electrum-bitcoinprivate/lib/x509.py

297 lines
9.6 KiB
Python

#!/usr/bin/env python
#
# Electrum - lightweight Bitcoin client
# Copyright (C) 2014 Thomas Voegtlin
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from datetime import datetime
import sys
import tlslite
import util
from util import profiler, print_error
from asn1tinydecoder import asn1_node_root, asn1_get_all, asn1_get_value, \
asn1_get_value_of_type, asn1_node_next, asn1_node_first_child, \
asn1_read_length, asn1_node_is_child_of, \
bytestr_to_int, bitstr_to_bytestr
# workaround https://github.com/trevp/tlslite/issues/15
tlslite.utils.cryptomath.pycryptoLoaded = False
# algo OIDs
ALGO_RSA_SHA1 = '1.2.840.113549.1.1.5'
ALGO_RSA_SHA256 = '1.2.840.113549.1.1.11'
ALGO_RSA_SHA384 = '1.2.840.113549.1.1.12'
ALGO_RSA_SHA512 = '1.2.840.113549.1.1.13'
ALGO_ECDSA_SHA256 = '1.2.840.10045.4.3.2'
# prefixes, see http://stackoverflow.com/questions/3713774/c-sharp-how-to-calculate-asn-1-der-encoding-of-a-particular-hash-algorithm
PREFIX_RSA_SHA256 = bytearray([0x30,0x31,0x30,0x0d,0x06,0x09,0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x01,0x05,0x00,0x04,0x20])
PREFIX_RSA_SHA384 = bytearray([0x30,0x41,0x30,0x0d,0x06,0x09,0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x02,0x05,0x00,0x04,0x30])
PREFIX_RSA_SHA512 = bytearray([0x30,0x51,0x30,0x0d,0x06,0x09,0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x03,0x05,0x00,0x04,0x40])
class CertificateError(Exception):
pass
def decode_OID(s):
s = map(ord, s)
r = []
r.append(s[0] / 40)
r.append(s[0] % 40)
k = 0
for i in s[1:]:
if i < 128:
r.append(i + 128*k)
k = 0
else:
k = (i - 128) + 128*k
return '.'.join(map(str, r))
def encode_OID(oid):
x = map(int, oid.split('.'))
s = chr(x[0]*40 + x[1])
for i in x[2:]:
ss = chr(i % 128)
while i > 128:
i = i / 128
ss = chr(128 + i % 128) + ss
s += ss
return s
def asn1_get_children(der, i):
nodes = []
ii = asn1_node_first_child(der,i)
nodes.append(ii)
while ii[2]<i[2]:
ii = asn1_node_next(der,ii)
nodes.append(ii)
return nodes
def asn1_get_sequence(s):
return map(lambda j: asn1_get_value(s, j), asn1_get_children(s, asn1_node_root(s)))
def asn1_get_dict(der, i):
p = {}
for ii in asn1_get_children(der, i):
for iii in asn1_get_children(der, ii):
iiii = asn1_node_first_child(der, iii)
oid = decode_OID(asn1_get_value_of_type(der, iiii, 'OBJECT IDENTIFIER'))
iiii = asn1_node_next(der, iiii)
value = asn1_get_value(der, iiii)
p[oid] = value
return p
class X509(tlslite.X509):
def parseBinary(self, b):
# call tlslite method first
tlslite.X509.parseBinary(self, b)
der = str(b)
root = asn1_node_root(der)
cert = asn1_node_first_child(der, root)
# data for signature
self.data = asn1_get_all(der, cert)
# optional version field
if asn1_get_value(der, cert)[0] == chr(0xa0):
version = asn1_node_first_child(der, cert)
serial_number = asn1_node_next(der, version)
else:
serial_number = asn1_node_first_child(der, cert)
self.serial_number = bytestr_to_int(asn1_get_value_of_type(der, serial_number, 'INTEGER'))
# signature algorithm
sig_algo = asn1_node_next(der, serial_number)
ii = asn1_node_first_child(der, sig_algo)
self.sig_algo = decode_OID(asn1_get_value_of_type(der, ii, 'OBJECT IDENTIFIER'))
# issuer
issuer = asn1_node_next(der, sig_algo)
self.issuer = asn1_get_dict(der, issuer)
# validity
validity = asn1_node_next(der, issuer)
ii = asn1_node_first_child(der, validity)
self.notBefore = asn1_get_value_of_type(der, ii, 'UTCTime')
ii = asn1_node_next(der,ii)
self.notAfter = asn1_get_value_of_type(der, ii, 'UTCTime')
# subject
subject = asn1_node_next(der, validity)
self.subject = asn1_get_dict(der, subject)
subject_pki = asn1_node_next(der, subject)
# extensions
self.CA = False
self.AKI = None
self.SKI = None
i = subject_pki
while i[2] < cert[2]:
i = asn1_node_next(der, i)
d = asn1_get_dict(der, i)
for oid, value in d.items():
if oid == '2.5.29.19':
# Basic Constraints
self.CA = bool(value)
elif oid == '2.5.29.14':
# Subject Key Identifier
r = asn1_node_root(value)
value = asn1_get_value_of_type(value, r, 'OCTET STRING')
self.SKI = value.encode('hex')
elif oid == '2.5.29.35':
# Authority Key Identifier
self.AKI = asn1_get_sequence(value)[0].encode('hex')
else:
pass
# cert signature
cert_sig_algo = asn1_node_next(der, cert)
ii = asn1_node_first_child(der, cert_sig_algo)
self.cert_sig_algo = decode_OID(asn1_get_value_of_type(der, ii, 'OBJECT IDENTIFIER'))
cert_sig = asn1_node_next(der, cert_sig_algo)
self.signature = asn1_get_value(der, cert_sig)[1:]
def get_keyID(self):
# http://security.stackexchange.com/questions/72077/validating-an-ssl-certificate-chain-according-to-rfc-5280-am-i-understanding-th
return self.SKI if self.SKI else repr(self.subject)
def get_issuer_keyID(self):
return self.AKI if self.AKI else repr(self.issuer)
def get_common_name(self):
return self.subject.get('2.5.4.3', 'unknown')
def get_signature(self):
return self.cert_sig_algo, self.signature, self.data
def check_ca(self):
return self.CA
def check_date(self):
import time
now = time.time()
TIMESTAMP_FMT = '%y%m%d%H%M%SZ'
not_before = time.mktime(time.strptime(self.notBefore, TIMESTAMP_FMT))
not_after = time.mktime(time.strptime(self.notAfter, TIMESTAMP_FMT))
if not_before > now:
raise CertificateError('Certificate has not entered its valid date range.')
if not_after <= now:
raise CertificateError('Certificate has expired.')
class X509CertChain(tlslite.X509CertChain):
pass
@profiler
def load_certificates(ca_path):
ca_list = {}
ca_keyID = {}
with open(ca_path, 'r') as f:
s = f.read()
bList = tlslite.utils.pem.dePemList(s, "CERTIFICATE")
for b in bList:
x = X509()
try:
x.parseBinary(b)
x.check_date()
except BaseException as e:
util.print_error("cert error:", e)
continue
fp = x.getFingerprint()
ca_list[fp] = x
ca_keyID[x.get_keyID()] = fp
return ca_list, ca_keyID
def int_to_bytestr(i):
s = chr(i % 256)
while i > 256:
i >>= 8
s = chr(i % 256) + s
return s
def create_csr(commonName, challenge, k):
import ecdsa, hashlib
from bitcoin import point_to_ser
private_key = ecdsa.SigningKey.from_string(k, curve = ecdsa.SECP256k1)
public_key = private_key.get_verifying_key()
pubkey = point_to_ser(public_key.pubkey.point, False)
asn1_type_table = {
'BOOLEAN': 0x01, 'INTEGER': 0x02,
'BIT STRING': 0x03, 'OCTET STRING': 0x04,
'NULL': 0x05, 'OBJECT IDENTIFIER': 0x06,
'SEQUENCE': 0x30, 'SET': 0x31,
'PrintableString': 0x13, 'IA5String': 0x16,
'UTCTime': 0x17, 'ENUMERATED': 0x0A,
'UTF8String': 0x0C, 'PrintableString': 0x13,
}
def x(t, s):
c = asn1_type_table[t] & 0x3f if type(t) == str else t
l = len(s)
if l < 128:
ls = chr(l)
else:
n = int_to_bytestr(l)
ls = chr(len(n) + 128) + n
return chr(c) + ls + s
x_int = lambda i: x('INTEGER', int_to_bytestr(i))
x_seq = lambda *items: x('SEQUENCE', ''.join(items))
x_bitstring = lambda s: x('BIT STRING', s)
x_utf8 = lambda s: x('UTF8String', s)
x_set = lambda *items: x('SET', ''.join(items))
x_printable = lambda s: x('PrintableString', s)
x_obj = lambda oid: x('OBJECT IDENTIFIER', encode_OID(oid))
body = x_seq(
x_int(0),
x_seq(
x_set(x_seq(x_obj('2.5.4.3'), x_utf8(commonName)))
),
x_seq(
x_seq(
x_obj('1.2.840.10045.2.1'),
x_obj('1.3.132.0.10')
),
x_bitstring(chr(0) + pubkey)
),
x(0xa0, x_seq(x_obj('1.2.840.113549.1.9.7'), x_set(x_utf8(challenge)))
)
)
signature = private_key.sign_deterministic(body, hashfunc=hashlib.sha256, sigencode = ecdsa.util.sigencode_der)
assert public_key.verify(signature, body, hashfunc=hashlib.sha256, sigdecode = ecdsa.util.sigdecode_der)
csr = x_seq(
body,
x_seq(x_obj(ALGO_ECDSA_SHA256)),
x_bitstring(chr(0) + signature)
)
return csr