Merge pull request #731 from chrisglass/refactor-tests

Refactored tests, wrote tests, added CI config file.
This commit is contained in:
ThomasV 2014-06-25 10:49:00 +02:00
commit ca88db996b
5 changed files with 165 additions and 124 deletions

1
.gitignore vendored
View File

@ -12,3 +12,4 @@ Electrum.egg-info/
gui/qt/icons_rc.py
locale/
.devlocaltmp/
*_trial_temp

5
.travis.yaml Normal file
View File

@ -0,0 +1,5 @@
language: python
python:
- "2.7"
install: "pip install slowaes ecdsa>=0.9 pbkdf2 requests pyasn1 pyasn1-modules tlslite>=0.4.5 qrcode"
script: nosetests lib

View File

@ -23,6 +23,8 @@ import re
import sys
import hmac
from util import print_error
from version import SEED_PREFIX
try:
import ecdsa
@ -34,21 +36,16 @@ try:
except ImportError:
sys.exit("Error: AES does not seem to be installed. Try 'sudo pip install slowaes'")
try:
import pbkdf2
except ImportError:
sys.exit("Error: pbkdf2 does not seem to be installed. Try 'sudo pip install pbkdf2'")
from util import print_error
################################## transactions
MIN_RELAY_TX_FEE = 1000
# AES encryption
EncodeAES = lambda secret, s: base64.b64encode(aes.encryptData(secret,s))
DecodeAES = lambda secret, e: aes.decryptData(secret, base64.b64decode(e))
def pw_encode(s, password):
if password:
secret = Hash(password)
@ -56,6 +53,7 @@ def pw_encode(s, password):
else:
return s
def pw_decode(s, password):
if password is not None:
secret = Hash(password)
@ -68,17 +66,16 @@ def pw_decode(s, password):
return s
def rev_hex(s):
return s.decode('hex')[::-1].encode('hex')
def int_to_hex(i, length=1):
s = hex(i)[2:].rstrip('L')
s = "0"*(2*length - len(s)) + s
return rev_hex(s)
def var_int(i):
# https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer
if i<0xfd:
@ -90,6 +87,7 @@ def var_int(i):
else:
return "ff"+int_to_hex(i,8)
def op_push(i):
if i<0x4c:
return int_to_hex(i)
@ -99,27 +97,29 @@ def op_push(i):
return '4d' + int_to_hex(i,2)
else:
return '4e' + int_to_hex(i,4)
def sha256(x):
return hashlib.sha256(x).digest()
def Hash(x):
if type(x) is unicode: x=x.encode('utf-8')
return sha256(sha256(x))
hash_encode = lambda x: x[::-1].encode('hex')
hash_decode = lambda x: x.decode('hex')[::-1]
hmac_sha_512 = lambda x,y: hmac.new(x, y, hashlib.sha512).digest()
def mnemonic_to_seed(mnemonic, passphrase):
from pbkdf2 import PBKDF2
import hmac
PBKDF2_ROUNDS = 2048
return PBKDF2(mnemonic, 'mnemonic' + passphrase, iterations = PBKDF2_ROUNDS, macmodule = hmac, digestmodule = hashlib.sha512).read(64)
from version import SEED_PREFIX
is_new_seed = lambda x: hmac_sha_512("Seed version", x.encode('utf8')).encode('hex')[0:2].startswith(SEED_PREFIX)
def is_old_seed(seed):
@ -136,7 +136,7 @@ def is_old_seed(seed):
is_hex = (len(seed) == 32)
except Exception:
is_hex = False
return is_hex or (uses_electrum_words and len(words) == 12)
@ -164,9 +164,9 @@ def i2d_ECPrivateKey(pkey, compressed=False):
'022100' + \
'%064x' % _r + \
'020101a144034200'
return key.decode('hex') + i2o_ECPublicKey(pkey.pubkey, compressed)
def i2o_ECPublicKey(pubkey, compressed=False):
# public keys are 65 bytes long (520 bits)
# 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate
@ -181,14 +181,14 @@ def i2o_ECPublicKey(pubkey, compressed=False):
key = '04' + \
'%064x' % pubkey.point.x() + \
'%064x' % pubkey.point.y()
return key.decode('hex')
# end pywallet openssl private key implementation
############ functions from pywallet #####################
############ functions from pywallet #####################
def hash_160(public_key):
try:
@ -219,6 +219,7 @@ def bc_address_to_hash_160(addr):
__b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
__b58base = len(__b58chars)
def b58encode(v):
""" encode v, which is a string of bytes, to base58."""
@ -242,6 +243,7 @@ def b58encode(v):
return (__b58chars[0]*nPad) + result
def b58decode(v, length):
""" decode v into a string of len bytes."""
long_value = 0L
@ -271,6 +273,7 @@ def EncodeBase58Check(vchIn):
hash = Hash(vchIn)
return b58encode(vchIn + hash[0:4])
def DecodeBase58Check(psz):
vchRet = b58decode(psz, None)
key = vchRet[0:-4]
@ -282,9 +285,11 @@ def DecodeBase58Check(psz):
else:
return key
def PrivKeyToSecret(privkey):
return privkey[9:9+32]
def SecretToASecret(secret, compressed=False, addrtype=0):
vchIn = chr((addrtype+128)&255) + secret
if compressed: vchIn += '\01'
@ -304,15 +309,19 @@ def regenerate_key(sec):
b = b[0:32]
return EC_KEY(b)
def GetPubKey(pubkey, compressed=False):
return i2o_ECPublicKey(pubkey, compressed)
def GetPrivKey(pkey, compressed=False):
return i2d_ECPrivateKey(pkey, compressed)
def GetSecret(pkey):
return ('%064x' % pkey.secret).decode('hex')
def is_compressed(sec):
b = ASecretToSecret(sec)
return len(b) == 33
@ -349,7 +358,7 @@ def is_address(addr):
def is_private_key(key):
try:
k = ASecretToSecret(key)
k = ASecretToSecret(key)
return k is not False
except:
return False
@ -513,19 +522,19 @@ class EC_KEY(object):
@classmethod
def encrypt_message(self, message, pubkey):
pk = ser_to_point(pubkey)
if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, pk.x(), pk.y()):
raise Exception('invalid pubkey')
ephemeral_exponent = number_to_string(ecdsa.util.randrange(pow(2,256)), generator_secp256k1.order())
ephemeral = EC_KEY(ephemeral_exponent)
ecdh_key = (pk * ephemeral.privkey.secret_multiplier).x()
ecdh_key = ('%064x' % ecdh_key).decode('hex')
key = hashlib.sha512(ecdh_key).digest()
key_e, key_m = key[:32], key[32:]
iv_ciphertext = aes.encryptData(key_e, message)
ephemeral_pubkey = ephemeral.get_public_key(compressed=True).decode('hex')
@ -536,20 +545,20 @@ class EC_KEY(object):
def decrypt_message(self, encrypted):
encrypted = base64.b64decode(encrypted)
if len(encrypted) < 85:
raise Exception('invalid ciphertext: length')
magic = encrypted[:4]
ephemeral_pubkey = encrypted[4:37]
iv_ciphertext = encrypted[37:-32]
mac = encrypted[-32:]
if magic != 'BIE1':
raise Exception('invalid ciphertext: invalid magic bytes')
try:
ephemeral_pubkey = ser_to_point(ephemeral_pubkey)
except AssertionError, e:
@ -608,10 +617,10 @@ def _CKD_priv(k, c, s, is_prime):
return k_n, c_n
# Child public key derivation function (from public key only)
# K = master public key
# K = master public key
# c = master chain code
# n = index of key we want to derive
# This function allows us to find the nth public key, as long as n is
# This function allows us to find the nth public key, as long as n is
# non-negative. If n is negative, we need the master private key to find it.
def CKD_pub(cK, c, n):
if n & BIP32_PRIME: raise
@ -633,7 +642,7 @@ def _CKD_pub(cK, c, s):
def deserialize_xkey(xkey):
xkey = DecodeBase58Check(xkey)
xkey = DecodeBase58Check(xkey)
assert len(xkey) == 78
assert xkey[0:4].encode('hex') in ["0488ade4", "0488b21e"]
depth = ord(xkey[4])
@ -650,7 +659,7 @@ def deserialize_xkey(xkey):
def bip32_root(seed):
import hmac
seed = seed.decode('hex')
seed = seed.decode('hex')
I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest()
master_k = I[0:32]
master_c = I[32:]
@ -699,96 +708,7 @@ def bip32_public_derivation(xpub, branch, sequence):
return EncodeBase58Check(xpub)
def bip32_private_key(sequence, k, chain):
for i in sequence:
k, chain = CKD_priv(k, chain, i)
return SecretToASecret(k, True)
################################## transactions
MIN_RELAY_TX_FEE = 1000
import unittest
class Test_bitcoin(unittest.TestCase):
def test_crypto(self):
for message in ["Chancellor on brink of second bailout for banks", chr(255)*512]:
self.do_test_crypto(message)
def do_test_crypto(self, message):
G = generator_secp256k1
_r = G.order()
pvk = ecdsa.util.randrange( pow(2,256) ) %_r
Pub = pvk*G
pubkey_c = point_to_ser(Pub,True)
pubkey_u = point_to_ser(Pub,False)
addr_c = public_key_to_bc_address(pubkey_c)
addr_u = public_key_to_bc_address(pubkey_u)
#print "Private key ", '%064x'%pvk
eck = EC_KEY(number_to_string(pvk,_r))
#print "Compressed public key ", pubkey_c.encode('hex')
enc = EC_KEY.encrypt_message(message, pubkey_c)
dec = eck.decrypt_message(enc)
assert dec == message
#print "Uncompressed public key", pubkey_u.encode('hex')
enc2 = EC_KEY.encrypt_message(message, pubkey_u)
dec2 = eck.decrypt_message(enc)
assert dec2 == message
signature = eck.sign_message(message, True, addr_c)
#print signature
EC_KEY.verify_message(addr_c, signature, message)
def test_bip32(self):
# see https://en.bitcoin.it/wiki/BIP_0032_TestVectors
xpub, xprv = self.do_test_bip32("000102030405060708090a0b0c0d0e0f", "m/0'/1/2'/2/1000000000")
assert xpub == "xpub6H1LXWLaKsWFhvm6RVpEL9P4KfRZSW7abD2ttkWP3SSQvnyA8FSVqNTEcYFgJS2UaFcxupHiYkro49S8yGasTvXEYBVPamhGW6cFJodrTHy"
assert xprv == "xprvA41z7zogVVwxVSgdKUHDy1SKmdb533PjDz7J6N6mV6uS3ze1ai8FHa8kmHScGpWmj4WggLyQjgPie1rFSruoUihUZREPSL39UNdE3BBDu76"
xpub, xprv = self.do_test_bip32("fffcf9f6f3f0edeae7e4e1dedbd8d5d2cfccc9c6c3c0bdbab7b4b1aeaba8a5a29f9c999693908d8a8784817e7b7875726f6c696663605d5a5754514e4b484542","m/0/2147483647'/1/2147483646'/2")
assert xpub == "xpub6FnCn6nSzZAw5Tw7cgR9bi15UV96gLZhjDstkXXxvCLsUXBGXPdSnLFbdpq8p9HmGsApME5hQTZ3emM2rnY5agb9rXpVGyy3bdW6EEgAtqt"
assert xprv == "xprvA2nrNbFZABcdryreWet9Ea4LvTJcGsqrMzxHx98MMrotbir7yrKCEXw7nadnHM8Dq38EGfSh6dqA9QWTyefMLEcBYJUuekgW4BYPJcr9E7j"
def do_test_bip32(self, seed, sequence):
xprv, xpub = bip32_root(seed)
assert sequence[0:2] == "m/"
path = 'm'
sequence = sequence[2:]
for n in sequence.split('/'):
child_path = path + '/' + n
if n[-1] != "'":
xpub2 = bip32_public_derivation(xpub, path, child_path)
xprv, xpub = bip32_private_derivation(xprv, path, child_path)
if n[-1] != "'":
assert xpub == xpub2
path = child_path
return xpub, xprv
def test_aes(self):
s = u'\u66f4\u7a33\u5b9a\u7684\u4ea4\u6613\u5e73\u53f0'
self.do_test_aes(s, s)
def do_test_aes(self, s, p):
enc = pw_encode(s, p)
dec = pw_decode(enc, p)
assert dec == s
if __name__ == "__main__":
unittest.main()

0
lib/tests/__init__.py Normal file
View File

115
lib/tests/test_bitcoin.py Normal file
View File

@ -0,0 +1,115 @@
import unittest
import sys
from ecdsa.util import number_to_string
from lib.bitcoin import (
generator_secp256k1, point_to_ser, public_key_to_bc_address, EC_KEY,
bip32_root, bip32_public_derivation, bip32_private_derivation, pw_encode,
pw_decode, Hash, public_key_from_private_key, address_from_private_key,
is_valid, is_private_key)
try:
import ecdsa
except ImportError:
sys.exit("Error: python-ecdsa does not seem to be installed. Try 'sudo pip install ecdsa'")
class Test_bitcoin(unittest.TestCase):
def test_crypto(self):
for message in ["Chancellor on brink of second bailout for banks", chr(255)*512]:
self._do_test_crypto(message)
def _do_test_crypto(self, message):
G = generator_secp256k1
_r = G.order()
pvk = ecdsa.util.randrange( pow(2,256) ) %_r
Pub = pvk*G
pubkey_c = point_to_ser(Pub,True)
#pubkey_u = point_to_ser(Pub,False)
addr_c = public_key_to_bc_address(pubkey_c)
#addr_u = public_key_to_bc_address(pubkey_u)
#print "Private key ", '%064x'%pvk
eck = EC_KEY(number_to_string(pvk,_r))
#print "Compressed public key ", pubkey_c.encode('hex')
enc = EC_KEY.encrypt_message(message, pubkey_c)
dec = eck.decrypt_message(enc)
assert dec == message
#print "Uncompressed public key", pubkey_u.encode('hex')
#enc2 = EC_KEY.encrypt_message(message, pubkey_u)
dec2 = eck.decrypt_message(enc)
assert dec2 == message
signature = eck.sign_message(message, True, addr_c)
#print signature
EC_KEY.verify_message(addr_c, signature, message)
def test_bip32(self):
# see https://en.bitcoin.it/wiki/BIP_0032_TestVectors
xpub, xprv = self._do_test_bip32("000102030405060708090a0b0c0d0e0f", "m/0'/1/2'/2/1000000000")
assert xpub == "xpub6H1LXWLaKsWFhvm6RVpEL9P4KfRZSW7abD2ttkWP3SSQvnyA8FSVqNTEcYFgJS2UaFcxupHiYkro49S8yGasTvXEYBVPamhGW6cFJodrTHy"
assert xprv == "xprvA41z7zogVVwxVSgdKUHDy1SKmdb533PjDz7J6N6mV6uS3ze1ai8FHa8kmHScGpWmj4WggLyQjgPie1rFSruoUihUZREPSL39UNdE3BBDu76"
xpub, xprv = self._do_test_bip32("fffcf9f6f3f0edeae7e4e1dedbd8d5d2cfccc9c6c3c0bdbab7b4b1aeaba8a5a29f9c999693908d8a8784817e7b7875726f6c696663605d5a5754514e4b484542","m/0/2147483647'/1/2147483646'/2")
assert xpub == "xpub6FnCn6nSzZAw5Tw7cgR9bi15UV96gLZhjDstkXXxvCLsUXBGXPdSnLFbdpq8p9HmGsApME5hQTZ3emM2rnY5agb9rXpVGyy3bdW6EEgAtqt"
assert xprv == "xprvA2nrNbFZABcdryreWet9Ea4LvTJcGsqrMzxHx98MMrotbir7yrKCEXw7nadnHM8Dq38EGfSh6dqA9QWTyefMLEcBYJUuekgW4BYPJcr9E7j"
def _do_test_bip32(self, seed, sequence):
xprv, xpub = bip32_root(seed)
assert sequence[0:2] == "m/"
path = 'm'
sequence = sequence[2:]
for n in sequence.split('/'):
child_path = path + '/' + n
if n[-1] != "'":
xpub2 = bip32_public_derivation(xpub, path, child_path)
xprv, xpub = bip32_private_derivation(xprv, path, child_path)
if n[-1] != "'":
assert xpub == xpub2
path = child_path
return xpub, xprv
def test_aes_homomorphic(self):
"""Make sure AES is homomorphic."""
payload = u'\u66f4\u7a33\u5b9a\u7684\u4ea4\u6613\u5e73\u53f0'
password = u'secret'
enc = pw_encode(payload, password)
dec = pw_decode(enc, password)
self.assertEqual(dec, payload)
def test_hash(self):
"""Make sure the Hash function does sha256 twice"""
payload = u"test"
expected = '\x95MZI\xfdp\xd9\xb8\xbc\xdb5\xd2R&x)\x95\x7f~\xf7\xfalt\xf8\x84\x19\xbd\xc5\xe8"\t\xf4'
result = Hash(payload)
self.assertEqual(expected, result)
class Test_keyImport(unittest.TestCase):
""" The keys used in this class are TEST keys from
https://en.bitcoin.it/wiki/BIP_0032_TestVectors"""
private_key = "L52XzL2cMkHxqxBXRyEpnPQZGUs3uKiL3R11XbAdHigRzDozKZeW"
public_key_hex = "0339a36013301597daef41fbe593a02cc513d0b55527ec2df1050e2e8ff49c85c2"
main_address = "15mKKb2eos1hWa6tisdPwwDC1a5J1y9nma"
def test_public_key_from_private_key(self):
result = public_key_from_private_key(self.private_key)
self.assertEqual(self.public_key_hex, result)
def test_address_from_private_key(self):
result = address_from_private_key(self.private_key)
self.assertEqual(self.main_address, result)
def test_is_valid_address(self):
self.assertTrue(is_valid(self.main_address))
self.assertFalse(is_valid("not an address"))
def test_is_private_key(self):
self.assertTrue(is_private_key(self.private_key))
self.assertFalse(is_private_key(self.public_key_hex))