n )
if y != 1 and y != n-1:
j = 1
while j <= s - 1 and y != n - 1:
y = modular_exp( y, 2, n )
if y == 1:
miller_rabin_test_count = i + 1
return False
j = j + 1
if y != n-1:
miller_rabin_test_count = i + 1
return False
return True
def next_prime( starting_value ):
"Return the smallest prime larger than the starting value."
if starting_value < 2: return 2
result = ( starting_value + 1 ) | 1
while not is_prime( result ): result = result + 2
return result
smallprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
151, 157, 163, 167, 173, 179, 181, 191, 193, 197,
199, 211, 223, 227, 229, 233, 239, 241, 251, 257,
263, 269, 271, 277, 281, 283, 293, 307, 311, 313,
317, 331, 337, 347, 349, 353, 359, 367, 373, 379,
383, 389, 397, 401, 409, 419, 421, 431, 433, 439,
443, 449, 457, 461, 463, 467, 479, 487, 491, 499,
503, 509, 521, 523, 541, 547, 557, 563, 569, 571,
577, 587, 593, 599, 601, 607, 613, 617, 619, 631,
641, 643, 647, 653, 659, 661, 673, 677, 683, 691,
701, 709, 719, 727, 733, 739, 743, 751, 757, 761,
769, 773, 787, 797, 809, 811, 821, 823, 827, 829,
839, 853, 857, 859, 863, 877, 881, 883, 887, 907,
911, 919, 929, 937, 941, 947, 953, 967, 971, 977,
983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033,
1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093,
1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163,
1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229]
miller_rabin_test_count = 0
def __main__():
# Making sure locally defined exceptions work:
# p = modular_exp( 2, -2, 3 )
# p = square_root_mod_prime( 2, 3 )
print "Testing gcd..."
assert gcd( 3*5*7, 3*5*11, 3*5*13 ) == 3*5
assert gcd( [ 3*5*7, 3*5*11, 3*5*13 ] ) == 3*5
assert gcd( 3 ) == 3
print "Testing lcm..."
assert lcm( 3, 5*3, 7*3 ) == 3*5*7
assert lcm( [ 3, 5*3, 7*3 ] ) == 3*5*7
assert lcm( 3 ) == 3
print "Testing next_prime..."
bigprimes = ( 999671,
999683,
999721,
999727,
999749,
999763,
999769,
999773,
999809,
999853,
999863,
999883,
999907,
999917,
999931,
999953,
999959,
999961,
999979,
999983 )
for i in xrange( len( bigprimes ) - 1 ):
assert next_prime( bigprimes[i] ) == bigprimes[ i+1 ]
error_tally = 0
# Test the square_root_mod_prime function:
for p in smallprimes:
print "Testing square_root_mod_prime for modulus p = %d." % p
squares = []
for root in range( 0, 1+p//2 ):
sq = ( root * root ) % p
squares.append( sq )
calculated = square_root_mod_prime( sq, p )
if ( calculated * calculated ) % p != sq:
error_tally = error_tally + 1
print "Failed to find %d as sqrt( %d ) mod %d. Said %d." % \
( root, sq, p, calculated )
for nonsquare in range( 0, p ):
if nonsquare not in squares:
try:
calculated = square_root_mod_prime( nonsquare, p )
except SquareRootError:
pass
else:
error_tally = error_tally + 1
print "Failed to report no root for sqrt( %d ) mod %d." % \
( nonsquare, p )
# Test the jacobi function:
for m in range( 3, 400, 2 ):
print "Testing jacobi for modulus m = %d." % m
if is_prime( m ):
squares = []
for root in range( 1, m ):
if jacobi( root * root, m ) != 1:
error_tally = error_tally + 1
print "jacobi( %d * %d, %d ) != 1" % ( root, root, m )
squares.append( root * root % m )
for i in range( 1, m ):
if not i in squares:
if jacobi( i, m ) != -1:
error_tally = error_tally + 1
print "jacobi( %d, %d ) != -1" % ( i, m )
else: # m is not prime.
f = factorization( m )
for a in range( 1, m ):
c = 1
for i in f:
c = c * jacobi( a, i[0] ) ** i[1]
if c != jacobi( a, m ):
error_tally = error_tally + 1
print "%d != jacobi( %d, %d )" % ( c, a, m )
# Test the inverse_mod function:
print "Testing inverse_mod . . ."
import random
n_tests = 0
for i in range( 100 ):
m = random.randint( 20, 10000 )
for j in range( 100 ):
a = random.randint( 1, m-1 )
if gcd( a, m ) == 1:
n_tests = n_tests + 1
inv = inverse_mod( a, m )
if inv <= 0 or inv >= m or ( a * inv ) % m != 1:
error_tally = error_tally + 1
print "%d = inverse_mod( %d, %d ) is wrong." % ( inv, a, m )
assert n_tests > 1000
print n_tests, " tests of inverse_mod completed."
class FailedTest(Exception): pass
print error_tally, "errors detected."
if error_tally != 0:
raise FailedTest("%d errors detected" % error_tally)
if __name__ == '__main__':
__main__()

View File

@ -1,486 +0,0 @@
import unittest
import os
import time
import shutil
import subprocess
from binascii import hexlify, unhexlify
from hashlib import sha1, sha256
from keys import SigningKey, VerifyingKey
from keys import BadSignatureError
import util
from util import sigencode_der, sigencode_strings
from util import sigdecode_der, sigdecode_strings
from curves import Curve, UnknownCurveError
from curves import NIST192p, NIST224p, NIST256p, NIST384p, NIST521p
import der
class SubprocessError(Exception):
pass
def run_openssl(cmd):
OPENSSL = "openssl"
p = subprocess.Popen([OPENSSL] + cmd.split(),
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)
stdout, ignored = p.communicate()
if p.returncode != 0:
raise SubprocessError("cmd '%s %s' failed: rc=%s, stdout/err was %s" %
(OPENSSL, cmd, p.returncode, stdout))
return stdout
BENCH = False
class ECDSA(unittest.TestCase):
def test_basic(self):
priv = SigningKey.generate()
pub = priv.get_verifying_key()
data = "blahblah"
sig = priv.sign(data)
self.failUnless(pub.verify(sig, data))
self.failUnlessRaises(BadSignatureError, pub.verify, sig, data+"bad")
pub2 = VerifyingKey.from_string(pub.to_string())
self.failUnless(pub2.verify(sig, data))
def test_bad_usage(self):
# sk=SigningKey() is wrong
self.failUnlessRaises(TypeError, SigningKey)
self.failUnlessRaises(TypeError, VerifyingKey)
def test_lengths(self):
default = NIST192p
priv = SigningKey.generate()
pub = priv.get_verifying_key()
self.failUnlessEqual(len(pub.to_string()), default.verifying_key_length)
sig = priv.sign("data")
self.failUnlessEqual(len(sig), default.signature_length)
if BENCH:
print
for curve in (NIST192p, NIST224p, NIST256p, NIST384p, NIST521p):
start = time.time()
priv = SigningKey.generate(curve=curve)
pub1 = priv.get_verifying_key()
keygen_time = time.time() - start
pub2 = VerifyingKey.from_string(pub1.to_string(), curve)
self.failUnlessEqual(pub1.to_string(), pub2.to_string())
self.failUnlessEqual(len(pub1.to_string()),
curve.verifying_key_length)
start = time.time()
sig = priv.sign("data")
sign_time = time.time() - start
self.failUnlessEqual(len(sig), curve.signature_length)
if BENCH:
start = time.time()
pub1.verify(sig, "data")
verify_time = time.time() - start
print "%s: siglen=%d, keygen=%0.3fs, sign=%0.3f, verify=%0.3f" \
% (curve.name, curve.signature_length,
keygen_time, sign_time, verify_time)
def test_serialize(self):
seed = "secret"
curve = NIST192p
secexp1 = util.randrange_from_seed__trytryagain(seed, curve.order)
secexp2 = util.randrange_from_seed__trytryagain(seed, curve.order)
self.failUnlessEqual(secexp1, secexp2)
priv1 = SigningKey.from_secret_exponent(secexp1, curve)
priv2 = SigningKey.from_secret_exponent(secexp2, curve)
self.failUnlessEqual(hexlify(priv1.to_string()),
hexlify(priv2.to_string()))
self.failUnlessEqual(priv1.to_pem(), priv2.to_pem())
pub1 = priv1.get_verifying_key()
pub2 = priv2.get_verifying_key()
data = "data"
sig1 = priv1.sign(data)
sig2 = priv2.sign(data)
self.failUnless(pub1.verify(sig1, data))
self.failUnless(pub2.verify(sig1, data))
self.failUnless(pub1.verify(sig2, data))
self.failUnless(pub2.verify(sig2, data))
self.failUnlessEqual(hexlify(pub1.to_string()),
hexlify(pub2.to_string()))
def test_nonrandom(self):
s = "all the entropy in the entire world, compressed into one line"
def not_much_entropy(numbytes):
return s[:numbytes]
# we control the entropy source, these two keys should be identical:
priv1 = SigningKey.generate(entropy=not_much_entropy)
priv2 = SigningKey.generate(entropy=not_much_entropy)
self.failUnlessEqual(hexlify(priv1.get_verifying_key().to_string()),
hexlify(priv2.get_verifying_key().to_string()))
# likewise, signatures should be identical. Obviously you'd never
# want to do this with keys you care about, because the secrecy of
# the private key depends upon using different random numbers for
# each signature
sig1 = priv1.sign("data", entropy=not_much_entropy)
sig2 = priv2.sign("data", entropy=not_much_entropy)
self.failUnlessEqual(hexlify(sig1), hexlify(sig2))
def failUnlessPrivkeysEqual(self, priv1, priv2):
self.failUnlessEqual(priv1.privkey.secret_multiplier,
priv2.privkey.secret_multiplier)
self.failUnlessEqual(priv1.privkey.public_key.generator,
priv2.privkey.public_key.generator)
def failIfPrivkeysEqual(self, priv1, priv2):
self.failIfEqual(priv1.privkey.secret_multiplier,
priv2.privkey.secret_multiplier)
def test_privkey_creation(self):
s = "all the entropy in the entire world, compressed into one line"
def not_much_entropy(numbytes):
return s[:numbytes]
priv1 = SigningKey.generate()
self.failUnlessEqual(priv1.baselen, NIST192p.baselen)
priv1 = SigningKey.generate(curve=NIST224p)
self.failUnlessEqual(priv1.baselen, NIST224p.baselen)
priv1 = SigningKey.generate(entropy=not_much_entropy)
self.failUnlessEqual(priv1.baselen, NIST192p.baselen)
priv2 = SigningKey.generate(entropy=not_much_entropy)
self.failUnlessEqual(priv2.baselen, NIST192p.baselen)
self.failUnlessPrivkeysEqual(priv1, priv2)
priv1 = SigningKey.from_secret_exponent(secexp=3)
self.failUnlessEqual(priv1.baselen, NIST192p.baselen)
priv2 = SigningKey.from_secret_exponent(secexp=3)
self.failUnlessPrivkeysEqual(priv1, priv2)
priv1 = SigningKey.from_secret_exponent(secexp=4, curve=NIST224p)
self.failUnlessEqual(priv1.baselen, NIST224p.baselen)
def test_privkey_strings(self):
priv1 = SigningKey.generate()
s1 = priv1.to_string()
self.failUnlessEqual(type(s1), str)
self.failUnlessEqual(len(s1), NIST192p.baselen)
priv2 = SigningKey.from_string(s1)
self.failUnlessPrivkeysEqual(priv1, priv2)
s1 = priv1.to_pem()
self.failUnlessEqual(type(s1), str)
self.failUnless(s1.startswith("-----BEGIN EC PRIVATE KEY-----"))
self.failUnless(s1.strip().endswith("-----END EC PRIVATE KEY-----"))
priv2 = SigningKey.from_pem(s1)
self.failUnlessPrivkeysEqual(priv1, priv2)
s1 = priv1.to_der()
self.failUnlessEqual(type(s1), str)
priv2 = SigningKey.from_der(s1)
self.failUnlessPrivkeysEqual(priv1, priv2)
priv1 = SigningKey.generate(curve=NIST256p)
s1 = priv1.to_pem()
self.failUnlessEqual(type(s1), str)
self.failUnless(s1.startswith("-----BEGIN EC PRIVATE KEY-----"))
self.failUnless(s1.strip().endswith("-----END EC PRIVATE KEY-----"))
priv2 = SigningKey.from_pem(s1)
self.failUnlessPrivkeysEqual(priv1, priv2)
s1 = priv1.to_der()
self.failUnlessEqual(type(s1), str)
priv2 = SigningKey.from_der(s1)
self.failUnlessPrivkeysEqual(priv1, priv2)
def failUnlessPubkeysEqual(self, pub1, pub2):
self.failUnlessEqual(pub1.pubkey.point, pub2.pubkey.point)
self.failUnlessEqual(pub1.pubkey.generator, pub2.pubkey.generator)
self.failUnlessEqual(pub1.curve, pub2.curve)
def test_pubkey_strings(self):
priv1 = SigningKey.generate()
pub1 = priv1.get_verifying_key()
s1 = pub1.to_string()
self.failUnlessEqual(type(s1), str)
self.failUnlessEqual(len(s1), NIST192p.verifying_key_length)
pub2 = VerifyingKey.from_string(s1)
self.failUnlessPubkeysEqual(pub1, pub2)
priv1 = SigningKey.generate(curve=NIST256p)
pub1 = priv1.get_verifying_key()
s1 = pub1.to_string()
self.failUnlessEqual(type(s1), str)
self.failUnlessEqual(len(s1), NIST256p.verifying_key_length)
pub2 = VerifyingKey.from_string(s1, curve=NIST256p)
self.failUnlessPubkeysEqual(pub1, pub2)
pub1_der = pub1.to_der()
self.failUnlessEqual(type(pub1_der), str)
pub2 = VerifyingKey.from_der(pub1_der)
self.failUnlessPubkeysEqual(pub1, pub2)
self.failUnlessRaises(der.UnexpectedDER,
VerifyingKey.from_der, pub1_der+"junk")
badpub = VerifyingKey.from_der(pub1_der)
class FakeGenerator:
def order(self): return 123456789
badcurve = Curve("unknown", None, FakeGenerator(), (1,2,3,4,5,6))
badpub.curve = badcurve
badder = badpub.to_der()
self.failUnlessRaises(UnknownCurveError, VerifyingKey.from_der, badder)
pem = pub1.to_pem()
self.failUnlessEqual(type(pem), str)
self.failUnless(pem.startswith("-----BEGIN PUBLIC KEY-----"), pem)
self.failUnless(pem.strip().endswith("-----END PUBLIC KEY-----"), pem)
pub2 = VerifyingKey.from_pem(pem)
self.failUnlessPubkeysEqual(pub1, pub2)
def test_signature_strings(self):
priv1 = SigningKey.generate()
pub1 = priv1.get_verifying_key()
data = "data"
sig = priv1.sign(data)
self.failUnlessEqual(type(sig), str)
self.failUnlessEqual(len(sig), NIST192p.signature_length)
self.failUnless(pub1.verify(sig, data))
sig = priv1.sign(data, sigencode=sigencode_strings)
self.failUnlessEqual(type(sig), tuple)
self.failUnlessEqual(len(sig), 2)
self.failUnlessEqual(type(sig[0]), str)
self.failUnlessEqual(type(sig[1]), str)
self.failUnlessEqual(len(sig[0]), NIST192p.baselen)
self.failUnlessEqual(len(sig[1]), NIST192p.baselen)
self.failUnless(pub1.verify(sig, data, sigdecode=sigdecode_strings))
sig_der = priv1.sign(data, sigencode=sigencode_der)
self.failUnlessEqual(type(sig_der), str)
self.failUnless(pub1.verify(sig_der, data, sigdecode=sigdecode_der))
def test_hashfunc(self):
sk = SigningKey.generate(curve=NIST256p, hashfunc=sha256)
data = "security level is 128 bits"
sig = sk.sign(data)
vk = VerifyingKey.from_string(sk.get_verifying_key().to_string(),
curve=NIST256p, hashfunc=sha256)
self.failUnless(vk.verify(sig, data))
sk2 = SigningKey.generate(curve=NIST256p)
sig2 = sk2.sign(data, hashfunc=sha256)
vk2 = VerifyingKey.from_string(sk2.get_verifying_key().to_string(),
curve=NIST256p, hashfunc=sha256)
self.failUnless(vk2.verify(sig2, data))
vk3 = VerifyingKey.from_string(sk.get_verifying_key().to_string(),
curve=NIST256p)
self.failUnless(vk3.verify(sig, data, hashfunc=sha256))
class OpenSSL(unittest.TestCase):
# test interoperability with OpenSSL tools. Note that openssl's ECDSA
# sign/verify arguments changed between 0.9.8 and 1.0.0: the early
# versions require "-ecdsa-with-SHA1", the later versions want just
# "-SHA1" (or to leave out that argument entirely, which means the
# signature will use some default digest algorithm, probably determined
# by the key, probably always SHA1).
#
# openssl ecparam -name secp224r1 -genkey -out privkey.pem
# openssl ec -in privkey.pem -text -noout # get the priv/pub keys
# openssl dgst -ecdsa-with-SHA1 -sign privkey.pem -out data.sig data.txt
# openssl asn1parse -in data.sig -inform DER
# data.sig is 64 bytes, probably 56b plus ASN1 overhead
# openssl dgst -ecdsa-with-SHA1 -prverify privkey.pem -signature data.sig data.txt ; echo $?
# openssl ec -in privkey.pem -pubout -out pubkey.pem
# openssl ec -in privkey.pem -pubout -outform DER -out pubkey.der
def get_openssl_messagedigest_arg(self):
v = run_openssl("version")
# e.g. "OpenSSL 1.0.0 29 Mar 2010", or "OpenSSL 1.0.0a 1 Jun 2010",
# or "OpenSSL 0.9.8o 01 Jun 2010"
vs = v.split()[1].split(".")
if vs >= ["1","0","0"]:
return "-SHA1"
else:
return "-ecdsa-with-SHA1"
# sk: 1:OpenSSL->python 2:python->OpenSSL
# vk: 3:OpenSSL->python 4:python->OpenSSL
# sig: 5:OpenSSL->python 6:python->OpenSSL
def test_from_openssl_nist192p(self):
return self.do_test_from_openssl(NIST192p, "prime192v1")
def test_from_openssl_nist224p(self):
return self.do_test_from_openssl(NIST224p, "secp224r1")
def test_from_openssl_nist384p(self):
return self.do_test_from_openssl(NIST384p, "secp384r1")
def test_from_openssl_nist521p(self):
return self.do_test_from_openssl(NIST521p, "secp521r1")
def do_test_from_openssl(self, curve, curvename):
# OpenSSL: create sk, vk, sign.
# Python: read vk(3), checksig(5), read sk(1), sign, check
mdarg = self.get_openssl_messagedigest_arg()
if os.path.isdir("t"):
shutil.rmtree("t")
os.mkdir("t")
run_openssl("ecparam -name %s -genkey -out t/privkey.pem" % curvename)
run_openssl("ec -in t/privkey.pem -pubout -out t/pubkey.pem")
data = "data"
open("t/data.txt","wb").write(data)
run_openssl("dgst %s -sign t/privkey.pem -out t/data.sig t/data.txt" % mdarg)
run_openssl("dgst %s -verify t/pubkey.pem -signature t/data.sig t/data.txt" % mdarg)
pubkey_pem = open("t/pubkey.pem").read()
vk = VerifyingKey.from_pem(pubkey_pem) # 3
sig_der = open("t/data.sig","rb").read()
self.failUnless(vk.verify(sig_der, data, # 5
hashfunc=sha1, sigdecode=sigdecode_der))
sk = SigningKey.from_pem(open("t/privkey.pem").read()) # 1
sig = sk.sign(data)
self.failUnless(vk.verify(sig, data))
def test_to_openssl_nist192p(self):
self.do_test_to_openssl(NIST192p, "prime192v1")
def test_to_openssl_nist224p(self):
self.do_test_to_openssl(NIST224p, "secp224r1")
def test_to_openssl_nist384p(self):
self.do_test_to_openssl(NIST384p, "secp384r1")
def test_to_openssl_nist521p(self):
self.do_test_to_openssl(NIST521p, "secp521r1")
def do_test_to_openssl(self, curve, curvename):
# Python: create sk, vk, sign.
# OpenSSL: read vk(4), checksig(6), read sk(2), sign, check
mdarg = self.get_openssl_messagedigest_arg()
if os.path.isdir("t"):
shutil.rmtree("t")
os.mkdir("t")
sk = SigningKey.generate(curve=curve)
vk = sk.get_verifying_key()
data = "data"
open("t/pubkey.der","wb").write(vk.to_der()) # 4
open("t/pubkey.pem","wb").write(vk.to_pem()) # 4
sig_der = sk.sign(data, hashfunc=sha1, sigencode=sigencode_der)
open("t/data.sig","wb").write(sig_der) # 6
open("t/data.txt","wb").write(data)
open("t/baddata.txt","wb").write(data+"corrupt")
self.failUnlessRaises(SubprocessError, run_openssl,
"dgst %s -verify t/pubkey.der -keyform DER -signature t/data.sig t/baddata.txt" % mdarg)
run_openssl("dgst %s -verify t/pubkey.der -keyform DER -signature t/data.sig t/data.txt" % mdarg)
open("t/privkey.pem","wb").write(sk.to_pem()) # 2
run_openssl("dgst %s -sign t/privkey.pem -out t/data.sig2 t/data.txt" % mdarg)
run_openssl("dgst %s -verify t/pubkey.pem -signature t/data.sig2 t/data.txt" % mdarg)
class DER(unittest.TestCase):
def test_oids(self):
oid_ecPublicKey = der.encode_oid(1, 2, 840, 10045, 2, 1)
self.failUnlessEqual(hexlify(oid_ecPublicKey), "06072a8648ce3d0201")
self.failUnlessEqual(hexlify(NIST224p.encoded_oid), "06052b81040021")
self.failUnlessEqual(hexlify(NIST256p.encoded_oid),
"06082a8648ce3d030107")
x = oid_ecPublicKey + "more"
x1, rest = der.remove_object(x)
self.failUnlessEqual(x1, (1, 2, 840, 10045, 2, 1))
self.failUnlessEqual(rest, "more")
def test_integer(self):
self.failUnlessEqual(der.encode_integer(0), "\x02\x01\x00")
self.failUnlessEqual(der.encode_integer(1), "\x02\x01\x01")
self.failUnlessEqual(der.encode_integer(127), "\x02\x01\x7f")
self.failUnlessEqual(der.encode_integer(128), "\x02\x02\x00\x80")
self.failUnlessEqual(der.encode_integer(256), "\x02\x02\x01\x00")
#self.failUnlessEqual(der.encode_integer(-1), "\x02\x01\xff")
def s(n): return der.remove_integer(der.encode_integer(n) + "junk")
self.failUnlessEqual(s(0), (0, "junk"))
self.failUnlessEqual(s(1), (1, "junk"))
self.failUnlessEqual(s(127), (127, "junk"))
self.failUnlessEqual(s(128), (128, "junk"))
self.failUnlessEqual(s(256), (256, "junk"))
self.failUnlessEqual(s(1234567890123456789012345678901234567890),
( 1234567890123456789012345678901234567890,"junk"))
def test_number(self):
self.failUnlessEqual(der.encode_number(0), "\x00")
self.failUnlessEqual(der.encode_number(127), "\x7f")
self.failUnlessEqual(der.encode_number(128), "\x81\x00")
self.failUnlessEqual(der.encode_number(3*128+7), "\x83\x07")
#self.failUnlessEqual(der.read_number("\x81\x9b"+"more"), (155, 2))
#self.failUnlessEqual(der.encode_number(155), "\x81\x9b")
for n in (0, 1, 2, 127, 128, 3*128+7, 840, 10045): #, 155):
x = der.encode_number(n) + "more"
n1, llen = der.read_number(x)
self.failUnlessEqual(n1, n)
self.failUnlessEqual(x[llen:], "more")
def test_length(self):
self.failUnlessEqual(der.encode_length(0), "\x00")
self.failUnlessEqual(der.encode_length(127), "\x7f")
self.failUnlessEqual(der.encode_length(128), "\x81\x80")
self.failUnlessEqual(der.encode_length(255), "\x81\xff")
self.failUnlessEqual(der.encode_length(256), "\x82\x01\x00")
self.failUnlessEqual(der.encode_length(3*256+7), "\x82\x03\x07")
self.failUnlessEqual(der.read_length("\x81\x9b"+"more"), (155, 2))
self.failUnlessEqual(der.encode_length(155), "\x81\x9b")
for n in (0, 1, 2, 127, 128, 255, 256, 3*256+7, 155):
x = der.encode_length(n) + "more"
n1, llen = der.read_length(x)
self.failUnlessEqual(n1, n)
self.failUnlessEqual(x[llen:], "more")
def test_sequence(self):
x = der.encode_sequence("ABC", "DEF") + "GHI"
self.failUnlessEqual(x, "\x30\x06ABCDEFGHI")
x1, rest = der.remove_sequence(x)
self.failUnlessEqual(x1, "ABCDEF")
self.failUnlessEqual(rest, "GHI")
def test_constructed(self):
x = der.encode_constructed(0, NIST224p.encoded_oid)
self.failUnlessEqual(hexlify(x), "a007" + "06052b81040021")
x = der.encode_constructed(1, unhexlify("0102030a0b0c"))
self.failUnlessEqual(hexlify(x), "a106" + "0102030a0b0c")
class Util(unittest.TestCase):
def test_trytryagain(self):
tta = util.randrange_from_seed__trytryagain
for i in range(1000):
seed = "seed-%d" % i
for order in (2**8-2, 2**8-1, 2**8, 2**8+1, 2**8+2,
2**16-1, 2**16+1):
n = tta(seed, order)
self.failUnless(1 <= n < order, (1, n, order))
# this trytryagain *does* provide long-term stability
self.failUnlessEqual("%x"%(tta("seed", NIST224p.order)),
"6fa59d73bf0446ae8743cf748fc5ac11d5585a90356417e97155c3bc")
def test_randrange(self):
# util.randrange does not provide long-term stability: we might
# change the algorithm in the future.
for i in range(1000):
entropy = util.PRNG("seed-%d" % i)
for order in (2**8-2, 2**8-1, 2**8,
2**16-1, 2**16+1,
):
# that oddball 2**16+1 takes half our runtime
n = util.randrange(order, entropy=entropy)
self.failUnless(1 <= n < order, (1, n, order))
def OFF_test_prove_uniformity(self):
order = 2**8-2
counts = dict([(i, 0) for i in range(1, order)])
assert 0 not in counts
assert order not in counts
for i in range(1000000):
seed = "seed-%d" % i
n = util.randrange_from_seed__trytryagain(seed, order)
counts[n] += 1
# this technique should use the full range
self.failUnless(counts[order-1])
for i in range(1, order):
print "%3d: %s" % (i, "*"*(counts[i]//100))
def __main__():
unittest.main()
if __name__ == "__main__":
__main__()

View File

@ -1,215 +0,0 @@
import os
import math
import binascii
from hashlib import sha256
import der
from curves import orderlen
# RFC5480:
# The "unrestricted" algorithm identifier is:
# id-ecPublicKey OBJECT IDENTIFIER ::= {
# iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 }
oid_ecPublicKey = (1, 2, 840, 10045, 2, 1)
encoded_oid_ecPublicKey = der.encode_oid(*oid_ecPublicKey)
def randrange(order, entropy=None):
"""Return a random integer k such that 1 <= k < order, uniformly
distributed across that range. For simplicity, this only behaves well if
'order' is fairly close (but below) a power of 256. The try-try-again
algorithm we use takes longer and longer time (on average) to complete as
'order' falls, rising to a maximum of avg=512 loops for the worst-case
(256**k)+1 . All of the standard curves behave well. There is a cutoff at
10k loops (which raises RuntimeError) to prevent an infinite loop when
something is really broken like the entropy function not working.
Note that this function is not declared to be forwards-compatible: we may
change the behavior in future releases. The entropy= argument (which
should get a callable that behaves like os.entropy) can be used to
achieve stability within a given release (for repeatable unit tests), but
should not be used as a long-term-compatible key generation algorithm.
"""
# we could handle arbitrary orders (even 256**k+1) better if we created
# candidates bit-wise instead of byte-wise, which would reduce the
# worst-case behavior to avg=2 loops, but that would be more complex. The
# change would be to round the order up to a power of 256, subtract one
# (to get 0xffff..), use that to get a byte-long mask for the top byte,
# generate the len-1 entropy bytes, generate one extra byte and mask off
# the top bits, then combine it with the rest. Requires jumping back and
# forth between strings and integers a lot.
if entropy is None:
entropy = os.urandom
assert order > 1
bytes = orderlen(order)
dont_try_forever = 10000 # gives about 2**-60 failures for worst case
while dont_try_forever > 0:
dont_try_forever -= 1
candidate = string_to_number(entropy(bytes)) + 1
if 1 <= candidate < order:
return candidate
continue
raise RuntimeError("randrange() tried hard but gave up, either something"
" is very wrong or you got realllly unlucky. Order was"
" %x" % order)
class PRNG:
# this returns a callable which, when invoked with an integer N, will
# return N pseudorandom bytes. Note: this is a short-term PRNG, meant
# primarily for the needs of randrange_from_seed__trytryagain(), which
# only needs to run it a few times per seed. It does not provide
# protection against state compromise (forward security).
def __init__(self, seed):
self.generator = self.block_generator(seed)
def __call__(self, numbytes):
return "".join([self.generator.next() for i in range(numbytes)])
def block_generator(self, seed):
counter = 0
while True:
for byte in sha256("prng-%d-%s" % (counter, seed)).digest():
yield byte
counter += 1
def randrange_from_seed__overshoot_modulo(seed, order):
# hash the data, then turn the digest into a number in [1,order).
#
# We use David-Sarah Hopwood's suggestion: turn it into a number that's
# sufficiently larger than the group order, then modulo it down to fit.
# This should give adequate (but not perfect) uniformity, and simple
# code. There are other choices: try-try-again is the main one.
base = PRNG(seed)(2*orderlen(order))
number = (int(binascii.hexlify(base), 16) % (order-1)) + 1
assert 1 <= number < order, (1, number, order)
return number
def lsb_of_ones(numbits):
return (1 << numbits) - 1
def bits_and_bytes(order):
bits = int(math.log(order-1, 2)+1)
bytes = bits // 8
extrabits = bits % 8
return bits, bytes, extrabits
# the following randrange_from_seed__METHOD() functions take an
# arbitrarily-sized secret seed and turn it into a number that obeys the same
# range limits as randrange() above. They are meant for deriving consistent
# signing keys from a secret rather than generating them randomly, for
# example a protocol in which three signing keys are derived from a master
# secret. You should use a uniformly-distributed unguessable seed with about
# curve.baselen bytes of entropy. To use one, do this:
# seed = os.urandom(curve.baselen) # or other starting point
# secexp = ecdsa.util.randrange_from_seed__trytryagain(sed, curve.order)
# sk = SigningKey.from_secret_exponent(secexp, curve)
def randrange_from_seed__truncate_bytes(seed, order, hashmod=sha256):
# hash the seed, then turn the digest into a number in [1,order), but
# don't worry about trying to uniformly fill the range. This will lose,
# on average, four bits of entropy.
bits, bytes, extrabits = bits_and_bytes(order)
if extrabits:
bytes += 1
base = hashmod(seed).digest()[:bytes]
base = "\x00"*(bytes-len(base)) + base
number = 1+int(binascii.hexlify(base), 16)
assert 1 <= number < order
return number
def randrange_from_seed__truncate_bits(seed, order, hashmod=sha256):
# like string_to_randrange_truncate_bytes, but only lose an average of
# half a bit
bits = int(math.log(order-1, 2)+1)
maxbytes = (bits+7) // 8
base = hashmod(seed).digest()[:maxbytes]
base = "\x00"*(maxbytes-len(base)) + base
topbits = 8*maxbytes - bits
if topbits:
base = chr(ord(base[0]) & lsb_of_ones(topbits)) + base[1:]
number = 1+int(binascii.hexlify(base), 16)
assert 1 <= number < order
return number
def randrange_from_seed__trytryagain(seed, order):
# figure out exactly how many bits we need (rounded up to the nearest
# bit), so we can reduce the chance of looping to less than 0.5 . This is
# specified to feed from a byte-oriented PRNG, and discards the
# high-order bits of the first byte as necessary to get the right number
# of bits. The average number of loops will range from 1.0 (when
# order=2**k-1) to 2.0 (when order=2**k+1).
assert order > 1
bits, bytes, extrabits = bits_and_bytes(order)
generate = PRNG(seed)
while True:
extrabyte = ""
if extrabits:
extrabyte = chr(ord(generate(1)) & lsb_of_ones(extrabits))
guess = string_to_number(extrabyte + generate(bytes)) + 1
if 1 <= guess < order:
return guess
def number_to_string(num, order):
l = orderlen(order)
fmt_str = "%0" + str(2*l) + "x"
string = binascii.unhexlify(fmt_str % num)
assert len(string) == l, (len(string), l)
return string
def string_to_number(string):
return int(binascii.hexlify(string), 16)
def string_to_number_fixedlen(string, order):
l = orderlen(order)
assert len(string) == l, (len(string), l)
return int(binascii.hexlify(string), 16)
# these methods are useful for the sigencode= argument to SK.sign() and the
# sigdecode= argument to VK.verify(), and control how the signature is packed
# or unpacked.
def sigencode_strings(r, s, order):
r_str = number_to_string(r, order)
s_str = number_to_string(s, order)
return (r_str, s_str)
def sigencode_string(r, s, order):
# for any given curve, the size of the signature numbers is
# fixed, so just use simple concatenation
r_str, s_str = sigencode_strings(r, s, order)
return r_str + s_str
def sigencode_der(r, s, order):
return der.encode_sequence(der.encode_integer(r), der.encode_integer(s))
def sigdecode_string(signature, order):
l = orderlen(order)
assert len(signature) == 2*l, (len(signature), 2*l)
r = string_to_number_fixedlen(signature[:l], order)
s = string_to_number_fixedlen(signature[l:], order)
return r, s
def sigdecode_strings(rs_strings, order):
(r_str, s_str) = rs_strings
l = orderlen(order)
assert len(r_str) == l, (len(r_str), l)
assert len(s_str) == l, (len(s_str), l)
r = string_to_number_fixedlen(r_str, order)
s = string_to_number_fixedlen(s_str, order)
return r, s
def sigdecode_der(sig_der, order):
#return der.encode_sequence(der.encode_integer(r), der.encode_integer(s))
rs_strings, empty = der.remove_sequence(sig_der)
if empty != "":
raise der.UnexpectedDER("trailing junk after DER sig: %s" %
binascii.hexlify(empty))
r, rest = der.remove_integer(rs_strings)
s, empty = der.remove_integer(rest)
if empty != "":
raise der.UnexpectedDER("trailing junk after DER numbers: %s" %
binascii.hexlify(empty))
return r, s