electrum-bitcoinprivate/lib/transaction.py

1064 lines
38 KiB
Python

#!/usr/bin/env python
#
# Electrum - lightweight bitcoinprivate client
# Copyright (C) 2011 Thomas Voegtlin
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Note: The deserialization code originally comes from ABE.
from .util import print_error, profiler
from . import bitcoin
from .bitcoin import *
import struct
import traceback
import sys
#
# Workalike python implementation of bitcoinprivate's CDataStream class.
#
from .keystore import xpubkey_to_address, xpubkey_to_pubkey
from pyblake2 import blake2b
NO_SIGNATURE = 'ff'
OVERWINTERED_VERSION_GROUP_ID = 0x03C48270
OVERWINTER_BRANCH_ID = 0x5BA81B19
SAPLING_VERSION_GROUP_ID = 0x892F2085
SAPLING_BRANCH_ID = 0x76B809BB
BUBBLES_BRANCH_ID = 0x821A451C
DIFFADJ_BRANCH_ID = 0x930B540D
class TransactionVersionError(Exception):
""" Thrown when there's a problem with transaction versioning """
class SerializationError(Exception):
""" Thrown when there's a problem deserializing or serializing """
class UnknownTxinType(Exception):
pass
class NotRecognizedRedeemScript(Exception):
pass
class BCDataStream(object):
def __init__(self):
self.input = None
self.read_cursor = 0
def clear(self):
self.input = None
self.read_cursor = 0
def write(self, _bytes): # Initialize with string of _bytes
if self.input is None:
self.input = bytearray(_bytes)
else:
self.input += bytearray(_bytes)
def read_string(self, encoding='ascii'):
# Strings are encoded depending on length:
# 0 to 252 : 1-byte-length followed by bytes (if any)
# 253 to 65,535 : byte'253' 2-byte-length followed by bytes
# 65,536 to 4,294,967,295 : byte '254' 4-byte-length followed by bytes
# ... and the bitcoinprivate client is coded to understand:
# greater than 4,294,967,295 : byte '255' 8-byte-length followed by bytes of string
# ... but I don't think it actually handles any strings that big.
if self.input is None:
raise SerializationError("call write(bytes) before trying to deserialize")
length = self.read_compact_size()
return self.read_bytes(length).decode(encoding)
def write_string(self, string, encoding='ascii'):
string = to_bytes(string, encoding)
# Length-encoded as with read-string
self.write_compact_size(len(string))
self.write(string)
def read_bytes(self, length):
try:
result = self.input[self.read_cursor:self.read_cursor+length]
self.read_cursor += length
return result
except IndexError:
raise SerializationError("attempt to read past end of buffer")
return ''
def read_boolean(self): return self.read_bytes(1)[0] != chr(0)
def read_int16(self): return self._read_num('<h')
def read_uint16(self): return self._read_num('<H')
def read_int32(self): return self._read_num('<i')
def read_uint32(self): return self._read_num('<I')
def read_int64(self): return self._read_num('<q')
def read_uint64(self): return self._read_num('<Q')
def write_boolean(self, val): return self.write(chr(1) if val else chr(0))
def write_int16(self, val): return self._write_num('<h', val)
def write_uint16(self, val): return self._write_num('<H', val)
def write_int32(self, val): return self._write_num('<i', val)
def write_uint32(self, val): return self._write_num('<I', val)
def write_int64(self, val): return self._write_num('<q', val)
def write_uint64(self, val): return self._write_num('<Q', val)
def read_compact_size(self):
try:
size = self.input[self.read_cursor]
self.read_cursor += 1
if size == 253:
size = self._read_num('<H')
elif size == 254:
size = self._read_num('<I')
elif size == 255:
size = self._read_num('<Q')
return size
except IndexError:
raise SerializationError("attempt to read past end of buffer")
def write_compact_size(self, size):
if size < 0:
raise SerializationError("attempt to write size < 0")
elif size < 253:
self.write(bytes([size]))
elif size < 2**16:
self.write(b'\xfd')
self._write_num('<H', size)
elif size < 2**32:
self.write(b'\xfe')
self._write_num('<I', size)
elif size < 2**64:
self.write(b'\xff')
self._write_num('<Q', size)
def _read_num(self, format):
try:
(i,) = struct.unpack_from(format, self.input, self.read_cursor)
self.read_cursor += struct.calcsize(format)
except Exception as e:
raise SerializationError(e)
return i
def _write_num(self, format, num):
s = struct.pack(format, num)
self.write(s)
# enum-like type
# From the Python Cookbook, downloaded from http://code.activestate.com/recipes/67107/
class EnumException(Exception):
pass
class Enumeration:
def __init__(self, name, enumList):
self.__doc__ = name
lookup = { }
reverseLookup = { }
i = 0
uniqueNames = [ ]
uniqueValues = [ ]
for x in enumList:
if isinstance(x, tuple):
x, i = x
if not isinstance(x, str):
raise EnumException("enum name is not a string: " + x)
if not isinstance(i, int):
raise EnumException("enum value is not an integer: " + i)
if x in uniqueNames:
raise EnumException("enum name is not unique: " + x)
if i in uniqueValues:
raise EnumException("enum value is not unique for " + x)
uniqueNames.append(x)
uniqueValues.append(i)
lookup[x] = i
reverseLookup[i] = x
i = i + 1
self.lookup = lookup
self.reverseLookup = reverseLookup
def __getattr__(self, attr):
if attr not in self.lookup:
raise AttributeError
return self.lookup[attr]
def whatis(self, value):
return self.reverseLookup[value]
# This function comes from bitcointools, bct-LICENSE.txt.
def long_hex(bytes):
return bytes.encode('hex_codec')
# This function comes from bitcointools, bct-LICENSE.txt.
def short_hex(bytes):
t = bytes.encode('hex_codec')
if len(t) < 11:
return t
return t[0:4]+"..."+t[-4:]
opcodes = Enumeration("Opcodes", [
("OP_0", 0), ("OP_PUSHDATA1",76), "OP_PUSHDATA2", "OP_PUSHDATA4", "OP_1NEGATE", "OP_RESERVED",
"OP_1", "OP_2", "OP_3", "OP_4", "OP_5", "OP_6", "OP_7",
"OP_8", "OP_9", "OP_10", "OP_11", "OP_12", "OP_13", "OP_14", "OP_15", "OP_16",
"OP_NOP", "OP_VER", "OP_IF", "OP_NOTIF", "OP_VERIF", "OP_VERNOTIF", "OP_ELSE", "OP_ENDIF", "OP_VERIFY",
"OP_RETURN", "OP_TOALTSTACK", "OP_FROMALTSTACK", "OP_2DROP", "OP_2DUP", "OP_3DUP", "OP_2OVER", "OP_2ROT", "OP_2SWAP",
"OP_IFDUP", "OP_DEPTH", "OP_DROP", "OP_DUP", "OP_NIP", "OP_OVER", "OP_PICK", "OP_ROLL", "OP_ROT",
"OP_SWAP", "OP_TUCK", "OP_CAT", "OP_SUBSTR", "OP_LEFT", "OP_RIGHT", "OP_SIZE", "OP_INVERT", "OP_AND",
"OP_OR", "OP_XOR", "OP_EQUAL", "OP_EQUALVERIFY", "OP_RESERVED1", "OP_RESERVED2", "OP_1ADD", "OP_1SUB", "OP_2MUL",
"OP_2DIV", "OP_NEGATE", "OP_ABS", "OP_NOT", "OP_0NOTEQUAL", "OP_ADD", "OP_SUB", "OP_MUL", "OP_DIV",
"OP_MOD", "OP_LSHIFT", "OP_RSHIFT", "OP_BOOLAND", "OP_BOOLOR",
"OP_NUMEQUAL", "OP_NUMEQUALVERIFY", "OP_NUMNOTEQUAL", "OP_LESSTHAN",
"OP_GREATERTHAN", "OP_LESSTHANOREQUAL", "OP_GREATERTHANOREQUAL", "OP_MIN", "OP_MAX",
"OP_WITHIN", "OP_RIPEMD160", "OP_SHA1", "OP_SHA256", "OP_HASH160",
"OP_HASH256", "OP_CODESEPARATOR", "OP_CHECKSIG", "OP_CHECKSIGVERIFY", "OP_CHECKMULTISIG",
"OP_CHECKMULTISIGVERIFY",
("OP_NOP1", 0xB0),
("OP_CHECKLOCKTIMEVERIFY", 0xB1), ("OP_CHECKSEQUENCEVERIFY", 0xB2),
"OP_NOP4", "OP_NOP5", "OP_NOP6", "OP_NOP7", "OP_NOP8", "OP_NOP9", "OP_NOP10",
("OP_INVALIDOPCODE", 0xFF),
])
def script_GetOp(_bytes):
i = 0
while i < len(_bytes):
vch = None
opcode = _bytes[i]
i += 1
if opcode <= opcodes.OP_PUSHDATA4:
nSize = opcode
if opcode == opcodes.OP_PUSHDATA1:
nSize = _bytes[i]
i += 1
elif opcode == opcodes.OP_PUSHDATA2:
(nSize,) = struct.unpack_from('<H', _bytes, i)
i += 2
elif opcode == opcodes.OP_PUSHDATA4:
(nSize,) = struct.unpack_from('<I', _bytes, i)
i += 4
vch = _bytes[i:i + nSize]
i += nSize
yield opcode, vch, i
def script_GetOpName(opcode):
return (opcodes.whatis(opcode)).replace("OP_", "")
def decode_script(bytes):
result = ''
for (opcode, vch, i) in script_GetOp(bytes):
if len(result) > 0: result += " "
if opcode <= opcodes.OP_PUSHDATA4:
result += "%d:"%(opcode,)
result += short_hex(vch)
else:
result += script_GetOpName(opcode)
return result
def match_decoded(decoded, to_match):
if len(decoded) != len(to_match):
return False;
for i in range(len(decoded)):
if to_match[i] == opcodes.OP_PUSHDATA4 and decoded[i][0] <= opcodes.OP_PUSHDATA4 and decoded[i][0]>0:
continue # Opcodes below OP_PUSHDATA4 all just push data onto stack, and are equivalent.
if to_match[i] != decoded[i][0]:
return False
return True
def parse_sig(x_sig):
return [None if x == NO_SIGNATURE else x for x in x_sig]
def safe_parse_pubkey(x):
try:
return xpubkey_to_pubkey(x)
except:
return x
def parse_scriptSig(d, _bytes):
try:
decoded = [ x for x in script_GetOp(_bytes) ]
except Exception as e:
# coinbase transactions raise an exception
print_error("parse_scriptSig: cannot find address in input script (coinbase?)",
bh2u(_bytes))
return
match = [ opcodes.OP_PUSHDATA4 ]
if match_decoded(decoded, match):
item = decoded[0][1]
if item[0] != 0:
# assert item[0] == 0x30
# pay-to-pubkey
d['type'] = 'p2pk'
d['address'] = "(pubkey)"
d['signatures'] = [bh2u(item)]
d['num_sig'] = 1
d['x_pubkeys'] = ["(pubkey)"]
d['pubkeys'] = ["(pubkey)"]
return
# p2pkh TxIn transactions push a signature
# (71-73 bytes) and then their public key
# (33 or 65 bytes) onto the stack:
match = [ opcodes.OP_PUSHDATA4, opcodes.OP_PUSHDATA4 ]
if match_decoded(decoded, match):
sig = bh2u(decoded[0][1])
x_pubkey = bh2u(decoded[1][1])
try:
signatures = parse_sig([sig])
pubkey, address = xpubkey_to_address(x_pubkey)
except:
print_error("parse_scriptSig: cannot find address in input script (p2pkh?)",
bh2u(_bytes))
return
d['type'] = 'p2pkh'
d['signatures'] = signatures
d['x_pubkeys'] = [x_pubkey]
d['num_sig'] = 1
d['pubkeys'] = [pubkey]
d['address'] = address
return
# p2sh transaction, m of n
match = [ opcodes.OP_0 ] + [ opcodes.OP_PUSHDATA4 ] * (len(decoded) - 1)
if match_decoded(decoded, match):
x_sig = [bh2u(x[1]) for x in decoded[1:-1]]
try:
m, n, x_pubkeys, pubkeys, redeemScript = parse_redeemScript(decoded[-1][1])
except NotRecognizedRedeemScript:
print_error("parse_scriptSig: cannot find address in input script (p2sh?)",
bh2u(_bytes))
# we could still guess:
# d['address'] = hash160_to_p2sh(hash_160(decoded[-1][1]))
return
# write result in d
d['type'] = 'p2sh'
d['num_sig'] = m
d['signatures'] = parse_sig(x_sig)
d['x_pubkeys'] = x_pubkeys
d['pubkeys'] = pubkeys
d['redeemScript'] = redeemScript
d['address'] = hash160_to_p2sh(hash_160(bfh(redeemScript)))
return
print_error("parse_scriptSig: cannot find address in input script (unknown)",
bh2u(_bytes))
def parse_redeemScript(s):
dec2 = [ x for x in script_GetOp(s) ]
try:
m = dec2[0][0] - opcodes.OP_1 + 1
n = dec2[-2][0] - opcodes.OP_1 + 1
except IndexError:
raise NotRecognizedRedeemScript()
op_m = opcodes.OP_1 + m - 1
op_n = opcodes.OP_1 + n - 1
match_multisig = [ op_m ] + [opcodes.OP_PUSHDATA4]*n + [ op_n, opcodes.OP_CHECKMULTISIG ]
if not match_decoded(dec2, match_multisig):
raise NotRecognizedRedeemScript()
x_pubkeys = [bh2u(x[1]) for x in dec2[1:-2]]
pubkeys = [safe_parse_pubkey(x) for x in x_pubkeys]
redeemScript = multisig_script(pubkeys, m)
return m, n, x_pubkeys, pubkeys, redeemScript
def get_address_from_output_script(_bytes, *, net=None):
decoded = [x for x in script_GetOp(_bytes)]
# The Genesis Block, self-payments, and pay-by-IP-address payments look like:
# 65 BYTES:... CHECKSIG
match = [ opcodes.OP_PUSHDATA4, opcodes.OP_CHECKSIG ]
if match_decoded(decoded, match):
return TYPE_PUBKEY, bh2u(decoded[0][1])
# Pay-by-bitcoinprivate-address TxOuts look like:
# DUP HASH160 20 BYTES:... EQUALVERIFY CHECKSIG
match = [ opcodes.OP_DUP, opcodes.OP_HASH160, opcodes.OP_PUSHDATA4, opcodes.OP_EQUALVERIFY, opcodes.OP_CHECKSIG ]
if match_decoded(decoded, match):
return TYPE_ADDRESS, hash160_to_p2pkh(decoded[2][1], net=net)
# p2sh
match = [ opcodes.OP_HASH160, opcodes.OP_PUSHDATA4, opcodes.OP_EQUAL ]
if match_decoded(decoded, match):
return TYPE_ADDRESS, hash160_to_p2sh(decoded[1][1], net=net)
return TYPE_SCRIPT, bh2u(_bytes)
def parse_input(vds):
d = {}
prevout_hash = hash_encode(vds.read_bytes(32))
prevout_n = vds.read_uint32()
scriptSig = vds.read_bytes(vds.read_compact_size())
sequence = vds.read_uint32()
d['prevout_hash'] = prevout_hash
d['prevout_n'] = prevout_n
d['sequence'] = sequence
d['x_pubkeys'] = []
d['pubkeys'] = []
d['signatures'] = {}
d['address'] = None
d['num_sig'] = 0
if prevout_hash == '00'*32:
d['type'] = 'coinbase'
d['scriptSig'] = bh2u(scriptSig)
else:
d['type'] = 'unknown'
if scriptSig:
d['scriptSig'] = bh2u(scriptSig)
try:
parse_scriptSig(d, scriptSig)
except BaseException:
traceback.print_exc(file=sys.stderr)
print_error('failed to parse scriptSig', bh2u(scriptSig))
else:
d['scriptSig'] = ''
return d
def parse_output(vds, i):
d = {}
d['value'] = vds.read_int64()
scriptPubKey = vds.read_bytes(vds.read_compact_size())
d['type'], d['address'] = get_address_from_output_script(scriptPubKey)
d['scriptPubKey'] = bh2u(scriptPubKey)
d['prevout_n'] = i
return d
def parse_join_split(vds):
d = {}
d['vpub_old'] = vds.read_uint64()
d['vpub_new'] = vds.read_uint64()
d['anchor'] = vds.read_bytes(32)
d['nullifiers'] = vds.read_bytes(64)
d['commitments'] = vds.read_bytes(64)
d['ephemeralKey'] = vds.read_bytes(32)
d['randomSeed'] = vds.read_bytes(32)
d['vmacs'] = vds.read_bytes(64)
d['zkproof'] = vds.read_bytes(296)
d['encCiphertexts'] = vds.read_bytes(1202)
return d
def deserialize(raw):
len_raw = len(raw) / 2
vds = BCDataStream()
vds.write(bfh(raw))
d = {}
start = vds.read_cursor
header = vds.read_uint32()
overwintered = True if header & 0x80000000 else False
version = header & 0x7FFFFFFF
if overwintered:
if version not in [3, 4]:
raise TransactionVersionError('Overwintered transaction'
' with invalid version=%d' % version)
ver_group_id = vds.read_uint32()
if (version == 3 and ver_group_id != OVERWINTERED_VERSION_GROUP_ID or
version == 4 and ver_group_id != SAPLING_VERSION_GROUP_ID):
raise TransactionVersionError('Overwintered transaction with wrong'
' versionGroupId=%X' % ver_group_id)
d['versionGroupId'] = ver_group_id
d['overwintered'] = overwintered
d['version'] = version
n_vin = vds.read_compact_size()
d['inputs'] = [parse_input(vds) for i in range(n_vin)]
n_vout = vds.read_compact_size()
d['outputs'] = [parse_output(vds, i) for i in range(n_vout)]
d['lockTime'] = vds.read_uint32()
if overwintered:
d['expiryHeight'] = vds.read_uint32()
if version == 4:
d['valueBalance'] = vds.read_int64()
n_sh_sp = vds.read_compact_size()
if n_sh_sp > 0:
d['shieldedSpends'] = vds.read_bytes(n_sh_sp*384)
n_sh_out = vds.read_compact_size()
if n_sh_out > 0:
d['shieldedOutputs'] = vds.read_bytes(n_sh_out*948)
n_js = vds.read_compact_size()
if n_js > 0:
if version == 3:
d['joinSplits'] = [parse_join_split(vds) for i in range(n_js)]
else:
d['joinSplits'] = vds.read_bytes(n_js*1698)
d['joinSplitPubKey'] = vds.read_bytes(32)
d['joinSplitSig'] = vds.read_bytes(64)
if version == 4:
d['bindingSig'] = vds.read_bytes(64)
return d
# pay & redeem scripts
def multisig_script(public_keys, m):
n = len(public_keys)
assert n <= 15
assert m <= n
op_m = format(opcodes.OP_1 + m - 1, 'x')
op_n = format(opcodes.OP_1 + n - 1, 'x')
keylist = [op_push(len(k)//2) + k for k in public_keys]
return op_m + ''.join(keylist) + op_n + 'ae'
class Transaction:
def __str__(self):
if self.raw is None:
self.raw = self.serialize()
return self.raw
def __init__(self, raw):
if raw is None:
self.raw = None
elif isinstance(raw, str):
self.raw = raw.strip() if raw else None
elif isinstance(raw, dict):
self.raw = raw['hex']
else:
raise Exception("cannot initialize transaction", raw)
self._inputs = None
self._outputs = None
self.locktime = 0
self.version = 4
self.overwintered = True
self.versionGroupId = SAPLING_VERSION_GROUP_ID
self.expiryHeight = 0
self.valueBalance = 0
self.shieldedSpends = None
self.shieldedOutputs = None
self.joinSplits = None
self.joinSplitPubKey = None
self.joinSplitSig = None
self.bindingSig = None
def update(self, raw):
self.raw = raw
self._inputs = None
self.deserialize()
def inputs(self):
if self._inputs is None:
self.deserialize()
return self._inputs
def outputs(self):
if self._outputs is None:
self.deserialize()
return self._outputs
@classmethod
def get_sorted_pubkeys(self, txin):
# sort pubkeys and x_pubkeys, using the order of pubkeys
if txin['type'] == 'coinbase':
return [], []
x_pubkeys = txin['x_pubkeys']
pubkeys = txin.get('pubkeys')
if pubkeys is None:
pubkeys = [xpubkey_to_pubkey(x) for x in x_pubkeys]
pubkeys, x_pubkeys = zip(*sorted(zip(pubkeys, x_pubkeys)))
txin['pubkeys'] = pubkeys = list(pubkeys)
txin['x_pubkeys'] = x_pubkeys = list(x_pubkeys)
return pubkeys, x_pubkeys
def update_signatures(self, raw):
"""Add new signatures to a transaction"""
d = deserialize(raw)
for i, txin in enumerate(self.inputs()):
pubkeys, x_pubkeys = self.get_sorted_pubkeys(txin)
sigs1 = txin.get('signatures')
sigs2 = d['inputs'][i].get('signatures')
for sig in sigs2:
if sig in sigs1:
continue
pre_hash = Hash(bfh(self.serialize_preimage(i)))
# der to string
order = ecdsa.ecdsa.generator_secp256k1.order()
r, s = ecdsa.util.sigdecode_der(bfh(sig[:-2]), order)
sig_string = ecdsa.util.sigencode_string(r, s, order)
compressed = True
for recid in range(4):
public_key = MyVerifyingKey.from_signature(sig_string, recid, pre_hash, curve = SECP256k1)
pubkey = bh2u(point_to_ser(public_key.pubkey.point, compressed))
if pubkey in pubkeys:
public_key.verify_digest(sig_string, pre_hash, sigdecode = ecdsa.util.sigdecode_string)
j = pubkeys.index(pubkey)
print_error("adding sig", i, j, pubkey, sig)
self._inputs[i]['signatures'][j] = sig
#self._inputs[i]['x_pubkeys'][j] = pubkey
break
# redo raw
self.raw = self.serialize()
def deserialize(self):
if self.raw is None:
return
#self.raw = self.serialize()
if self._inputs is not None:
return
d = deserialize(self.raw)
self._inputs = d['inputs']
self._outputs = [(x['type'], x['address'], x['value']) for x in d['outputs']]
self.locktime = d['lockTime']
self.version = d['version']
self.overwintered = d['overwintered']
self.versionGroupId = d.get('versionGroupId')
self.expiryHeight = d.get('expiryHeight', 0)
self.valueBalance = d.get('valueBalance', 0)
self.shieldedSpends = d.get('shieldedSpends')
self.shieldedOutputs = d.get('shieldedOutputs')
self.joinSplits = d.get('joinSplits')
self.joinSplitPubKey = d.get('joinSplitPubKey')
self.joinSplitSig = d.get('joinSplitSig')
self.bindingSig = d.get('bindingSig')
return d
@classmethod
def from_io(klass, inputs, outputs, locktime=0):
self = klass(None)
self._inputs = inputs
self._outputs = outputs
self.locktime = locktime
return self
@classmethod
def pay_script(self, output_type, addr):
if output_type == TYPE_SCRIPT:
return addr
elif output_type == TYPE_ADDRESS:
return bitcoin.address_to_script(addr)
elif output_type == TYPE_PUBKEY:
return bitcoin.public_key_to_p2pk_script(addr)
else:
raise TypeError('Unknown output type')
@classmethod
def estimate_pubkey_size_from_x_pubkey(cls, x_pubkey):
try:
if x_pubkey[0:2] in ['02', '03']: # compressed pubkey
return 0x21
elif x_pubkey[0:2] == '04': # uncompressed pubkey
return 0x41
elif x_pubkey[0:2] == 'ff': # bip32 extended pubkey
return 0x21
elif x_pubkey[0:2] == 'fe': # old electrum extended pubkey
return 0x41
except Exception as e:
pass
return 0x21 # just guess it is compressed
@classmethod
def estimate_pubkey_size_for_txin(cls, txin):
pubkeys = txin.get('pubkeys', [])
x_pubkeys = txin.get('x_pubkeys', [])
if pubkeys and len(pubkeys) > 0:
return cls.estimate_pubkey_size_from_x_pubkey(pubkeys[0])
elif x_pubkeys and len(x_pubkeys) > 0:
return cls.estimate_pubkey_size_from_x_pubkey(x_pubkeys[0])
else:
return 0x21 # just guess it is compressed
@classmethod
def get_siglist(self, txin, estimate_size=False):
# if we have enough signatures, we use the actual pubkeys
# otherwise, use extended pubkeys (with bip32 derivation)
if txin['type'] == 'coinbase':
return [], []
num_sig = txin.get('num_sig', 1)
if estimate_size:
pubkey_size = self.estimate_pubkey_size_for_txin(txin)
pk_list = ["00" * pubkey_size] * len(txin.get('x_pubkeys', [None]))
# we assume that signature will be 0x48 bytes long
sig_list = [ "00" * 0x48 ] * num_sig
else:
pubkeys, x_pubkeys = self.get_sorted_pubkeys(txin)
x_signatures = txin['signatures']
signatures = list(filter(None, x_signatures))
is_complete = len(signatures) == num_sig
if is_complete:
pk_list = pubkeys
sig_list = signatures
else:
pk_list = x_pubkeys
sig_list = [sig if sig else NO_SIGNATURE for sig in x_signatures]
return pk_list, sig_list
@classmethod
def input_script(self, txin, estimate_size=False):
_type = txin['type']
if _type == 'coinbase':
return txin['scriptSig']
pubkeys, sig_list = self.get_siglist(txin, estimate_size)
script = ''.join(push_script(x) for x in sig_list)
if _type == 'p2pk':
pass
elif _type == 'p2sh':
# put op_0 before script
script = '00' + script
redeem_script = multisig_script(pubkeys, txin['num_sig'])
script += push_script(redeem_script)
elif _type == 'p2pkh':
script += push_script(pubkeys[0])
elif _type == 'address':
script += push_script(pubkeys[0])
elif _type == 'unknown':
return txin['scriptSig']
return script
@classmethod
def is_txin_complete(cls, txin):
if txin['type'] == 'coinbase':
return True
num_sig = txin.get('num_sig', 1)
x_signatures = txin['signatures']
signatures = list(filter(None, x_signatures))
return len(signatures) == num_sig
@classmethod
def get_preimage_script(self, txin):
pubkeys, x_pubkeys = self.get_sorted_pubkeys(txin)
if txin['type'] == 'p2pkh':
return bitcoin.address_to_script(txin['address'])
elif txin['type'] in ['p2sh']:
return multisig_script(pubkeys, txin['num_sig'])
elif txin['type'] == 'p2pk':
pubkey = pubkeys[0]
return bitcoin.public_key_to_p2pk_script(pubkey)
else:
raise TypeError('Unknown txin type', txin['type'])
@classmethod
def serialize_outpoint(self, txin):
return bh2u(bfh(txin['prevout_hash'])[::-1]) + int_to_hex(txin['prevout_n'], 4)
@classmethod
def get_outpoint_from_txin(cls, txin):
if txin['type'] == 'coinbase':
return None
prevout_hash = txin['prevout_hash']
prevout_n = txin['prevout_n']
return prevout_hash + ':%d' % prevout_n
@classmethod
def serialize_input(self, txin, script):
# Prev hash and index
s = self.serialize_outpoint(txin)
# Script length, script, sequence
s += var_int(len(script)//2)
s += script
s += int_to_hex(txin.get('sequence', 0xffffffff - 1), 4)
return s
def BIP_LI01_sort(self):
# See https://github.com/kristovatlas/rfc/blob/master/bips/bip-li01.mediawiki
self._inputs.sort(key = lambda i: (i['prevout_hash'], i['prevout_n']))
self._outputs.sort(key = lambda o: (o[2], self.pay_script(o[0], o[1])))
def serialize_output(self, output):
output_type, addr, amount = output
s = int_to_hex(amount, 8)
script = self.pay_script(output_type, addr)
s += var_int(len(script)//2)
s += script
return s
def serialize_join_split(self, js):
s = int_to_hex(js['vpub_old'], 8)
s += int_to_hex(js['vpub_new'], 8)
s += js['anchor']
s += js['nullifiers']
s += js['commitments']
s += js['ephemeralKey']
s += js['randomSeed']
s += js['vmacs']
s += js['zkproof']
s += js['encCiphertexts']
return s
def serialize_preimage(self, i):
overwintered = self.overwintered
version = self.version
nHashType = int_to_hex(1, 4)
nLocktime = int_to_hex(self.locktime, 4)
inputs = self.inputs()
outputs = self.outputs()
txin = inputs[i]
# TODO: py3 hex
if overwintered:
nHeader = int_to_hex(0x80000000 | version, 4)
nVersionGroupId = int_to_hex(self.versionGroupId, 4)
s_prevouts = bfh(''.join(self.serialize_outpoint(txin) for txin in inputs))
hashPrevouts = blake2b(s_prevouts, digest_size=32, person=b'ZcashPrevoutHash').hexdigest()
s_sequences = bfh(''.join(int_to_hex(txin.get('sequence', 0xffffffff - 1), 4) for txin in inputs))
hashSequence = blake2b(s_sequences, digest_size=32, person=b'ZcashSequencHash').hexdigest()
s_outputs = bfh(''.join(self.serialize_output(o) for o in outputs))
hashOutputs = blake2b(s_outputs, digest_size=32, person=b'ZcashOutputsHash').hexdigest()
joinSplits = self.joinSplits
#if joinSplits is None:
# hashJoinSplits = '00'*32
#else:
# s_joinSplits = bfh(''.join(self.serialize_join_split(j) for j in joinSplits))
# s_joinSplits += self.joinSplitPubKey
# hashJoinSplits = blake2b(s_joinSplits, digest_size=32, person=b'bitcoinprivateJSplitsHash').hexdigest()
hashJoinSplits = '00'*32
hashShieldedSpends = '00'*32
hashShieldedOutputs = '00'*32
nExpiryHeight = int_to_hex(self.expiryHeight, 4)
nValueBalance = int_to_hex(self.valueBalance, 8)
txin = inputs[i]
preimage_script = self.get_preimage_script(txin)
scriptCode = var_int(len(preimage_script) // 2) + preimage_script
preimage = (
nHeader + nVersionGroupId + hashPrevouts + hashSequence + hashOutputs
+ hashJoinSplits + hashShieldedSpends + hashShieldedOutputs + nLocktime
+ nExpiryHeight + nValueBalance + nHashType
+ self.serialize_outpoint(txin)
+ scriptCode
+ int_to_hex(txin['value'], 8)
+ int_to_hex(txin.get('sequence', 0xffffffff - 1), 4)
)
else:
nVersion = int_to_hex(version, 4)
txins = var_int(len(inputs)) + ''.join(self.serialize_input(txin, self.get_preimage_script(txin) if i==k else '') for k, txin in enumerate(inputs))
txouts = var_int(len(outputs)) + ''.join(self.serialize_output(o) for o in outputs)
preimage = nVersion + txins + txouts + nLocktime + nHashType
return preimage
def serialize(self, estimate_size=False):
nVersion = int_to_hex(self.version, 4)
nLocktime = int_to_hex(self.locktime, 4)
inputs = self.inputs()
outputs = self.outputs()
txins = var_int(len(inputs)) + ''.join(self.serialize_input(txin, self.input_script(txin, estimate_size)) for txin in inputs)
txouts = var_int(len(outputs)) + ''.join(self.serialize_output(o) for o in outputs)
if self.overwintered:
nVersion = int_to_hex(0x80000000 | self.version, 4)
nVersionGroupId = int_to_hex(self.versionGroupId, 4)
nExpiryHeight = int_to_hex(self.expiryHeight, 4)
nValueBalance = int_to_hex(self.valueBalance, 8)
return (nVersion + nVersionGroupId + txins + txouts + nLocktime
+ nExpiryHeight + nValueBalance + '00' + '00' + '00')
else:
return nVersion + txins + txouts + nLocktime
def hash(self):
print("warning: deprecated tx.hash()")
return self.txid()
def txid(self):
if not self.is_complete():
return None
ser = self.serialize()
return bh2u(Hash(bfh(ser))[::-1])
def add_inputs(self, inputs):
self._inputs.extend(inputs)
self.raw = None
def add_outputs(self, outputs):
self._outputs.extend(outputs)
self.raw = None
def input_value(self):
return sum(x['value'] for x in self.inputs())
def output_value(self):
return sum(val for tp, addr, val in self.outputs())
def get_fee(self):
return self.input_value() - self.output_value()
def is_final(self):
return not any([x.get('sequence', 0xffffffff - 1) < 0xffffffff - 1 for x in self.inputs()])
@profiler
def estimated_size(self):
"""Return an estimated virtual tx size in vbytes.
BIP-0141 defines 'Virtual transaction size' to be weight/4 rounded up.
This definition is only for humans, and has little meaning otherwise.
If we wanted sub-byte precision, fee calculation should use transaction
weights, but for simplicity we approximate that with (virtual_size)x4
"""
weight = self.estimated_weight()
return self.virtual_size_from_weight(weight)
@classmethod
def estimated_input_weight(cls, txin):
'''Return an estimate of serialized input weight in weight units.'''
script = cls.input_script(txin, True)
input_size = len(cls.serialize_input(txin, script)) // 2
return 4 * input_size
@classmethod
def estimated_output_size(cls, address):
"""Return an estimate of serialized output size in bytes."""
script = bitcoin.address_to_script(address)
# 8 byte value + 1 byte script len + script
return 9 + len(script) // 2
@classmethod
def virtual_size_from_weight(cls, weight):
return weight // 4 + (weight % 4 > 0)
def estimated_total_size(self):
"""Return an estimated total transaction size in bytes."""
return len(self.serialize(True)) // 2 if not self.is_complete() or self.raw is None else len(self.raw) // 2 # ASCII hex string
def estimated_base_size(self):
"""Return an estimated base transaction size in bytes."""
return self.estimated_total_size()
def estimated_weight(self):
"""Return an estimate of transaction weight."""
total_tx_size = self.estimated_total_size()
base_tx_size = self.estimated_base_size()
return 3 * base_tx_size + total_tx_size
def signature_count(self):
r = 0
s = 0
for txin in self.inputs():
if txin['type'] == 'coinbase':
continue
signatures = list(filter(None, txin.get('signatures',[])))
s += len(signatures)
r += txin.get('num_sig',-1)
return s, r
def is_complete(self):
s, r = self.signature_count()
return r == s
def sign(self, keypairs):
for i, txin in enumerate(self.inputs()):
num = txin['num_sig']
pubkeys, x_pubkeys = self.get_sorted_pubkeys(txin)
for j, x_pubkey in enumerate(x_pubkeys):
signatures = list(filter(None, txin['signatures']))
if len(signatures) == num:
# txin is complete
break
if x_pubkey in keypairs.keys():
print_error("adding signature for", x_pubkey)
sec, compressed = keypairs.get(x_pubkey)
pubkey = public_key_from_private_key(sec, compressed)
# add signature
if self.overwintered:
data = bfh(self.serialize_preimage(i))
person = b'ZcashSigHash' + DIFFADJ_BRANCH_ID.to_bytes(4, 'little')
pre_hash = blake2b(data, digest_size=32, person=person).digest()
else:
pre_hash = Hash(bfh(self.serialize_preimage(i)))
pkey = regenerate_key(sec)
secexp = pkey.secret
private_key = bitcoin.MySigningKey.from_secret_exponent(secexp, curve = SECP256k1)
public_key = private_key.get_verifying_key()
sig = private_key.sign_digest_deterministic(pre_hash, hashfunc=hashlib.sha256, sigencode = ecdsa.util.sigencode_der_canonize)
if not public_key.verify_digest(sig, pre_hash, sigdecode = ecdsa.util.sigdecode_der):
raise Exception('Sanity check verifying our own signature failed.')
txin['signatures'][j] = bh2u(sig) + '01'
#txin['x_pubkeys'][j] = pubkey
txin['pubkeys'][j] = pubkey # needed for fd keys
self._inputs[i] = txin
print_error("is_complete", self.is_complete())
self.raw = self.serialize()
def get_outputs(self):
"""convert pubkeys to addresses"""
o = []
for type, x, v in self.outputs():
if type == TYPE_ADDRESS:
addr = x
elif type == TYPE_PUBKEY:
addr = bitcoin.public_key_to_p2pkh(bfh(x))
else:
addr = 'SCRIPT ' + x
o.append((addr,v)) # consider using yield (addr, v)
return o
def get_output_addresses(self):
return [addr for addr, val in self.get_outputs()]
def has_address(self, addr):
return (addr in self.get_output_addresses()) or (addr in (tx.get("address") for tx in self.inputs()))
def as_dict(self):
if self.raw is None:
self.raw = self.serialize()
self.deserialize()
out = {
'hex': self.raw,
'complete': self.is_complete(),
'final': self.is_final(),
}
return out
def tx_from_str(txt):
"json or raw hexadecimal"
import json
txt = txt.strip()
if not txt:
raise ValueError("empty string")
try:
bfh(txt)
is_hex = True
except:
is_hex = False
if is_hex:
return txt
tx_dict = json.loads(str(txt))
assert "hex" in tx_dict.keys()
return tx_dict["hex"]