srsLTE/srslte/lib/rf/rf_blade_imp.c

506 lines
16 KiB
C
Raw Normal View History

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of the srsLTE library.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <libbladeRF.h>
#include <sys/time.h>
#include <string.h>
#include <unistd.h>
#include <pthread.h>
#include "srslte/srslte.h"
#include "rf_blade_imp.h"
#include "srslte/rf/rf.h"
2015-12-16 08:38:04 -08:00
2015-12-16 09:02:25 -08:00
#define CONVERT_BUFFER_SIZE 240*1024
2015-12-16 08:38:04 -08:00
typedef struct {
2015-12-16 08:38:04 -08:00
struct bladerf *dev;
uint32_t rx_rate;
uint32_t tx_rate;
int16_t rx_buffer[CONVERT_BUFFER_SIZE];
int16_t tx_buffer[CONVERT_BUFFER_SIZE];
2015-12-17 13:57:13 -08:00
bool rx_stream_enabled;
2015-12-16 10:41:24 -08:00
bool tx_stream_enabled;
} rf_blade_handler_t;
2015-12-18 03:38:25 -08:00
srslte_rf_error_handler_t blade_error_handler = NULL;
void rf_blade_suppress_stdout(void *h) {
2015-12-16 08:38:04 -08:00
bladerf_log_set_verbosity(BLADERF_LOG_LEVEL_SILENT);
}
2015-12-18 03:38:25 -08:00
void rf_blade_register_error_handler(void *notused, srslte_rf_error_handler_t new_handler)
{
2015-12-18 03:38:25 -08:00
new_handler = blade_error_handler;
}
bool rf_blade_rx_wait_lo_locked(void *h)
{
2015-12-16 08:38:04 -08:00
usleep(1000);
return true;
}
2015-12-17 13:57:13 -08:00
const unsigned int num_buffers = 256;
const unsigned int ms_buffer_size_rx = 1024;
const unsigned int buffer_size_tx = 1024;
const unsigned int num_transfers = 32;
const unsigned int timeout_ms = 4000;
2015-12-16 10:41:24 -08:00
int rf_blade_start_tx_stream(void *h)
{
int status;
rf_blade_handler_t *handler = (rf_blade_handler_t*) h;
status = bladerf_sync_config(handler->dev,
BLADERF_MODULE_TX,
BLADERF_FORMAT_SC16_Q11_META,
num_buffers,
buffer_size_tx,
num_transfers,
timeout_ms);
if (status != 0) {
fprintf(stderr, "Failed to configure TX sync interface: %s\n", bladerf_strerror(status));
return status;
}
status = bladerf_enable_module(handler->dev, BLADERF_MODULE_TX, true);
if (status != 0) {
fprintf(stderr, "Failed to enable TX module: %s\n", bladerf_strerror(status));
return status;
}
2015-12-17 13:57:13 -08:00
handler->tx_stream_enabled = true;
2015-12-16 10:41:24 -08:00
return 0;
}
int rf_blade_start_rx_stream(void *h)
{
2015-12-16 08:38:04 -08:00
int status;
rf_blade_handler_t *handler = (rf_blade_handler_t*) h;
2015-12-17 13:57:13 -08:00
2015-12-16 08:38:04 -08:00
/* Configure the device's RX module for use with the sync interface.
* SC16 Q11 samples *with* metadata are used. */
2015-12-17 13:57:13 -08:00
uint32_t buffer_size_rx = ms_buffer_size_rx*(handler->rx_rate/1000/1024);
2016-01-14 03:08:33 -08:00
2015-12-16 08:38:04 -08:00
status = bladerf_sync_config(handler->dev,
BLADERF_MODULE_RX,
BLADERF_FORMAT_SC16_Q11_META,
num_buffers,
buffer_size_rx,
num_transfers,
timeout_ms);
if (status != 0) {
fprintf(stderr, "Failed to configure RX sync interface: %s\n", bladerf_strerror(status));
return status;
}
status = bladerf_sync_config(handler->dev,
BLADERF_MODULE_TX,
BLADERF_FORMAT_SC16_Q11_META,
num_buffers,
buffer_size_tx,
num_transfers,
timeout_ms);
if (status != 0) {
fprintf(stderr, "Failed to configure TX sync interface: %s\n", bladerf_strerror(status));
return status;
}
status = bladerf_enable_module(handler->dev, BLADERF_MODULE_RX, true);
if (status != 0) {
fprintf(stderr, "Failed to enable RX module: %s\n", bladerf_strerror(status));
return status;
}
status = bladerf_enable_module(handler->dev, BLADERF_MODULE_TX, true);
if (status != 0) {
fprintf(stderr, "Failed to enable TX module: %s\n", bladerf_strerror(status));
return status;
}
2015-12-17 13:57:13 -08:00
handler->rx_stream_enabled = true;
2015-12-16 08:38:04 -08:00
return 0;
}
int rf_blade_stop_rx_stream(void *h)
{
2015-12-16 08:38:04 -08:00
rf_blade_handler_t *handler = (rf_blade_handler_t*) h;
int status = bladerf_enable_module(handler->dev, BLADERF_MODULE_RX, false);
if (status != 0) {
fprintf(stderr, "Failed to enable RX module: %s\n", bladerf_strerror(status));
return status;
}
status = bladerf_enable_module(handler->dev, BLADERF_MODULE_TX, false);
if (status != 0) {
fprintf(stderr, "Failed to enable TX module: %s\n", bladerf_strerror(status));
return status;
}
2015-12-17 13:57:13 -08:00
handler->rx_stream_enabled = false;
handler->tx_stream_enabled = false;
2015-12-16 08:38:04 -08:00
return 0;
}
void rf_blade_flush_buffer(void *h)
{
}
2015-12-16 08:38:04 -08:00
bool rf_blade_has_rssi(void *h)
{
return false;
}
2015-12-16 08:38:04 -08:00
float rf_blade_get_rssi(void *h)
{
return 0;
}
2015-12-17 00:30:49 -08:00
int rf_blade_open(char *args, void **h)
{
2015-12-16 08:38:04 -08:00
*h = NULL;
rf_blade_handler_t *handler = (rf_blade_handler_t*) malloc(sizeof(rf_blade_handler_t));
if (!handler) {
perror("malloc");
return -1;
}
*h = handler;
printf("Opening bladeRF...\n");
2016-01-13 08:03:27 -08:00
int status = bladerf_open(&handler->dev, args);
2015-12-16 08:38:04 -08:00
if (status) {
fprintf(stderr, "Unable to open device: %s\n", bladerf_strerror(status));
return status;
}
//bladerf_log_set_verbosity(BLADERF_LOG_LEVEL_VERBOSE);
/* Configure the gains of the RX LNA and RX VGA1*/
status = bladerf_set_lna_gain(handler->dev, BLADERF_LNA_GAIN_MAX);
if (status != 0) {
fprintf(stderr, "Failed to set RX LNA gain: %s\n", bladerf_strerror(status));
return status;
}
status = bladerf_set_rxvga1(handler->dev, 27);
2015-12-16 08:38:04 -08:00
if (status != 0) {
fprintf(stderr, "Failed to set RX VGA1 gain: %s\n", bladerf_strerror(status));
return status;
}
status = bladerf_set_txvga1(handler->dev, BLADERF_TXVGA1_GAIN_MAX);
2015-12-16 08:38:04 -08:00
if (status != 0) {
fprintf(stderr, "Failed to set TX VGA1 gain: %s\n", bladerf_strerror(status));
return status;
}
2015-12-17 13:57:13 -08:00
handler->rx_stream_enabled = false;
2015-12-16 10:41:24 -08:00
handler->tx_stream_enabled = false;
2015-12-16 08:38:04 -08:00
return 0;
}
int rf_blade_close(void *h)
{
2015-12-16 08:38:04 -08:00
rf_blade_handler_t *handler = (rf_blade_handler_t*) h;
bladerf_close(handler->dev);
return 0;
}
2015-12-16 08:38:04 -08:00
void rf_blade_set_master_clock_rate(void *h, double rate)
{
}
2015-12-16 08:38:04 -08:00
bool rf_blade_is_master_clock_dynamic(void *h)
{
return true;
}
double rf_blade_set_rx_srate(void *h, double freq)
{
2015-12-16 08:38:04 -08:00
uint32_t bw;
rf_blade_handler_t *handler = (rf_blade_handler_t*) h;
int status = bladerf_set_sample_rate(handler->dev, BLADERF_MODULE_RX, (uint32_t) freq, &handler->rx_rate);
if (status != 0) {
fprintf(stderr, "Failed to set samplerate = %u: %s\n", (uint32_t) freq, bladerf_strerror(status));
return -1;
}
2016-03-24 04:30:56 -07:00
if (handler->rx_rate < 2000000) {
status = bladerf_set_bandwidth(handler->dev, BLADERF_MODULE_RX, handler->rx_rate, &bw);
if (status != 0) {
fprintf(stderr, "Failed to set bandwidth = %u: %s\n", handler->rx_rate, bladerf_strerror(status));
return -1;
}
} else {
status = bladerf_set_bandwidth(handler->dev, BLADERF_MODULE_RX, handler->rx_rate*0.8, &bw);
if (status != 0) {
fprintf(stderr, "Failed to set bandwidth = %u: %s\n", handler->rx_rate, bladerf_strerror(status));
return -1;
}
2015-12-16 08:38:04 -08:00
}
2015-12-16 13:06:56 -08:00
printf("Set RX sampling rate %.2f Mhz, filter BW: %.2f Mhz\n", (float) handler->rx_rate/1e6, (float) bw/1e6);
2015-12-16 08:38:04 -08:00
return (double) handler->rx_rate;
}
double rf_blade_set_tx_srate(void *h, double freq)
{
2015-12-16 08:38:04 -08:00
uint32_t bw;
rf_blade_handler_t *handler = (rf_blade_handler_t*) h;
int status = bladerf_set_sample_rate(handler->dev, BLADERF_MODULE_TX, (uint32_t) freq, &handler->tx_rate);
if (status != 0) {
fprintf(stderr, "Failed to set samplerate = %u: %s\n", (uint32_t) freq, bladerf_strerror(status));
return -1;
}
status = bladerf_set_bandwidth(handler->dev, BLADERF_MODULE_TX, handler->tx_rate, &bw);
if (status != 0) {
fprintf(stderr, "Failed to set bandwidth = %u: %s\n", handler->tx_rate, bladerf_strerror(status));
return -1;
}
return (double) handler->tx_rate;
}
double rf_blade_set_rx_gain(void *h, double gain)
{
2015-12-16 08:38:04 -08:00
int status;
rf_blade_handler_t *handler = (rf_blade_handler_t*) h;
status = bladerf_set_rxvga2(handler->dev, (int) gain);
2015-12-16 08:38:04 -08:00
if (status != 0) {
fprintf(stderr, "Failed to set RX VGA2 gain: %s\n", bladerf_strerror(status));
return -1;
}
return rf_blade_get_rx_gain(h);
}
double rf_blade_set_tx_gain(void *h, double gain)
{
2015-12-16 08:38:04 -08:00
int status;
rf_blade_handler_t *handler = (rf_blade_handler_t*) h;
status = bladerf_set_txvga2(handler->dev, (int) gain);
if (status != 0) {
fprintf(stderr, "Failed to set TX VGA2 gain: %s\n", bladerf_strerror(status));
return -1;
}
return rf_blade_get_tx_gain(h);
}
double rf_blade_get_rx_gain(void *h)
{
2015-12-16 08:38:04 -08:00
int status;
int gain;
rf_blade_handler_t *handler = (rf_blade_handler_t*) h;
status = bladerf_get_rxvga2(handler->dev, &gain);
if (status != 0) {
fprintf(stderr, "Failed to get RX VGA2 gain: %s\n",
bladerf_strerror(status));
return -1;
}
return gain; // Add rxvga1 and LNA
}
double rf_blade_get_tx_gain(void *h)
{
2015-12-16 08:38:04 -08:00
int status;
int gain;
rf_blade_handler_t *handler = (rf_blade_handler_t*) h;
status = bladerf_get_txvga2(handler->dev, &gain);
if (status != 0) {
fprintf(stderr, "Failed to get TX VGA2 gain: %s\n",
bladerf_strerror(status));
return -1;
}
2016-01-18 03:35:40 -08:00
return gain; // Add txvga1
}
double rf_blade_set_rx_freq(void *h, double freq)
{
2015-12-16 08:38:04 -08:00
rf_blade_handler_t *handler = (rf_blade_handler_t*) h;
2015-12-16 13:06:56 -08:00
uint32_t f_int = (uint32_t) round(freq);
int status = bladerf_set_frequency(handler->dev, BLADERF_MODULE_RX, f_int);
2015-12-16 08:38:04 -08:00
if (status != 0) {
fprintf(stderr, "Failed to set samplerate = %u: %s\n",
(uint32_t) freq, bladerf_strerror(status));
return -1;
}
return freq;
}
double rf_blade_set_tx_freq(void *h, double freq)
{
2015-12-16 08:38:04 -08:00
rf_blade_handler_t *handler = (rf_blade_handler_t*) h;
2015-12-16 13:06:56 -08:00
uint32_t f_int = (uint32_t) round(freq);
int status = bladerf_set_frequency(handler->dev, BLADERF_MODULE_TX, f_int);
2015-12-16 08:38:04 -08:00
if (status != 0) {
fprintf(stderr, "Failed to set samplerate = %u: %s\n",
(uint32_t) freq, bladerf_strerror(status));
return -1;
}
return freq;
}
2016-01-14 03:08:33 -08:00
void rf_blade_set_tx_cal(void *h, srslte_rf_cal_t *cal) {
rf_blade_handler_t *handler = (rf_blade_handler_t*) h;
bladerf_set_correction(handler->dev, BLADERF_MODULE_TX, BLADERF_CORR_FPGA_PHASE, cal->dc_gain);
bladerf_set_correction(handler->dev, BLADERF_MODULE_TX, BLADERF_CORR_FPGA_GAIN, cal->dc_phase);
bladerf_set_correction(handler->dev, BLADERF_MODULE_TX, BLADERF_CORR_LMS_DCOFF_I, cal->iq_i);
bladerf_set_correction(handler->dev, BLADERF_MODULE_TX, BLADERF_CORR_LMS_DCOFF_Q, cal->iq_q);
}
void rf_blade_set_rx_cal(void *h, srslte_rf_cal_t *cal) {
rf_blade_handler_t *handler = (rf_blade_handler_t*) h;
bladerf_set_correction(handler->dev, BLADERF_MODULE_RX, BLADERF_CORR_FPGA_PHASE, cal->dc_gain);
bladerf_set_correction(handler->dev, BLADERF_MODULE_RX, BLADERF_CORR_FPGA_GAIN, cal->dc_phase);
bladerf_set_correction(handler->dev, BLADERF_MODULE_RX, BLADERF_CORR_LMS_DCOFF_I, cal->iq_i);
bladerf_set_correction(handler->dev, BLADERF_MODULE_RX, BLADERF_CORR_LMS_DCOFF_Q, cal->iq_q);
}
2015-12-16 08:38:04 -08:00
static void timestamp_to_secs(uint32_t rate, uint64_t timestamp, time_t *secs, double *frac_secs) {
double totalsecs = (double) timestamp/rate;
time_t secs_i = (time_t) totalsecs;
if (secs) {
*secs = secs_i;
}
if (frac_secs) {
*frac_secs = totalsecs-secs_i;
}
}
2015-12-16 08:38:04 -08:00
static void secs_to_timestamps(uint32_t rate, time_t secs, double frac_secs, uint64_t *timestamp) {
double totalsecs = (double) secs + frac_secs;
if (timestamp) {
*timestamp = rate * totalsecs;
}
}
void rf_blade_get_time(void *h, time_t *secs, double *frac_secs)
{
rf_blade_handler_t *handler = (rf_blade_handler_t*) h;
struct bladerf_metadata meta;
int status = bladerf_get_timestamp(handler->dev, BLADERF_MODULE_RX, &meta.timestamp);
if (status != 0) {
fprintf(stderr, "Failed to get current RX timestamp: %s\n",
bladerf_strerror(status));
}
timestamp_to_secs(handler->rx_rate, meta.timestamp, secs, frac_secs);
}
int rf_blade_recv_with_time(void *h,
void *data,
uint32_t nsamples,
bool blocking,
time_t *secs,
double *frac_secs)
{
2015-12-16 08:38:04 -08:00
rf_blade_handler_t *handler = (rf_blade_handler_t*) h;
struct bladerf_metadata meta;
int status;
memset(&meta, 0, sizeof(meta));
meta.flags = BLADERF_META_FLAG_RX_NOW;
if (2*nsamples > CONVERT_BUFFER_SIZE) {
fprintf(stderr, "RX failed: nsamples exceeds buffer size (%d>%d)\n", nsamples, CONVERT_BUFFER_SIZE);
return -1;
}
2016-01-14 03:08:33 -08:00
status = bladerf_sync_rx(handler->dev, handler->rx_buffer, nsamples, &meta, 2000);
2015-12-16 08:38:04 -08:00
if (status) {
fprintf(stderr, "RX failed: %s\n\n", bladerf_strerror(status));
return -1;
} else if (meta.status & BLADERF_META_STATUS_OVERRUN) {
2015-12-18 03:38:25 -08:00
if (blade_error_handler) {
srslte_rf_error_t error;
error.opt = meta.actual_count;
error.type = SRSLTE_RF_ERROR_OVERFLOW;
blade_error_handler(error);
} else {
fprintf(stderr, "Overrun detected in scheduled RX. "
2015-12-16 08:38:04 -08:00
"%u valid samples were read.\n\n", meta.actual_count);
2015-12-18 03:38:25 -08:00
}
2015-12-16 08:38:04 -08:00
}
timestamp_to_secs(handler->rx_rate, meta.timestamp, secs, frac_secs);
srslte_vec_convert_if(handler->rx_buffer, data, 2048, 2*nsamples);
return nsamples;
}
int rf_blade_send_timed(void *h,
void *data,
int nsamples,
time_t secs,
double frac_secs,
bool has_time_spec,
bool blocking,
bool is_start_of_burst,
bool is_end_of_burst)
{
2015-12-16 08:38:04 -08:00
rf_blade_handler_t *handler = (rf_blade_handler_t*) h;
struct bladerf_metadata meta;
int status;
2015-12-16 10:41:24 -08:00
if (!handler->tx_stream_enabled) {
rf_blade_start_tx_stream(h);
}
2015-12-16 08:38:04 -08:00
if (2*nsamples > CONVERT_BUFFER_SIZE) {
fprintf(stderr, "TX failed: nsamples exceeds buffer size (%d>%d)\n", nsamples, CONVERT_BUFFER_SIZE);
return -1;
}
srslte_vec_convert_fi(data, handler->tx_buffer, 2048, 2*nsamples);
memset(&meta, 0, sizeof(meta));
if (is_start_of_burst) {
if (has_time_spec) {
secs_to_timestamps(handler->tx_rate, secs, frac_secs, &meta.timestamp);
} else {
meta.flags |= BLADERF_META_FLAG_TX_NOW;
}
meta.flags |= BLADERF_META_FLAG_TX_BURST_START;
}
if (is_end_of_burst) {
meta.flags |= BLADERF_META_FLAG_TX_BURST_END;
}
2016-01-14 03:08:33 -08:00
status = bladerf_sync_tx(handler->dev, handler->tx_buffer, nsamples, &meta, 2000);
2015-12-18 03:38:25 -08:00
if (status == BLADERF_ERR_TIME_PAST) {
if (blade_error_handler) {
srslte_rf_error_t error;
error.type = SRSLTE_RF_ERROR_LATE;
blade_error_handler(error);
} else {
fprintf(stderr, "TX failed: %s\n", bladerf_strerror(status));
}
} else if (status) {
2015-12-16 08:38:04 -08:00
fprintf(stderr, "TX failed: %s\n", bladerf_strerror(status));
return status;
2015-12-18 03:38:25 -08:00
} else if (meta.status == BLADERF_META_STATUS_UNDERRUN) {
if (blade_error_handler) {
srslte_rf_error_t error;
error.type = SRSLTE_RF_ERROR_UNDERFLOW;
blade_error_handler(error);
} else {
fprintf(stderr, "TX warning: underflow detected.\n");
}
2015-12-16 08:38:04 -08:00
}
2015-12-18 03:38:25 -08:00
2015-12-16 08:38:04 -08:00
return nsamples;
}