test: rename CT to harnessTest, ensure all RPC's get distinct timeouts

This commit slightly modifies the existing CT struct in order to
maintain consistency with code-style. As a result of the name change,
all references have also been renamed from `ct` to `t`.

The Error and Errorf methods have been removed in favor of forcing
everything to be reported via `Fatalf`. Additionally a new method
(ProcessErrors) has been introduced to the networkHarness class in
order to encapsulate the underlying channel.
This commit is contained in:
Olaoluwa Osuntokun 2016-10-23 19:00:09 -07:00
parent 5d6b8e49a3
commit 517255fdb1
No known key found for this signature in database
GPG Key ID: 9CC5B105D03521A2
3 changed files with 201 additions and 191 deletions

View File

@ -611,11 +611,14 @@ func (h *htlcSwitch) RegisterLink(p *peer, linkInfo *channeldb.ChannelSnapshot,
return h.htlcPlex
}
// unregisterLinkMsg is a message which requests the active ink be unregistered.
// unregisterLinkMsg is a message which requests the active link be unregistered.
type unregisterLinkMsg struct {
chanInterface [32]byte
chanPoint *wire.OutPoint
// remoteID is the identity public key of the node we're removing the
// link between. The public key is expected to be serialized in
// compressed form.
// TODO(roasbeef): redo interface map
remoteID []byte

View File

@ -3,9 +3,10 @@ package main
import (
"bytes"
"fmt"
"golang.org/x/net/context"
"sync"
"testing"
"time"
"github.com/davecgh/go-spew/spew"
"github.com/go-errors/errors"
"github.com/lightningnetwork/lnd/lnrpc"
@ -13,94 +14,94 @@ import (
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcrpcclient"
"github.com/roasbeef/btcutil"
"golang.org/x/net/context"
"google.golang.org/grpc"
"testing"
)
// CT is needed for:
// - have uniform way of handling panic and fatal error from test cases.
// - have ability to properly wrap errors in order to see stack trace.
// - have nice and elegant way to handle lnd process errors in one
// select structure with test cases.
type CT struct {
// harnessTest wraps a regular testing.T providing enchanced error detection
// and propagation. Any fatal errors encurred by any running lnd processes will
// bubble up to the error channel embedded within this struct. Additionally,
// any panics caused by active test cases will also be proxied over the
// errChan. Finally, all error sent through the error channel will be augmented
// with a full stack-trace in order to aide in debugging.
type harnessTest struct {
*testing.T
// Channel for sending retransmitted panic errors and fatal error which
// happens in test case.
errChan chan error
// errChan is a channel for sending retransmitted panic errors and
// fatal errors which occur while running an integration tests.
ErrChan chan error
}
func NewCT(t *testing.T) *CT {
return &CT{t, nil}
// newHarnessTest creates a new instance of a harnessTest from a regular
// testing.T instance.
func newHarnessTest(t *testing.T) *harnessTest {
return &harnessTest{t, nil}
}
func (ct *CT) Error(err error) {
if ct.errChan != nil {
ct.errChan <- fmt.Errorf(errors.Wrap(err, 1).ErrorStack())
ct.FailNow()
} else {
ct.Fatal("can't sen error when test isn't running")
}
}
// Errorf create and send the description about the error in the error channel
// and exit.
func (ct *CT) Errorf(format string, a ...interface{}) {
if ct.errChan != nil {
// Fatalf causes the current active test-case to fail with a fatal error. All
// integration tests should mark test failures soley with this method due to
// the error stack traces it produces.
func (h *harnessTest) Fatalf(format string, a ...interface{}) {
if h.ErrChan != nil {
description := fmt.Sprintf(format, a...)
ct.errChan <- fmt.Errorf(errors.Wrap(description, 1).ErrorStack())
ct.FailNow()
} else {
ct.Fatal("can't sen error when test isn't running")
h.ErrChan <- fmt.Errorf(errors.Wrap(description, 1).ErrorStack())
h.FailNow()
return
}
h.Fatal("cannot send an error when a test isn't running")
}
// RunTest wraps test case function in goroutine and also redirects the panic
// error from test case into error channel.
func (ct *CT) RunTest(net *networkHarness, test testCase) chan error {
// a channel to signal that test was exited with error
ct.errChan = make(chan error)
// RunTest executes a harness test-case. Any errors or panics will be
// re-directed to the structs' errChan.
func (h *harnessTest) RunTest(net *networkHarness, test testCase) chan error {
h.ErrChan = make(chan error)
// Launch a goroutine to execute the acutal test-case. If the test
// pases then the error channel returned will be closed. Otherwise, a
// non-nil error will be sent over the error channel.
go func() {
defer func() {
if err := recover(); err != nil {
// Retransmit test panic into main "process"
ct.errChan <- fmt.Errorf(err.(string))
h.ErrChan <- fmt.Errorf(err.(string))
}
close(ct.errChan)
ct.errChan = nil
close(h.ErrChan)
h.ErrChan = nil
}()
test(net, ct)
test(net, h)
}()
return ct.errChan
return h.ErrChan
}
func assertTxInBlock(ct *CT, block *btcutil.Block, txid *wire.ShaHash) {
func assertTxInBlock(t *harnessTest, block *btcutil.Block, txid *wire.ShaHash) {
for _, tx := range block.Transactions() {
if bytes.Equal(txid[:], tx.Sha()[:]) {
return
}
}
ct.Errorf("funding tx was not included in block")
t.Fatalf("funding tx was not included in block")
}
// mineBlocks mine 'num' of blocks and check that blocks are present in
// node blockchain.
func mineBlocks(ct *CT, net *networkHarness, num uint32) []*btcutil.Block {
func mineBlocks(t *harnessTest, net *networkHarness, num uint32) []*btcutil.Block {
blocks := make([]*btcutil.Block, num)
blockHashes, err := net.Miner.Node.Generate(num)
if err != nil {
ct.Errorf("unable to generate blocks: %v", err)
t.Fatalf("unable to generate blocks: %v", err)
}
for i, blockHash := range blockHashes {
block, err := net.Miner.Node.GetBlock(blockHash)
if err != nil {
ct.Errorf("unable to get block: %v", err)
t.Fatalf("unable to get block: %v", err)
}
blocks[i] = block
@ -109,34 +110,33 @@ func mineBlocks(ct *CT, net *networkHarness, num uint32) []*btcutil.Block {
return blocks
}
// openChannelAndAssert attempts to open a channel with the specified
// parameters extended from Alice to Bob. Additionally, two items are asserted
// after the channel is considered open: the funding transaction should be
// found within a block, and that Alice can report the status of the new
// channel.
func openChannelAndAssert(ct *CT, net *networkHarness, ctx context.Context,
func openChannelAndAssert(t *harnessTest, net *networkHarness, ctx context.Context,
alice, bob *lightningNode, amount btcutil.Amount) *lnrpc.ChannelPoint {
chanOpenUpdate, err := net.OpenChannel(ctx, alice, bob, amount, 1)
if err != nil {
ct.Errorf("unable to open channel: %v", err)
t.Fatalf("unable to open channel: %v", err)
}
// Mine a block, then wait for Alice's node to notify us that the
// channel has been opened. The funding transaction should be found
// within the newly mined block.
block := mineBlocks(ct, net, 1)[0]
block := mineBlocks(t, net, 1)[0]
fundingChanPoint, err := net.WaitForChannelOpen(ctx, chanOpenUpdate)
if err != nil {
ct.Errorf("error while waiting for channel open: %v", err)
t.Fatalf("error while waiting for channel open: %v", err)
}
fundingTxID, err := wire.NewShaHash(fundingChanPoint.FundingTxid)
if err != nil {
ct.Errorf("unable to create sha hash: %v", err)
t.Fatalf("unable to create sha hash: %v", err)
}
assertTxInBlock(ct, block, fundingTxID)
assertTxInBlock(t, block, fundingTxID)
// The channel should be listed in the peer information returned by
// both peers.
@ -145,7 +145,7 @@ func openChannelAndAssert(ct *CT, net *networkHarness, ctx context.Context,
Index: fundingChanPoint.OutputIndex,
}
if err := net.AssertChannelExists(ctx, alice, &chanPoint); err != nil {
ct.Errorf("unable to assert channel existence: %v", err)
t.Fatalf("unable to assert channel existence: %v", err)
}
return fundingChanPoint
@ -157,25 +157,25 @@ func openChannelAndAssert(ct *CT, net *networkHarness, ctx context.Context,
// via timeout from a base parent. Additionally, once the channel has been
// detected as closed, an assertion checks that the transaction is found within
// a block.
func closeChannelAndAssert(ct *CT, net *networkHarness, ctx context.Context,
func closeChannelAndAssert(t *harnessTest, net *networkHarness, ctx context.Context,
node *lightningNode, fundingChanPoint *lnrpc.ChannelPoint) {
closeUpdates, err := net.CloseChannel(ctx, node, fundingChanPoint, false)
if err != nil {
ct.Errorf("unable to close channel: %v", err)
t.Fatalf("unable to close channel: %v", err)
}
// Finally, generate a single block, wait for the final close status
// update, then ensure that the closing transaction was included in the
// block.
block := mineBlocks(ct, net, 1)[0]
block := mineBlocks(t, net, 1)[0]
closingTxid, err := net.WaitForChannelClose(ctx, closeUpdates)
if err != nil {
ct.Errorf("error while waiting for channel close: %v", err)
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(ct, block, closingTxid)
assertTxInBlock(t, block, closingTxid)
}
// testBasicChannelFunding performs a test exercising expected behavior from a
@ -183,7 +183,7 @@ func closeChannelAndAssert(ct *CT, net *networkHarness, ctx context.Context,
// Bob, then immediately closes the channel after asserting some expected post
// conditions. Finally, the chain itself is checked to ensure the closing
// transaction was mined.
func testBasicChannelFunding(net *networkHarness, ct *CT) {
func testBasicChannelFunding(net *networkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 5)
ctxb := context.Background()
@ -195,18 +195,18 @@ func testBasicChannelFunding(net *networkHarness, ct *CT) {
// assertions will be executed to ensure the funding process completed
// successfully.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ct, net, ctxt, net.Alice, net.Bob, chanAmt)
chanPoint := openChannelAndAssert(t, net, ctxt, net.Alice, net.Bob, chanAmt)
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ct, net, ctxt, net.Alice, chanPoint)
closeChannelAndAssert(t, net, ctxt, net.Alice, chanPoint)
}
// testChannelBalance creates a new channel between Alice and Bob, then
// checks channel balance to be equal amount specified while creation of channel.
func testChannelBalance(net *networkHarness, ct *CT) {
func testChannelBalance(net *networkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 5)
// Open a channel with 0.5 BTC between Alice and Bob, ensuring the
@ -221,17 +221,17 @@ func testChannelBalance(net *networkHarness, ct *CT) {
response, err := node.ChannelBalance(ctx, &lnrpc.ChannelBalanceRequest{})
if err != nil {
ct.Errorf("unable to get channel balance: %v", err)
t.Fatalf("unable to get channel balance: %v", err)
}
balance := btcutil.Amount(response.Balance)
if balance != amount {
ct.Errorf("channel balance wrong: %v != %v", balance,
t.Fatalf("channel balance wrong: %v != %v", balance,
amount)
}
}
chanPoint := openChannelAndAssert(ct, net, ctx, net.Alice, net.Bob,
chanPoint := openChannelAndAssert(t, net, ctx, net.Alice, net.Bob,
amount)
// As this is a single funder channel, Alice's balance should be
@ -252,7 +252,7 @@ func testChannelBalance(net *networkHarness, ct *CT) {
// Finally close the channel between Alice and Bob, asserting that the
// channel has been properly closed on-chain.
ctx, _ = context.WithTimeout(context.Background(), timeout)
closeChannelAndAssert(ct, net, ctx, net.Alice, chanPoint)
closeChannelAndAssert(t, net, ctx, net.Alice, chanPoint)
}
// testChannelForceClosure performs a test to exercise the behavior of "force"
@ -264,7 +264,7 @@ func testChannelBalance(net *networkHarness, ct *CT) {
// once the output(s) become mature.
//
// TODO(roabeef): also add an unsettled HTLC before force closing.
func testChannelForceClosure(net *networkHarness, ct *CT) {
func testChannelForceClosure(net *networkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 5)
ctxb := context.Background()
@ -275,17 +275,17 @@ func testChannelForceClosure(net *networkHarness, ct *CT) {
chanOpenUpdate, err := net.OpenChannel(ctxb, net.Alice, net.Bob,
chanAmt, numFundingConfs)
if err != nil {
ct.Errorf("unable to open channel: %v", err)
t.Fatalf("unable to open channel: %v", err)
}
if _, err := net.Miner.Node.Generate(numFundingConfs); err != nil {
ct.Errorf("unable to mine block: %v", err)
t.Fatalf("unable to mine block: %v", err)
}
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint, err := net.WaitForChannelOpen(ctxt, chanOpenUpdate)
if err != nil {
ct.Errorf("error while waiting for channel to open: %v", err)
t.Fatalf("error while waiting for channel to open: %v", err)
}
// Now that the channel is open, immediately execute a force closure of
@ -294,18 +294,18 @@ func testChannelForceClosure(net *networkHarness, ct *CT) {
// request.
closeUpdate, err := net.CloseChannel(ctxb, net.Alice, chanPoint, true)
if err != nil {
ct.Errorf("unable to execute force channel closure: %v", err)
t.Fatalf("unable to execute force channel closure: %v", err)
}
// Mine a block which should confirm the commitment transaction
// broadcast as a result of the force closure.
if _, err := net.Miner.Node.Generate(1); err != nil {
ct.Errorf("unable to generate block: %v", err)
t.Fatalf("unable to generate block: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
closingTxID, err := net.WaitForChannelClose(ctxt, closeUpdate)
if err != nil {
ct.Errorf("error while waiting for channel close: %v", err)
t.Fatalf("error while waiting for channel close: %v", err)
}
// Currently within the codebase, the default CSV is 4 relative blocks.
@ -314,7 +314,7 @@ func testChannelForceClosure(net *networkHarness, ct *CT) {
// or make delay a param
const defaultCSV = 4
if _, err := net.Miner.Node.Generate(defaultCSV); err != nil {
ct.Errorf("unable to mine blocks: %v", err)
t.Fatalf("unable to mine blocks: %v", err)
}
// At this point, the sweeping transaction should now be broadcast. So
@ -326,11 +326,11 @@ mempoolPoll:
for {
select {
case <-time.After(time.Second * 5):
ct.Errorf("sweep tx not found in mempool")
t.Fatalf("sweep tx not found in mempool")
default:
mempool, err = net.Miner.Node.GetRawMempool()
if err != nil {
ct.Errorf("unable to fetch node's mempool: %v", err)
t.Fatalf("unable to fetch node's mempool: %v", err)
}
if len(mempool) == 0 {
continue
@ -344,7 +344,7 @@ mempoolPoll:
// TODO(roasbeef): assertion may not necessarily hold with concurrent
// test executions
if len(mempool) != 1 {
ct.Errorf("node's mempool is wrong size, expected 1 got %v",
t.Fatalf("node's mempool is wrong size, expected 1 got %v",
len(mempool))
}
sweepingTXID = mempool[0]
@ -353,11 +353,11 @@ mempoolPoll:
// the commitment transaction which was broadcast on-chain.
sweepTx, err := net.Miner.Node.GetRawTransaction(sweepingTXID)
if err != nil {
ct.Errorf("unable to fetch sweep tx: %v", err)
t.Fatalf("unable to fetch sweep tx: %v", err)
}
for _, txIn := range sweepTx.MsgTx().TxIn {
if !closingTxID.IsEqual(&txIn.PreviousOutPoint.Hash) {
ct.Errorf("sweep transaction not spending from commit "+
t.Fatalf("sweep transaction not spending from commit "+
"tx %v, instead spending %v",
closingTxID, txIn.PreviousOutPoint)
}
@ -368,17 +368,17 @@ mempoolPoll:
// inputs should be properly met.
blockHash, err := net.Miner.Node.Generate(1)
if err != nil {
ct.Errorf("unable to generate block: %v", err)
t.Fatalf("unable to generate block: %v", err)
}
block, err := net.Miner.Node.GetBlock(blockHash[0])
if err != nil {
ct.Errorf("unable to get block: %v", err)
t.Fatalf("unable to get block: %v", err)
}
assertTxInBlock(ct, block, sweepTx.Sha())
assertTxInBlock(t, block, sweepTx.Sha())
}
func testSingleHopInvoice(net *networkHarness, ct *CT) {
func testSingleHopInvoice(net *networkHarness, t *harnessTest) {
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
@ -386,7 +386,7 @@ func testSingleHopInvoice(net *networkHarness, ct *CT) {
// the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanAmt := btcutil.Amount(100000)
chanPoint := openChannelAndAssert(ct, net, ctxt, net.Alice, net.Bob, chanAmt)
chanPoint := openChannelAndAssert(t, net, ctxt, net.Alice, net.Bob, chanAmt)
// Now that the channel is open, create an invoice for Bob which
// expects a payment of 1000 satoshis from Alice paid via a particular
@ -400,14 +400,14 @@ func testSingleHopInvoice(net *networkHarness, ct *CT) {
}
invoiceResp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
ct.Errorf("unable to add invoice: %v", err)
t.Fatalf("unable to add invoice: %v", err)
}
// With the invoice for Bob added, send a payment towards Alice paying
// to the above generated invoice.
sendStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
ct.Errorf("unable to create alice payment stream: %v", err)
t.Fatalf("unable to create alice payment stream: %v", err)
}
sendReq := &lnrpc.SendRequest{
PaymentHash: invoiceResp.RHash,
@ -415,10 +415,10 @@ func testSingleHopInvoice(net *networkHarness, ct *CT) {
Amt: paymentAmt,
}
if err := sendStream.Send(sendReq); err != nil {
ct.Errorf("unable to send payment: %v", err)
t.Fatalf("unable to send payment: %v", err)
}
if _, err := sendStream.Recv(); err != nil {
ct.Errorf("error when attempting recv: %v", err)
t.Fatalf("error when attempting recv: %v", err)
}
// Bob's invoice should now be found and marked as settled.
@ -429,38 +429,37 @@ func testSingleHopInvoice(net *networkHarness, ct *CT) {
}
dbInvoice, err := net.Bob.LookupInvoice(ctxb, payHash)
if err != nil {
ct.Errorf("unable to lookup invoice: %v", err)
t.Fatalf("unable to lookup invoice: %v", err)
}
if !dbInvoice.Settled {
ct.Errorf("bob's invoice should be marked as settled: %v",
t.Fatalf("bob's invoice should be marked as settled: %v",
spew.Sdump(dbInvoice))
}
// The balances of Alice and Bob should be updated accordingly.
aliceBalance, err := net.Alice.ChannelBalance(ctxb, &lnrpc.ChannelBalanceRequest{})
if err != nil {
ct.Errorf("unable to query for alice's balance: %v", err)
t.Fatalf("unable to query for alice's balance: %v", err)
}
bobBalance, err := net.Bob.ChannelBalance(ctxb, &lnrpc.ChannelBalanceRequest{})
if err != nil {
ct.Errorf("unable to query for bob's balance: %v", err)
t.Fatalf("unable to query for bob's balance: %v", err)
}
if aliceBalance.Balance != int64(chanAmt-paymentAmt) {
ct.Errorf("Alice's balance is incorrect got %v, expected %v",
t.Fatalf("Alice's balance is incorrect got %v, expected %v",
aliceBalance, int64(chanAmt-paymentAmt))
}
if bobBalance.Balance != paymentAmt {
ct.Errorf("Bob's balance is incorrect got %v, expected %v",
t.Fatalf("Bob's balance is incorrect got %v, expected %v",
bobBalance, paymentAmt)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ct, net, ctxt, net.Alice, chanPoint)
closeChannelAndAssert(t, net, ctxt, net.Alice, chanPoint)
}
func testMultiHopPayments(net *networkHarness, ct *CT) {
func testMultiHopPayments(net *networkHarness, t *harnessTest) {
const chanAmt = btcutil.Amount(100000)
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
@ -468,12 +467,12 @@ func testMultiHopPayments(net *networkHarness, ct *CT) {
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPointAlice := openChannelAndAssert(ct, net, ctxt, net.Alice,
chanPointAlice := openChannelAndAssert(t, net, ctxt, net.Alice,
net.Bob, chanAmt)
aliceChanTXID, err := wire.NewShaHash(chanPointAlice.FundingTxid)
if err != nil {
ct.Errorf("unable to create sha hash: %v", err)
t.Fatalf("unable to create sha hash: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
@ -487,22 +486,22 @@ func testMultiHopPayments(net *networkHarness, ct *CT) {
// The network topology should now look like: Carol -> Alice -> Bob
carol, err := net.NewNode(nil)
if err != nil {
ct.Errorf("unable to create new nodes: %v", err)
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, carol, net.Alice); err != nil {
ct.Errorf("unable to connect carol to alice: %v", err)
t.Fatalf("unable to connect carol to alice: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
ct.Errorf("unable to send coins to carol: %v", err)
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointCarol := openChannelAndAssert(ct, net, ctxt, carol,
chanPointCarol := openChannelAndAssert(t, net, ctxt, carol,
net.Alice, chanAmt)
carolChanTXID, err := wire.NewShaHash(chanPointCarol.FundingTxid)
if err != nil {
ct.Errorf("unable to create sha hash: %v", err)
t.Fatalf("unable to create sha hash: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
@ -523,7 +522,7 @@ func testMultiHopPayments(net *networkHarness, ct *CT) {
}
resp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
ct.Errorf("unable to add invoice: %v", err)
t.Fatalf("unable to add invoice: %v", err)
}
rHashes[i] = resp.RHash
@ -536,10 +535,10 @@ func testMultiHopPayments(net *networkHarness, ct *CT) {
req := &lnrpc.ShowRoutingTableRequest{}
routingResp, err := carol.ShowRoutingTable(ctxb, req)
if err != nil {
ct.Errorf("unable to query for carol's routing table: %v", err)
t.Fatalf("unable to query for carol's routing table: %v", err)
}
if len(routingResp.Channels) != 2 {
ct.Errorf("only two channels should be seen as active in the "+
t.Fatalf("only two channels should be seen as active in the "+
"network, instead %v are", len(routingResp.Channels))
}
for _, link := range routingResp.Channels {
@ -553,7 +552,7 @@ func testMultiHopPayments(net *networkHarness, ct *CT) {
link.Id2 == net.Alice.PubKeyStr:
continue
default:
ct.Errorf("unkown link within routing "+
t.Fatalf("unkown link within routing "+
"table: %v", spew.Sdump(link))
}
case link.Outpoint == carolFundPoint.String():
@ -565,11 +564,11 @@ func testMultiHopPayments(net *networkHarness, ct *CT) {
link.Id2 == net.Alice.PubKeyStr:
continue
default:
ct.Errorf("unkown link within routing "+
t.Fatalf("unkown link within routing "+
"table: %v", spew.Sdump(link))
}
default:
ct.Errorf("unkown channel %v found in routing table, "+
t.Fatalf("unkown channel %v found in routing table, "+
"only %v and %v should exist", link.Outpoint,
aliceFundPoint, carolFundPoint)
}
@ -578,7 +577,7 @@ func testMultiHopPayments(net *networkHarness, ct *CT) {
// Using Carol as the source, pay to the 5 invoices from Bob created above.
carolPayStream, err := carol.SendPayment(ctxb)
if err != nil {
ct.Errorf("unable to create payment stream for carol: %v", err)
t.Fatalf("unable to create payment stream for carol: %v", err)
}
// Concurrently pay off all 5 of Bob's invoices. Each of the goroutines
@ -595,10 +594,10 @@ func testMultiHopPayments(net *networkHarness, ct *CT) {
wg.Add(1)
go func() {
if err := carolPayStream.Send(sendReq); err != nil {
ct.Errorf("unable to send payment: %v", err)
t.Fatalf("unable to send payment: %v", err)
}
if _, err := carolPayStream.Recv(); err != nil {
ct.Errorf("unable to recv pay resp: %v", err)
t.Fatalf("unable to recv pay resp: %v", err)
}
wg.Done()
}()
@ -612,7 +611,7 @@ func testMultiHopPayments(net *networkHarness, ct *CT) {
select {
case <-time.After(time.Second * 10):
ct.Errorf("HLTC's not cleared after 10 seconds")
t.Fatalf("HTLC's not cleared after 10 seconds")
case <-finClear:
}
@ -623,7 +622,7 @@ func testMultiHopPayments(net *networkHarness, ct *CT) {
listReq := &lnrpc.ListChannelsRequest{}
resp, err := node.ListChannels(ctxb, listReq)
if err != nil {
ct.Errorf("unable to for node's channels: %v", err)
t.Fatalf("unable to for node's channels: %v", err)
}
for _, channel := range resp.Channels {
if channel.ChannelPoint != chanPoint.String() {
@ -632,12 +631,12 @@ func testMultiHopPayments(net *networkHarness, ct *CT) {
if channel.LocalBalance != localBalance ||
channel.RemoteBalance != remoteBalance {
ct.Errorf("incorrect balances: %v",
t.Fatalf("incorrect balances: %v",
spew.Sdump(channel))
}
return
}
ct.Errorf("channel not found")
t.Fatalf("channel not found")
}
// At this point all the channels within our proto network should be
@ -654,12 +653,12 @@ func testMultiHopPayments(net *networkHarness, ct *CT) {
assertAsymmetricBalance(net.Bob, &aliceFundPoint, sinkBal, sourceBal)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ct, net, ctxt, net.Alice, chanPointAlice)
closeChannelAndAssert(t, net, ctxt, net.Alice, chanPointAlice)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ct, net, ctxt, carol, chanPointCarol)
closeChannelAndAssert(t, net, ctxt, carol, chanPointCarol)
}
func testInvoiceSubscriptions(net *networkHarness, ct *CT) {
func testInvoiceSubscriptions(net *networkHarness, t *harnessTest) {
const chanAmt = btcutil.Amount(500000)
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
@ -667,7 +666,7 @@ func testInvoiceSubscriptions(net *networkHarness, ct *CT) {
// Open a channel with 500k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ct, net, ctxt, net.Alice, net.Bob,
chanPoint := openChannelAndAssert(t, net, ctxt, net.Alice, net.Bob,
chanAmt)
// Next create a new invoice for Bob requesting 1k satoshis.
@ -680,7 +679,7 @@ func testInvoiceSubscriptions(net *networkHarness, ct *CT) {
}
invoiceResp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
ct.Errorf("unable to add invoice: %v", err)
t.Fatalf("unable to add invoice: %v", err)
}
// Create a new invoice subscription client for Bob, the notification
@ -688,23 +687,23 @@ func testInvoiceSubscriptions(net *networkHarness, ct *CT) {
req := &lnrpc.InvoiceSubscription{}
bobInvoiceSubscription, err := net.Bob.SubscribeInvoices(ctxb, req)
if err != nil {
ct.Errorf("unable to subscribe to bob's invoice updates: %v", err)
t.Fatalf("unable to subscribe to bob's invoice updates: %v", err)
}
updateSent := make(chan struct{})
go func() {
invoiceUpdate, err := bobInvoiceSubscription.Recv()
if err != nil {
ct.Errorf("unable to recv invoice update: %v", err)
t.Fatalf("unable to recv invoice update: %v", err)
}
// The invoice update should exactly match the invoice created
// above, but should now be settled.
if !invoiceUpdate.Settled {
ct.Errorf("invoice not settled but shoudl be")
t.Fatalf("invoice not settled but shoudl be")
}
if !bytes.Equal(invoiceUpdate.RPreimage, invoice.RPreimage) {
ct.Errorf("payment preimages don't match: expected %v, got %v",
t.Fatalf("payment preimages don't match: expected %v, got %v",
invoice.RPreimage, invoiceUpdate.RPreimage)
}
@ -715,7 +714,7 @@ func testInvoiceSubscriptions(net *networkHarness, ct *CT) {
// which should finalize and settle the invoice.
sendStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
ct.Errorf("unable to create alice payment stream: %v", err)
t.Fatalf("unable to create alice payment stream: %v", err)
}
sendReq := &lnrpc.SendRequest{
PaymentHash: invoiceResp.RHash,
@ -723,50 +722,51 @@ func testInvoiceSubscriptions(net *networkHarness, ct *CT) {
Amt: paymentAmt,
}
if err := sendStream.Send(sendReq); err != nil {
ct.Errorf("unable to send payment: %v", err)
t.Fatalf("unable to send payment: %v", err)
}
if _, err := sendStream.Recv(); err != nil {
ct.Errorf("error when attempting recv: %v", err)
t.Fatalf("error when attempting recv: %v", err)
}
select {
case <-time.After(time.Second * 5):
ct.Errorf("update not sent after 5 seconds")
t.Fatalf("update not sent after 5 seconds")
case <-updateSent: // Fall through on success
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ct, net, ctxt, net.Alice, chanPoint)
closeChannelAndAssert(t, net, ctxt, net.Alice, chanPoint)
}
// testBasicChannelCreation test multiple channel opening and closing.
func testBasicChannelCreation(net *networkHarness, ct *CT) {
timeout := time.Duration(time.Second * 5)
ctx, _ := context.WithTimeout(context.Background(), timeout)
amount := btcutil.Amount(btcutil.SatoshiPerBitcoin)
num := 2
func testBasicChannelCreation(net *networkHarness, t *harnessTest) {
const (
numChannels = 2
timeout = time.Duration(time.Second * 5)
amount = btcutil.Amount(btcutil.SatoshiPerBitcoin)
)
// Open the channel between Alice and Bob, asserting that the
// channel has been properly open on-chain.
chanPoints := make([]*lnrpc.ChannelPoint, num)
for i := 0; i < num; i++ {
chanPoints[i] = openChannelAndAssert(ct, net, ctx, net.Alice,
chanPoints := make([]*lnrpc.ChannelPoint, numChannels)
for i := 0; i < numChannels; i++ {
ctx, _ := context.WithTimeout(context.Background(), timeout)
chanPoints[i] = openChannelAndAssert(t, net, ctx, net.Alice,
net.Bob, amount)
}
// Close the channel between Alice and Bob, asserting that the
// channel has been properly closed on-chain.
for _, chanPoint := range chanPoints {
closeChannelAndAssert(ct, net, ctx, net.Alice, chanPoint)
ctx, _ := context.WithTimeout(context.Background(), timeout)
closeChannelAndAssert(t, net, ctx, net.Alice, chanPoint)
}
}
// testMaxPendingChannels checks that error is returned from remote peer if
// max pending channel number was exceeded and that '--maxpendingchannels' flag
// exists and works properly.
func testMaxPendingChannels(net *networkHarness, ct *CT) {
func testMaxPendingChannels(net *networkHarness, t *harnessTest) {
maxPendingChannels := defaultMaxPendingChannels + 1
amount := btcutil.Amount(btcutil.SatoshiPerBitcoin)
@ -778,19 +778,20 @@ func testMaxPendingChannels(net *networkHarness, ct *CT) {
args := []string{
fmt.Sprintf("--maxpendingchannels=%v", maxPendingChannels),
}
carol, err := net.NewNode(args)
if err != nil {
ct.Errorf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctx, net.Alice, carol); err != nil {
ct.Errorf("unable to connect carol to alice: %v", err)
t.Fatalf("unable to create new nodes: %v", err)
}
ctx, _ = context.WithTimeout(context.Background(), timeout)
if err := net.ConnectNodes(ctx, net.Alice, carol); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
ctx, _ = context.WithTimeout(context.Background(), timeout)
carolBalance := btcutil.Amount(maxPendingChannels) * amount
if err := net.SendCoins(ctx, carolBalance, carol); err != nil {
ct.Errorf("unable to send coins to carol: %v", err)
t.Fatalf("unable to send coins to carol: %v", err)
}
// Send open channel requests without generating new blocks thereby
@ -799,20 +800,22 @@ func testMaxPendingChannels(net *networkHarness, ct *CT) {
// max value.
openStreams := make([]lnrpc.Lightning_OpenChannelClient, maxPendingChannels)
for i := 0; i < maxPendingChannels; i++ {
ctx, _ = context.WithTimeout(context.Background(), timeout)
stream, err := net.OpenChannel(ctx, net.Alice, carol, amount, 1)
if err != nil {
ct.Errorf("unable to open channel: %v", err)
t.Fatalf("unable to open channel: %v", err)
}
openStreams[i] = stream
}
// Carol exhausted available amount of pending channels, next open
// channel request should cause ErrorGeneric to be sent back to Alice.
ctx, _ = context.WithTimeout(context.Background(), timeout)
_, err = net.OpenChannel(ctx, net.Alice, carol, amount, 1)
if err == nil {
ct.Errorf("error wasn't received")
t.Fatalf("error wasn't received")
} else if grpc.Code(err) != OpenChannelFundingError {
ct.Errorf("not expected error was received : %v", err)
t.Fatalf("not expected error was received : %v", err)
}
// For now our channels are in pending state, in order to not
@ -822,22 +825,22 @@ func testMaxPendingChannels(net *networkHarness, ct *CT) {
// Mine a block, then wait for node's to notify us that the channel
// has been opened. The funding transactions should be found within the
// newly mined block.
block := mineBlocks(ct, net, 1)[0]
block := mineBlocks(t, net, 1)[0]
chanPoints := make([]*lnrpc.ChannelPoint, maxPendingChannels)
for i, stream := range openStreams {
ctx, _ = context.WithTimeout(context.Background(), timeout)
fundingChanPoint, err := net.WaitForChannelOpen(ctx, stream)
if err != nil {
ct.Errorf("error while waiting for channel open: %v", err)
t.Fatalf("error while waiting for channel open: %v", err)
}
fundingTxID, err := wire.NewShaHash(fundingChanPoint.FundingTxid)
if err != nil {
ct.Errorf("unable to create sha hash: %v", err)
t.Fatalf("unable to create sha hash: %v", err)
}
assertTxInBlock(ct, block, fundingTxID)
assertTxInBlock(t, block, fundingTxID)
// The channel should be listed in the peer information
// returned by both peers.
@ -846,7 +849,7 @@ func testMaxPendingChannels(net *networkHarness, ct *CT) {
Index: fundingChanPoint.OutputIndex,
}
if err := net.AssertChannelExists(ctx, net.Alice, &chanPoint); err != nil {
ct.Errorf("unable to assert channel existence: %v", err)
t.Fatalf("unable to assert channel existence: %v", err)
}
chanPoints[i] = fundingChanPoint
@ -855,12 +858,12 @@ func testMaxPendingChannels(net *networkHarness, ct *CT) {
// Finally close the channel between Alice and Carol, asserting that the
// channel has been properly closed on-chain.
for _, chanPoint := range chanPoints {
closeChannelAndAssert(ct, net, ctx, net.Alice, chanPoint)
ctx, _ = context.WithTimeout(context.Background(), timeout)
closeChannelAndAssert(t, net, ctx, net.Alice, chanPoint)
}
}
type testCase func(net *networkHarness, ct *CT)
type testCase func(net *networkHarness, t *harnessTest)
var testCases = map[string]testCase{
"basic funding flow": testBasicChannelFunding,
@ -876,13 +879,13 @@ var testCases = map[string]testCase{
// TestLightningNetworkDaemon performs a series of integration tests amongst a
// programmatically driven network of lnd nodes.
func TestLightningNetworkDaemon(t *testing.T) {
ct := NewCT(t)
ht := newHarnessTest(t)
// First create the network harness to gain access to its
// 'OnTxAccepted' call back.
lndHarness, err := newNetworkHarness()
if err != nil {
ct.Fatalf("unable to create lightning network harness: %v", err)
ht.Fatalf("unable to create lightning network harness: %v", err)
}
defer lndHarness.TearDownAll()
@ -895,14 +898,14 @@ func TestLightningNetworkDaemon(t *testing.T) {
// drive blockchain related events within the network.
btcdHarness, err := rpctest.New(harnessNetParams, handlers, nil)
if err != nil {
ct.Fatalf("unable to create mining node: %v", err)
ht.Fatalf("unable to create mining node: %v", err)
}
defer btcdHarness.TearDown()
if err := btcdHarness.SetUp(true, 50); err != nil {
ct.Fatalf("unable to set up mining node: %v", err)
ht.Fatalf("unable to set up mining node: %v", err)
}
if err := btcdHarness.Node.NotifyNewTransactions(false); err != nil {
ct.Fatalf("unable to request transaction notifications: %v", err)
ht.Fatalf("unable to request transaction notifications: %v", err)
}
// With the btcd harness created, we can now complete the
@ -910,34 +913,31 @@ func TestLightningNetworkDaemon(t *testing.T) {
// example: "--debuglevel=debug"
// TODO(roasbeef): create master balanced channel with all the monies?
if err := lndHarness.InitializeSeedNodes(btcdHarness, nil); err != nil {
ct.Fatalf("unable to initialize seed nodes: %v", err)
ht.Fatalf("unable to initialize seed nodes: %v", err)
}
if err = lndHarness.SetUp(); err != nil {
ct.Fatalf("unable to set up test lightning network: %v", err)
ht.Fatalf("unable to set up test lightning network: %v", err)
}
ct.Logf("Running %v integration tests", len(testCases))
ht.Logf("Running %v integration tests", len(testCases))
for name, test := range testCases {
errChan := ct.RunTest(lndHarness, test)
errChan := ht.RunTest(lndHarness, test)
select {
// Receive both types of err - panic and fatal from
// one channel and raise the fatal in main goroutine.
// Attempt to read from the error channel created for this
// specific test. If this error is non-nil then the test passed
// without any problems.
case err := <-errChan:
if err != nil {
ct.Fatalf("Fail: (%v): exited with error: \n%v",
ht.Fatalf("Fail: (%v): exited with error: \n%v",
name, err)
}
ct.Logf("Successed: (%v)", name)
ht.Logf("Passed: (%v)", name)
// In this case lightning node process finished with error
// status. It might be because of wrong flag, or it might
// be because of nil pointer access. Who knows!? Who knows...
// TODO(andrew.shvv) When two nodes are closing simultanisly
// it leads to panic - 'sending to the closed channel'. Fix it?
case err := <-lndHarness.lndErrorChan:
ct.Fatalf("Fail: (%v): lnd finished with error "+
// If a read from this channel succeeeds then one of the
// running lnd nodes has exited with a fatal erorr.
case err := <-lndHarness.ProcessErrors():
ht.Fatalf("Fail: (%v): lnd finished with error "+
"(stderr): \n%v", name, err)
}
}

View File

@ -20,6 +20,7 @@ import (
"google.golang.org/grpc/grpclog"
"bytes"
"github.com/go-errors/errors"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/roasbeef/btcd/chaincfg"
@ -174,9 +175,9 @@ func (l *lightningNode) start(lndError chan error) error {
return err
}
// Launch a new goroutine which that bubbles up any potential fatal
// process errors to the goroutine running the tests.
go func() {
// If lightning node process exited with error status
// then we should transmit stderr output in main process.
if err := l.cmd.Wait(); err != nil {
lndError <- errors.New(errb.String())
}
@ -249,14 +250,13 @@ func (l *lightningNode) cleanup() error {
// stop attempts to stop the active lnd process.
func (l *lightningNode) stop() error {
// We should skip node stop in case:
// - start of the node wasn't initiated
// - process wasn't spawned
// - process already finished
if l.cmd == nil ||
l.cmd.Process == nil ||
(l.cmd.ProcessState != nil && l.cmd.ProcessState.Exited()) {
processFinished := l.cmd.ProcessState != nil &&
l.cmd.ProcessState.Exited()
if l.cmd == nil || l.cmd.Process == nil || processFinished {
return nil
}
@ -344,6 +344,13 @@ func (n *networkHarness) InitializeSeedNodes(r *rpctest.Harness, lndArgs []strin
return err
}
// ProcessErrors returns a channel used for reporting any fatal process errors.
// If any of the active nodes within the harness' test network incur a fatal
// error, that error is sent over this channel.
func (n *networkHarness) ProcessErrors() chan error {
return n.lndErrorChan
}
// fakeLogger is a fake grpclog.Logger implementation. This is used to stop
// grpc's logger from printing directly to stdout.
type fakeLogger struct{}