move crypto from wallet class to bitcoin.py

This commit is contained in:
thomasv 2013-02-22 16:17:46 +01:00
parent 8a8aeb4567
commit 5d6496f1f9
4 changed files with 75 additions and 66 deletions

View File

@ -662,6 +662,7 @@ if __name__ == '__main__':
message = ' '.join(args[2:])
if len(args) > 3:
print_msg("Warning: Message was reconstructed from several arguments:", repr(message))
print_msg(wallet.sign_message(address, message, password))
elif cmd == 'verifymessage':
@ -675,8 +676,9 @@ if __name__ == '__main__':
sys.exit(1)
if len(args) > 4:
print_msg("Warning: Message was reconstructed from several arguments:", repr(message))
EC_KEY.verify_message(address, signature, message)
try:
wallet.verify_message(address, signature, message)
EC_KEY.verify_message(address, signature, message)
print_msg(True)
except BaseException as e:
print_error("Verification error: {0}".format(e))

View File

@ -7,6 +7,6 @@ from verifier import WalletVerifier
from interface import Interface, pick_random_server, DEFAULT_SERVERS
from simple_config import SimpleConfig
import bitcoin
from bitcoin import Transaction
from bitcoin import Transaction, EC_KEY
from mnemonic import mn_encode as mnemonic_encode
from mnemonic import mn_decode as mnemonic_decode

View File

@ -273,12 +273,78 @@ generator_secp256k1 = ecdsa.ellipticcurve.Point( curve_secp256k1, _Gx, _Gy, _r )
oid_secp256k1 = (1,3,132,0,10)
SECP256k1 = ecdsa.curves.Curve("SECP256k1", curve_secp256k1, generator_secp256k1, oid_secp256k1 )
from ecdsa.util import string_to_number, number_to_string
def msg_magic(message):
return "\x18Bitcoin Signed Message:\n" + chr( len(message) ) + message
class EC_KEY(object):
def __init__( self, secret ):
self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret )
self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret )
self.secret = secret
def sign_message(self, message, compressed, address):
private_key = ecdsa.SigningKey.from_secret_exponent( self.secret, curve = SECP256k1 )
public_key = private_key.get_verifying_key()
signature = private_key.sign_digest( Hash( msg_magic(message) ), sigencode = ecdsa.util.sigencode_string )
assert public_key.verify_digest( signature, Hash( msg_magic(message) ), sigdecode = ecdsa.util.sigdecode_string)
for i in range(4):
sig = base64.b64encode( chr(27 + i + (4 if compressed else 0)) + signature )
try:
self.verify_message( address, sig, message)
return sig
except:
continue
else:
raise BaseException("error: cannot sign message")
@classmethod
def verify_message(self, address, signature, message):
""" See http://www.secg.org/download/aid-780/sec1-v2.pdf for the math """
from ecdsa import numbertheory, ellipticcurve, util
import msqr
curve = curve_secp256k1
G = generator_secp256k1
order = G.order()
# extract r,s from signature
sig = base64.b64decode(signature)
if len(sig) != 65: raise BaseException("Wrong encoding")
r,s = util.sigdecode_string(sig[1:], order)
nV = ord(sig[0])
if nV < 27 or nV >= 35:
raise BaseException("Bad encoding")
if nV >= 31:
compressed = True
nV -= 4
else:
compressed = False
recid = nV - 27
# 1.1
x = r + (recid/2) * order
# 1.3
alpha = ( x * x * x + curve.a() * x + curve.b() ) % curve.p()
beta = msqr.modular_sqrt(alpha, curve.p())
y = beta if (beta - recid) % 2 == 0 else curve.p() - beta
# 1.4 the constructor checks that nR is at infinity
R = ellipticcurve.Point(curve, x, y, order)
# 1.5 compute e from message:
h = Hash( msg_magic(message) )
e = string_to_number(h)
minus_e = -e % order
# 1.6 compute Q = r^-1 (sR - eG)
inv_r = numbertheory.inverse_mod(r,order)
Q = inv_r * ( s * R + minus_e * G )
public_key = ecdsa.VerifyingKey.from_public_point( Q, curve = SECP256k1 )
# check that Q is the public key
public_key.verify_digest( sig[1:], h, sigdecode = ecdsa.util.sigdecode_string)
# check that we get the original signing address
addr = public_key_to_bc_address( encode_point(public_key, compressed) )
if address != addr:
raise BaseException("Bad signature")
###################################### BIP32 ##############################

View File

@ -216,71 +216,12 @@ class Wallet:
return secexp, compressed
def msg_magic(self, message):
return "\x18Bitcoin Signed Message:\n" + chr( len(message) ) + message
def sign_message(self, address, message, password):
secexp, compressed = self.get_private_key(address, password)
private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
public_key = private_key.get_verifying_key()
signature = private_key.sign_digest( Hash( self.msg_magic( message ) ), sigencode = ecdsa.util.sigencode_string )
assert public_key.verify_digest( signature, Hash( self.msg_magic( message ) ), sigdecode = ecdsa.util.sigdecode_string)
for i in range(4):
sig = base64.b64encode( chr(27 + i + (4 if compressed else 0)) + signature )
try:
self.verify_message( address, sig, message)
return sig
except:
continue
else:
raise BaseException("error: cannot sign message")
def verify_message(self, address, signature, message):
""" See http://www.secg.org/download/aid-780/sec1-v2.pdf for the math """
from ecdsa import numbertheory, ellipticcurve, util
import msqr
curve = curve_secp256k1
G = generator_secp256k1
order = G.order()
# extract r,s from signature
sig = base64.b64decode(signature)
if len(sig) != 65: raise BaseException("Wrong encoding")
r,s = util.sigdecode_string(sig[1:], order)
nV = ord(sig[0])
if nV < 27 or nV >= 35:
raise BaseException("Bad encoding")
if nV >= 31:
compressed = True
nV -= 4
else:
compressed = False
recid = nV - 27
# 1.1
x = r + (recid/2) * order
# 1.3
alpha = ( x * x * x + curve.a() * x + curve.b() ) % curve.p()
beta = msqr.modular_sqrt(alpha, curve.p())
y = beta if (beta - recid) % 2 == 0 else curve.p() - beta
# 1.4 the constructor checks that nR is at infinity
R = ellipticcurve.Point(curve, x, y, order)
# 1.5 compute e from message:
h = Hash( self.msg_magic( message ) )
e = string_to_number(h)
minus_e = -e % order
# 1.6 compute Q = r^-1 (sR - eG)
inv_r = numbertheory.inverse_mod(r,order)
Q = inv_r * ( s * R + minus_e * G )
public_key = ecdsa.VerifyingKey.from_public_point( Q, curve = SECP256k1 )
# check that Q is the public key
public_key.verify_digest( sig[1:], h, sigdecode = ecdsa.util.sigdecode_string)
# check that we get the original signing address
addr = public_key_to_bc_address( encode_point(public_key, compressed) )
if address != addr:
raise BaseException("Bad signature")
sec = self.get_private_key_base58(address, password)
key = regenerate_key(sec)
compressed = is_compressed(sec)
return key.sign_message(message, compressed, address)
def create_new_address(self, for_change):
n = len(self.change_addresses) if for_change else len(self.addresses)
address = self.get_new_address(n, for_change)