srsLTE/lib/src/phy/phch/uci.c

931 lines
30 KiB
C
Raw Normal View History

2019-04-26 12:27:38 -07:00
/*
2020-03-13 04:12:52 -07:00
* Copyright 2013-2020 Software Radio Systems Limited
*
2019-04-26 12:27:38 -07:00
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
2015-05-08 08:05:40 -07:00
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2015-05-08 08:05:40 -07:00
* GNU Affero General Public License for more details.
*
2015-05-08 08:05:40 -07:00
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include "srslte/phy/common/phy_common.h"
2017-05-18 00:48:24 -07:00
#include "srslte/phy/fec/cbsegm.h"
#include "srslte/phy/fec/convcoder.h"
#include "srslte/phy/fec/crc.h"
#include "srslte/phy/fec/rm_conv.h"
#include "srslte/phy/phch/uci.h"
2017-05-18 00:48:24 -07:00
#include "srslte/phy/utils/bit.h"
#include "srslte/phy/utils/debug.h"
#include "srslte/phy/utils/vector.h"
/* Table 5.2.2.6.4-1: Basis sequence for (32, O) code */
2020-03-04 05:53:41 -08:00
static uint8_t M_basis_seq[SRSLTE_UCI_M_BASIS_SEQ_LEN][SRSLTE_UCI_MAX_ACK_SR_BITS] = {
{1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1}, {1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1},
{1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1}, {1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1},
{1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1}, {1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1}, {1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1},
{1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1}, {1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1}, {1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1},
{1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1}, {1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1}, {1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1},
{1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1}, {1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0}, {1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0},
{1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0}, {1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0}, {1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1},
{1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1}, {1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1}, {1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0}, {1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1}, {1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0},
{1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0}, {1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0}, {1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
};
2020-03-04 05:53:41 -08:00
static inline bool encode_M_basis_seq_u16(uint16_t w, uint32_t bit_idx)
{
/// Table 5.2.2.6.4-1: Basis sequence for (32, O) code compressed in uint16_t types
const uint16_t M_basis_seq_b[SRSLTE_UCI_M_BASIS_SEQ_LEN] = {
0b10000000011, 0b11000000111, 0b11101001001, 0b10100001101, 0b10010001111, 0b10111010011, 0b11101010101,
0b10110011001, 0b11010011011, 0b11001011101, 0b11011100101, 0b10101100111, 0b11110101001, 0b11010101011,
0b10010110001, 0b11011110011, 0b01001110111, 0b00100111001, 0b00011111011, 0b00001100001, 0b10001000101,
0b11000001011, 0b10110010001, 0b11100010111, 0b01111011111, 0b10011100011, 0b01100101101, 0b01110101111,
0b00101110101, 0b00111111101, 0b11111111111, 0b00000000001,
};
// Apply mask
uint16_t d = (uint16_t)w & M_basis_seq_b[bit_idx % SRSLTE_UCI_M_BASIS_SEQ_LEN];
// Compute parity
d ^= (uint16_t)(d >> 8U);
d ^= (uint16_t)(d >> 4U);
d &= 0xf;
d = (0x6996U >> d) & 1U;
// Return false if 0, otherwise it returns true
return (d != 0);
}
static uint8_t M_basis_seq_pucch[20][13] = {
{1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0}, {1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0},
{1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1}, {1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1},
{1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1}, {1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1},
{1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1}, {1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1},
{1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1}, {1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1},
{1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1}, {1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1},
{1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1}, {1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1},
{1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1}, {1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1},
{1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1}, {1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1},
{1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0},
};
void srslte_uci_cqi_pucch_init(srslte_uci_cqi_pucch_t* q)
{
uint8_t word[16];
uint32_t nwords = 1 << SRSLTE_UCI_MAX_CQI_LEN_PUCCH;
q->cqi_table = srslte_vec_malloc(nwords * sizeof(int8_t*));
q->cqi_table_s = srslte_vec_malloc(nwords * sizeof(int16_t*));
for (uint32_t w = 0; w < nwords; w++) {
q->cqi_table[w] = srslte_vec_malloc(SRSLTE_UCI_CQI_CODED_PUCCH_B * sizeof(int8_t));
q->cqi_table_s[w] = srslte_vec_malloc(SRSLTE_UCI_CQI_CODED_PUCCH_B * sizeof(int16_t));
uint8_t* ptr = word;
srslte_bit_unpack(w, &ptr, SRSLTE_UCI_MAX_CQI_LEN_PUCCH);
srslte_uci_encode_cqi_pucch(word, SRSLTE_UCI_MAX_CQI_LEN_PUCCH, q->cqi_table[w]);
for (int j = 0; j < SRSLTE_UCI_CQI_CODED_PUCCH_B; j++) {
q->cqi_table_s[w][j] = (int16_t)(2 * q->cqi_table[w][j] - 1);
2017-03-28 00:13:24 -07:00
}
}
}
void srslte_uci_cqi_pucch_free(srslte_uci_cqi_pucch_t* q)
{
uint32_t nwords = 1 << SRSLTE_UCI_MAX_CQI_LEN_PUCCH;
for (uint32_t w = 0; w < nwords; w++) {
if (q->cqi_table[w]) {
free(q->cqi_table[w]);
}
if (q->cqi_table_s[w]) {
free(q->cqi_table_s[w]);
}
}
free(q->cqi_table);
free(q->cqi_table_s);
}
/* Encode UCI CQI/PMI as described in 5.2.3.3 of 36.212
2017-03-28 00:13:24 -07:00
*/
int srslte_uci_encode_cqi_pucch(uint8_t* cqi_data, uint32_t cqi_len, uint8_t b_bits[SRSLTE_UCI_CQI_CODED_PUCCH_B])
2017-03-28 00:13:24 -07:00
{
if (cqi_len <= SRSLTE_UCI_MAX_CQI_LEN_PUCCH) {
for (uint32_t i = 0; i < SRSLTE_UCI_CQI_CODED_PUCCH_B; i++) {
uint64_t x = 0;
for (uint32_t n = 0; n < cqi_len; n++) {
x += cqi_data[n] * M_basis_seq_pucch[i][n];
2017-03-28 00:13:24 -07:00
}
b_bits[i] = (uint8_t)(x % 2);
2017-03-28 00:13:24 -07:00
}
return SRSLTE_SUCCESS;
} else {
return SRSLTE_ERROR_INVALID_INPUTS;
}
}
int srslte_uci_encode_cqi_pucch_from_table(srslte_uci_cqi_pucch_t* q,
uint8_t* cqi_data,
uint32_t cqi_len,
uint8_t b_bits[SRSLTE_UCI_CQI_CODED_PUCCH_B])
{
if (cqi_len <= SRSLTE_UCI_MAX_CQI_LEN_PUCCH) {
bzero(&cqi_data[cqi_len], SRSLTE_UCI_MAX_CQI_LEN_PUCCH - cqi_len);
uint8_t* ptr = cqi_data;
uint32_t packed = srslte_bit_pack(&ptr, SRSLTE_UCI_MAX_CQI_LEN_PUCCH);
memcpy(b_bits, q->cqi_table[packed], SRSLTE_UCI_CQI_CODED_PUCCH_B);
return SRSLTE_SUCCESS;
} else {
return SRSLTE_ERROR_INVALID_INPUTS;
}
}
/* Decode UCI CQI/PMI over PUCCH
2017-03-28 00:13:24 -07:00
*/
2019-04-23 01:53:11 -07:00
int16_t srslte_uci_decode_cqi_pucch(srslte_uci_cqi_pucch_t* q,
int16_t b_bits[SRSLTE_CQI_MAX_BITS],
uint8_t* cqi_data,
uint32_t cqi_len)
2017-03-28 00:13:24 -07:00
{
if (cqi_len < SRSLTE_UCI_MAX_CQI_LEN_PUCCH && b_bits != NULL && cqi_data != NULL) {
uint32_t max_w = 0;
int32_t max_corr = INT32_MIN;
uint32_t nwords = 1 << SRSLTE_UCI_MAX_CQI_LEN_PUCCH;
for (uint32_t w = 0; w < nwords; w += 1 << (SRSLTE_UCI_MAX_CQI_LEN_PUCCH - cqi_len)) {
2017-03-28 00:13:24 -07:00
// Calculate correlation with pregenerated word and select maximum
int32_t corr = srslte_vec_dot_prod_sss(q->cqi_table_s[w], b_bits, SRSLTE_UCI_CQI_CODED_PUCCH_B);
if (corr > max_corr) {
2019-04-23 01:53:11 -07:00
max_corr = corr;
max_w = w;
2017-03-28 00:13:24 -07:00
}
}
// Convert word to bits again
uint8_t* ptr = cqi_data;
srslte_bit_unpack(max_w, &ptr, SRSLTE_UCI_MAX_CQI_LEN_PUCCH);
2017-03-28 00:13:24 -07:00
INFO("Decoded CQI: w=%d, corr=%d\n", max_w, max_corr);
return max_corr;
} else {
return SRSLTE_ERROR_INVALID_INPUTS;
2019-04-23 01:53:11 -07:00
}
2017-03-28 00:13:24 -07:00
}
2020-03-04 05:53:41 -08:00
void srslte_uci_encode_m_basis_bits(const uint8_t* input, uint32_t input_len, uint8_t* output, uint32_t output_len)
2019-04-23 01:53:11 -07:00
{
2020-03-04 05:53:41 -08:00
// Limit number of input bits
input_len = SRSLTE_MIN(input_len, SRSLTE_UCI_MAX_ACK_SR_BITS);
// Pack input bits
uint16_t w = 0;
for (uint32_t i = 0; i < input_len; i++) {
w |= (input[i] & 1U) << i;
}
2020-03-04 05:53:41 -08:00
// Encode bits
for (uint32_t i = 0; i < SRSLTE_MIN(output_len, SRSLTE_UCI_M_BASIS_SEQ_LEN); i++) {
output[i] = encode_M_basis_seq_u16(w, i);
}
// Avoid repeating operation by copying repeated sequence
for (uint32_t i = SRSLTE_UCI_M_BASIS_SEQ_LEN; i < output_len; i++) {
output[i] = output[i % SRSLTE_UCI_M_BASIS_SEQ_LEN];
}
2019-04-23 01:53:11 -07:00
}
2020-03-04 05:53:41 -08:00
int32_t srslte_uci_decode_m_basis_bits(const int16_t* llr, uint32_t nof_llr, uint8_t* data, uint32_t data_len)
2020-01-31 15:51:53 -08:00
{
2020-03-04 05:53:41 -08:00
int32_t max_corr = 0; ///< Stores maximum correlation
uint16_t max_data = 0; ///< Stores the word for maximum correlation
// Return invalid inputs if data is not provided
if (!llr || !data) {
ERROR("Invalid inputs\n");
return SRSLTE_ERROR_INVALID_INPUTS;
}
// Return invalid inputs if not enough LLR are provided
if (nof_llr < SRSLTE_UCI_M_BASIS_SEQ_LEN) {
ERROR("Not enough LLR bits are provided %d. Required %d;\n", nof_llr, SRSLTE_UCI_M_BASIS_SEQ_LEN);
return SRSLTE_ERROR_INVALID_INPUTS;
}
// Limit data to maximum
data_len = SRSLTE_MIN(data_len, SRSLTE_UCI_MAX_ACK_SR_BITS);
// Brute force all possible sequences
uint16_t max_guess = (1 << data_len); ///< Maximum guess bit combination
for (uint16_t guess = 0; guess < max_guess; guess++) {
int32_t corr = 0;
/// Compute correlation for the number of LLR
bool early_termination = false;
2020-04-15 06:38:48 -07:00
for (uint32_t i = 0; i < nof_llr && !early_termination; i++) {
2020-03-04 05:53:41 -08:00
// Encode guess word
bool d = encode_M_basis_seq_u16(guess, i);
2020-01-31 15:51:53 -08:00
2020-03-04 05:53:41 -08:00
// Correlate
corr += (int32_t)(d ? llr[i] : -llr[i]);
2020-01-31 15:51:53 -08:00
2020-03-04 05:53:41 -08:00
// Limit correlation to half range
corr = SRSLTE_MIN(corr, INT32_MAX / 2);
2020-01-31 15:51:53 -08:00
2020-03-04 05:53:41 -08:00
/// Early terminates if at least SRSLTE_UCI_M_BASIS_SEQ_LEN/4 LLR processed and negative correlation
early_termination |= (i > SRSLTE_UCI_M_BASIS_SEQ_LEN / 4) && (corr < 0);
/// Early terminates if the correlation overflows
early_termination |= (corr < -INT32_MAX / 2);
2020-01-31 15:51:53 -08:00
}
2020-03-04 05:53:41 -08:00
// Take decision
2020-01-31 15:51:53 -08:00
if (corr > max_corr) {
max_corr = corr;
max_data = guess;
}
}
2020-03-04 05:53:41 -08:00
// Unpack
for (uint32_t i = 0; i < data_len; i++) {
2020-04-15 06:38:48 -07:00
data[i] = (uint8_t)((max_data >> i) & 1U);
2020-01-31 15:51:53 -08:00
}
2020-03-04 05:53:41 -08:00
// Return correlation
2020-01-31 15:51:53 -08:00
return max_corr;
}
void cqi_pusch_pregen(srslte_uci_cqi_pusch_t* q)
{
uint8_t word[11];
for (int i = 0; i < 11; i++) {
uint32_t nwords = (1 << (i + 1));
q->cqi_table[i] = srslte_vec_u8_malloc(nwords * 32);
q->cqi_table_s[i] = srslte_vec_i16_malloc(nwords * 32);
for (uint32_t w = 0; w < nwords; w++) {
uint8_t* ptr = word;
srslte_bit_unpack(w, &ptr, i + 1);
2020-03-04 05:53:41 -08:00
srslte_uci_encode_m_basis_bits(word, i + 1, &q->cqi_table[i][32 * w], SRSLTE_UCI_M_BASIS_SEQ_LEN);
for (int j = 0; j < 32; j++) {
q->cqi_table_s[i][32 * w + j] = 2 * q->cqi_table[i][32 * w + j] - 1;
}
}
}
}
void cqi_pusch_pregen_free(srslte_uci_cqi_pusch_t* q)
{
for (int i = 0; i < 11; i++) {
if (q->cqi_table[i]) {
free(q->cqi_table[i]);
}
if (q->cqi_table_s[i]) {
free(q->cqi_table_s[i]);
}
}
}
int srslte_uci_cqi_init(srslte_uci_cqi_pusch_t* q)
{
2015-03-18 08:05:38 -07:00
if (srslte_crc_init(&q->crc, SRSLTE_LTE_CRC8, 8)) {
return SRSLTE_ERROR;
}
int poly[3] = {0x6D, 0x4F, 0x57};
if (srslte_viterbi_init(&q->viterbi, SRSLTE_VITERBI_37, poly, SRSLTE_UCI_MAX_CQI_LEN_PUSCH, true)) {
return SRSLTE_ERROR;
}
cqi_pusch_pregen(q);
return SRSLTE_SUCCESS;
}
void srslte_uci_cqi_free(srslte_uci_cqi_pusch_t* q)
{
srslte_viterbi_free(&q->viterbi);
cqi_pusch_pregen_free(q);
}
2019-04-23 01:53:11 -07:00
static uint32_t Q_prime_cqi(srslte_pusch_cfg_t* cfg, uint32_t O, float beta, uint32_t Q_prime_ri)
{
2019-04-23 01:53:11 -07:00
uint32_t K = cfg->K_segm;
2015-02-10 07:49:11 -08:00
uint32_t Q_prime = 0;
2019-04-23 01:53:11 -07:00
uint32_t L = (O < 11) ? 0 : 8;
uint32_t x = 999999;
2019-04-23 01:53:11 -07:00
2015-02-10 07:49:11 -08:00
if (K > 0) {
2019-04-23 01:53:11 -07:00
x = (uint32_t)ceilf((float)(O + L) * cfg->grant.L_prb * SRSLTE_NRE * cfg->grant.nof_symb * beta / K);
2015-02-10 07:49:11 -08:00
}
2019-04-23 01:53:11 -07:00
Q_prime = SRSLTE_MIN(x, cfg->grant.L_prb * SRSLTE_NRE * cfg->grant.nof_symb - Q_prime_ri);
return Q_prime;
}
/* Encode UCI CQI/PMI for payloads equal or lower to 11 bits (Sec 5.2.2.6.4)
*/
int encode_cqi_short(srslte_uci_cqi_pusch_t* q, uint8_t* data, uint32_t nof_bits, uint8_t* q_bits, uint32_t Q)
{
if (nof_bits <= 11 && nof_bits > 0 && q != NULL && data != NULL && q_bits != NULL) {
uint8_t* ptr = data;
uint32_t w = srslte_bit_pack(&ptr, nof_bits);
for (int i = 0; i < Q; i++) {
q_bits[i] = q->cqi_table[nof_bits - 1][w * 32 + (i % 32)];
}
return SRSLTE_SUCCESS;
} else {
return SRSLTE_ERROR_INVALID_INPUTS;
}
}
// For decoding the block-encoded CQI we use ML decoding
int decode_cqi_short(srslte_uci_cqi_pusch_t* q, int16_t* q_bits, uint32_t Q, uint8_t* data, uint32_t nof_bits)
{
if (nof_bits <= 11 && nof_bits > 0 && q != NULL && data != NULL && q_bits != NULL) {
// Accumulate all copies of the 32-length sequence
if (Q > 32) {
int i = 1;
for (; i < Q / 32; i++) {
srslte_vec_sum_sss(&q_bits[i * 32], q_bits, q_bits, 32);
}
srslte_vec_sum_sss(&q_bits[i * 32], q_bits, q_bits, Q % 32);
}
uint32_t max_w = 0;
int32_t max_corr = INT32_MIN;
for (uint32_t w = 0; w < (1 << nof_bits); w++) {
// Calculate correlation with pregenerated word and select maximum
int32_t corr = srslte_vec_dot_prod_sss(&q->cqi_table_s[nof_bits - 1][w * 32], q_bits, SRSLTE_MIN(32, Q));
if (corr > max_corr) {
max_corr = corr;
max_w = w;
}
}
// Convert word to bits again
uint8_t* ptr = data;
srslte_bit_unpack(max_w, &ptr, nof_bits);
INFO("Decoded CQI: w=%d, corr=%d\n", max_w, max_corr);
return SRSLTE_SUCCESS;
} else {
return SRSLTE_ERROR_INVALID_INPUTS;
}
}
/* Encode UCI CQI/PMI for payloads greater than 11 bits (go through CRC, conv coder and rate match)
*/
int encode_cqi_long(srslte_uci_cqi_pusch_t* q, uint8_t* data, uint32_t nof_bits, uint8_t* q_bits, uint32_t Q)
{
2015-03-18 08:05:38 -07:00
srslte_convcoder_t encoder;
if (nof_bits + 8 < SRSLTE_UCI_MAX_CQI_LEN_PUSCH && q != NULL && data != NULL && q_bits != NULL) {
int poly[3] = {0x6D, 0x4F, 0x57};
encoder.K = 7;
encoder.R = 3;
encoder.tail_biting = true;
memcpy(encoder.poly, poly, 3 * sizeof(int));
memcpy(q->tmp_cqi, data, sizeof(uint8_t) * nof_bits);
2015-03-18 08:05:38 -07:00
srslte_crc_attach(&q->crc, q->tmp_cqi, nof_bits);
DEBUG("cqi_crc_tx=");
if (SRSLTE_VERBOSE_ISDEBUG()) {
srslte_vec_fprint_b(stdout, q->tmp_cqi, nof_bits + 8);
}
2015-03-18 08:05:38 -07:00
srslte_convcoder_encode(&encoder, q->tmp_cqi, q->encoded_cqi, nof_bits + 8);
DEBUG("cconv_tx=");
2015-03-18 11:14:24 -07:00
if (SRSLTE_VERBOSE_ISDEBUG()) {
srslte_vec_fprint_b(stdout, q->encoded_cqi, 3 * (nof_bits + 8));
}
2015-03-18 08:05:38 -07:00
srslte_rm_conv_tx(q->encoded_cqi, 3 * (nof_bits + 8), q_bits, Q);
return SRSLTE_SUCCESS;
} else {
return SRSLTE_ERROR_INVALID_INPUTS;
}
}
int decode_cqi_long(srslte_uci_cqi_pusch_t* q, int16_t* q_bits, uint32_t Q, uint8_t* data, uint32_t nof_bits)
{
int ret = SRSLTE_ERROR_INVALID_INPUTS;
if (nof_bits + 8 < SRSLTE_UCI_MAX_CQI_LEN_PUSCH && q != NULL && data != NULL && q_bits != NULL) {
srslte_rm_conv_rx_s(q_bits, Q, q->encoded_cqi_s, 3 * (nof_bits + 8));
DEBUG("cconv_rx=");
if (SRSLTE_VERBOSE_ISDEBUG()) {
srslte_vec_fprint_s(stdout, q->encoded_cqi_s, 3 * (nof_bits + 8));
}
srslte_viterbi_decode_s(&q->viterbi, q->encoded_cqi_s, q->tmp_cqi, nof_bits + 8);
DEBUG("cqi_crc_rx=");
if (SRSLTE_VERBOSE_ISDEBUG()) {
srslte_vec_fprint_b(stdout, q->tmp_cqi, nof_bits + 8);
}
ret = srslte_crc_checksum(&q->crc, q->tmp_cqi, nof_bits + 8);
if (ret == 0) {
memcpy(data, q->tmp_cqi, nof_bits * sizeof(uint8_t));
2017-08-22 06:06:51 -07:00
ret = 1;
} else {
ret = 0;
}
}
return ret;
}
/* Encode UCI CQI/PMI
*/
2019-04-23 01:53:11 -07:00
int srslte_uci_decode_cqi_pusch(srslte_uci_cqi_pusch_t* q,
srslte_pusch_cfg_t* cfg,
int16_t* q_bits,
float beta,
uint32_t Q_prime_ri,
uint32_t cqi_len,
uint8_t* cqi_data,
bool* cqi_ack)
{
if (beta < 0) {
2019-04-23 01:53:11 -07:00
ERROR("Error beta is reserved\n");
return -1;
}
uint32_t Q_prime = Q_prime_cqi(cfg, cqi_len, beta, Q_prime_ri);
2019-04-23 01:53:11 -07:00
uint32_t Qm = srslte_mod_bits_x_symbol(cfg->grant.tb.mod);
int ret = SRSLTE_ERROR;
if (cqi_len <= 11) {
2019-04-23 01:53:11 -07:00
ret = decode_cqi_short(q, q_bits, Q_prime * Qm, cqi_data, cqi_len);
if (cqi_ack) {
*cqi_ack = true;
}
} else {
2019-04-23 01:53:11 -07:00
ret = decode_cqi_long(q, q_bits, Q_prime * Qm, cqi_data, cqi_len);
if (ret == 1) {
if (cqi_ack) {
*cqi_ack = true;
}
ret = 0;
} else if (ret == 0) {
if (cqi_ack) {
*cqi_ack = false;
}
}
}
if (ret) {
return ret;
} else {
return (int)Q_prime;
}
}
/* Encode UCI CQI/PMI as described in 5.2.2.6 of 36.212
*/
2019-04-23 01:53:11 -07:00
int srslte_uci_encode_cqi_pusch(srslte_uci_cqi_pusch_t* q,
srslte_pusch_cfg_t* cfg,
uint8_t* cqi_data,
uint32_t cqi_len,
float beta,
uint32_t Q_prime_ri,
uint8_t* q_bits)
{
2015-03-24 07:58:33 -07:00
if (beta < 0) {
2019-04-23 01:53:11 -07:00
ERROR("Error beta is reserved\n");
return -1;
2015-03-24 07:58:33 -07:00
}
uint32_t Q_prime = Q_prime_cqi(cfg, cqi_len, beta, Q_prime_ri);
2019-04-23 01:53:11 -07:00
uint32_t Qm = srslte_mod_bits_x_symbol(cfg->grant.tb.mod);
int ret = SRSLTE_ERROR;
if (cqi_len <= 11) {
2019-04-23 01:53:11 -07:00
ret = encode_cqi_short(q, cqi_data, cqi_len, q_bits, Q_prime * Qm);
} else {
2019-04-23 01:53:11 -07:00
ret = encode_cqi_long(q, cqi_data, cqi_len, q_bits, Q_prime * Qm);
}
if (ret) {
return ret;
} else {
2019-04-23 01:53:11 -07:00
return (int)Q_prime;
}
}
/* Generates UCI-ACK bits and computes position in q bits */
static int uci_ulsch_interleave_ack_gen(uint32_t ack_q_bit_idx,
uint32_t Qm,
uint32_t H_prime_total,
uint32_t N_pusch_symbs,
srslte_uci_bit_t* ack_bits)
{
const uint32_t ack_column_set_norm[4] = {2, 3, 8, 9};
const uint32_t ack_column_set_ext[4] = {1, 2, 6, 7};
2015-03-24 07:58:33 -07:00
2019-04-23 01:53:11 -07:00
if (H_prime_total / N_pusch_symbs >= 1 + ack_q_bit_idx / 4) {
uint32_t row = H_prime_total / N_pusch_symbs - 1 - ack_q_bit_idx / 4;
uint32_t colidx = (3 * ack_q_bit_idx) % 4;
2019-04-23 01:53:11 -07:00
uint32_t col = N_pusch_symbs > 10 ? ack_column_set_norm[colidx] : ack_column_set_ext[colidx];
for (uint32_t k = 0; k < Qm; k++) {
ack_bits[k].position = row * Qm + (H_prime_total / N_pusch_symbs) * col * Qm + k;
2019-04-23 01:53:11 -07:00
}
return SRSLTE_SUCCESS;
} else {
2019-04-23 01:53:11 -07:00
ERROR("Error interleaving UCI-ACK bit idx %d for H_prime_total=%d and N_pusch_symbs=%d\n",
ack_q_bit_idx,
H_prime_total,
N_pusch_symbs);
return SRSLTE_ERROR;
}
}
/* Inserts UCI-RI bits into the correct positions in the g buffer before interleaving */
static int uci_ulsch_interleave_ri_gen(uint32_t ri_q_bit_idx,
uint32_t Qm,
uint32_t H_prime_total,
uint32_t N_pusch_symbs,
srslte_uci_bit_t* ri_bits)
{
static uint32_t ri_column_set_norm[4] = {1, 4, 7, 10};
static uint32_t ri_column_set_ext[4] = {0, 3, 5, 8};
if (H_prime_total / N_pusch_symbs >= 1 + ri_q_bit_idx / 4) {
uint32_t row = H_prime_total / N_pusch_symbs - 1 - ri_q_bit_idx / 4;
uint32_t colidx = (3 * ri_q_bit_idx) % 4;
2019-04-23 01:53:11 -07:00
uint32_t col = N_pusch_symbs > 10 ? ri_column_set_norm[colidx] : ri_column_set_ext[colidx];
for (uint32_t k = 0; k < Qm; k++) {
2019-04-23 01:53:11 -07:00
ri_bits[k].position = row * Qm + (H_prime_total / N_pusch_symbs) * col * Qm + k;
}
return SRSLTE_SUCCESS;
} else {
2019-04-23 01:53:11 -07:00
ERROR("Error interleaving UCI-RI bit idx %d for H_prime_total=%d and N_pusch_symbs=%d\n",
ri_q_bit_idx,
H_prime_total,
N_pusch_symbs);
return SRSLTE_ERROR;
}
}
static uint32_t Q_prime_ri_ack(srslte_pusch_cfg_t* cfg, uint32_t O, uint32_t O_cqi, float beta)
{
2019-04-23 01:53:11 -07:00
2015-03-24 07:58:33 -07:00
if (beta < 0) {
2019-04-23 01:53:11 -07:00
ERROR("Error beta is reserved\n");
return -1;
2015-03-24 07:58:33 -07:00
}
2019-04-23 01:53:11 -07:00
uint32_t K = cfg->K_segm;
2015-02-10 07:49:11 -08:00
// If not carrying UL-SCH, get Q_prime according to 5.2.4.1
if (K == 0) {
if (O_cqi <= 11) {
2019-04-23 01:53:11 -07:00
K = O_cqi;
} else {
2019-04-23 01:53:11 -07:00
K = O_cqi + 8;
}
2015-02-10 07:49:11 -08:00
}
2019-04-23 01:53:11 -07:00
uint32_t x = (uint32_t)ceilf((float)O * cfg->grant.L_prb * SRSLTE_NRE * cfg->grant.nof_symb * beta / K);
2019-04-23 01:53:11 -07:00
uint32_t Q_prime = SRSLTE_MIN(x, 4 * cfg->grant.L_prb * SRSLTE_NRE);
return Q_prime;
}
static uint32_t encode_ri_ack(const uint8_t data[2], uint32_t O_ack, uint8_t Qm, srslte_uci_bit_t* q_encoded_bits)
{
2017-09-07 07:30:15 -07:00
uint32_t i = 0;
2019-04-23 01:53:11 -07:00
if (O_ack == 1) {
q_encoded_bits[i++].type = data[0] ? UCI_BIT_1 : UCI_BIT_0;
q_encoded_bits[i++].type = UCI_BIT_REPETITION;
while (i < Qm) {
2019-04-23 01:53:11 -07:00
q_encoded_bits[i++].type = UCI_BIT_PLACEHOLDER;
2017-09-07 07:30:15 -07:00
}
2019-04-23 01:53:11 -07:00
} else if (O_ack == 2) {
q_encoded_bits[i++].type = data[0] ? UCI_BIT_1 : UCI_BIT_0;
q_encoded_bits[i++].type = data[1] ? UCI_BIT_1 : UCI_BIT_0;
while (i < Qm) {
q_encoded_bits[i++].type = UCI_BIT_PLACEHOLDER;
2017-09-07 07:30:15 -07:00
}
2019-04-23 01:53:11 -07:00
q_encoded_bits[i++].type = (data[0] ^ data[1]) ? UCI_BIT_1 : UCI_BIT_0;
q_encoded_bits[i++].type = data[0] ? UCI_BIT_1 : UCI_BIT_0;
while (i < Qm * 2) {
q_encoded_bits[i++].type = UCI_BIT_PLACEHOLDER;
2017-09-07 07:30:15 -07:00
}
2019-04-23 01:53:11 -07:00
q_encoded_bits[i++].type = data[1] ? UCI_BIT_1 : UCI_BIT_0;
q_encoded_bits[i++].type = (data[0] ^ data[1]) ? UCI_BIT_1 : UCI_BIT_0;
while (i < Qm * 3) {
2019-04-23 01:53:11 -07:00
q_encoded_bits[i++].type = UCI_BIT_PLACEHOLDER;
2017-09-07 07:30:15 -07:00
}
}
2017-09-07 07:30:15 -07:00
return i;
}
2019-04-23 01:53:11 -07:00
static uint32_t
encode_ack_long(const uint8_t* data, uint32_t O_ack, uint8_t Q_m, uint32_t Q_prime, srslte_uci_bit_t* q_encoded_bits)
2019-04-23 01:53:11 -07:00
{
uint32_t Q_ack = Q_m * Q_prime;
2020-03-04 05:53:41 -08:00
if (O_ack > SRSLTE_UCI_MAX_ACK_BITS) {
ERROR("Error encoding long ACK bits: O_ack can't be higher than %d\n", SRSLTE_UCI_MAX_ACK_BITS);
2019-04-23 01:53:11 -07:00
return 0;
}
for (uint32_t i = 0; i < Q_ack; i++) {
uint32_t q_i = 0;
for (uint32_t n = 0; n < O_ack; n++) {
q_i = (q_i + (data[n] * M_basis_seq[i % 32][n])) % 2;
}
q_encoded_bits[i].type = q_i ? UCI_BIT_1 : UCI_BIT_0;
}
return Q_ack;
}
static int32_t decode_ri_ack_1bit(const int16_t* q_bits, const uint8_t* c_seq, uint8_t data[1])
{
int32_t sum = (int32_t)(q_bits[0] + q_bits[1]);
2020-03-04 05:53:41 -08:00
if (data) {
data[0] = (sum > 0) ? 1 : 0;
2020-03-04 05:53:41 -08:00
}
return abs(sum);
}
static int32_t decode_ri_ack_2bits(const int16_t* llr, uint32_t Qm, uint8_t data[2])
{
2020-03-04 05:53:41 -08:00
uint32_t p0 = Qm * 0 + 0;
uint32_t p1 = Qm * 0 + 1;
uint32_t p2 = Qm * 1 + 0;
uint32_t p3 = Qm * 1 + 1;
uint32_t p4 = Qm * 2 + 0;
uint32_t p5 = Qm * 2 + 1;
int16_t sum1 = llr[p0] + llr[p3];
int16_t sum2 = llr[p1] + llr[p4];
int16_t sum3 = llr[p2] + llr[p5];
data[0] = (sum1 > 0) ? 1 : 0;
data[1] = (sum2 > 0) ? 1 : 0;
2020-03-04 05:53:41 -08:00
bool parity_check = (sum3 > 0) == (data[0] ^ data[1]);
// Return 0 if parity check is not valid
return (parity_check ? (abs(sum1) + abs(sum2) + abs(sum3)) : 0);
}
2019-04-23 01:53:11 -07:00
// Table 5.2.2.6-A
const static uint8_t w_scram[4][4] = {{1, 1, 1, 1}, {1, 0, 1, 0}, {1, 1, 0, 0}, {1, 0, 0, 1}};
2019-04-23 01:53:11 -07:00
static void uci_ack_scramble_tdd(srslte_uci_bit_t* q, uint32_t O_ack, uint32_t Q_ack, uint32_t N_bundle)
{
if (N_bundle == 0) {
return;
}
uint32_t wi = (N_bundle - 1) % 4;
uint32_t m = O_ack == 1 ? 1 : 3;
srslte_uci_bit_type_t q_m1 = q[0].type;
uint32_t k = 0;
for (uint32_t i = 0; i < Q_ack; i++) {
switch (q[i].type) {
case UCI_BIT_REPETITION:
// A repetition bit always comes after a 1 or 0 so we can do i-1
if (i > 0) {
q[i].type = ((q_m1 == UCI_BIT_1 ? 1 : 0) + w_scram[wi][k / m]) % 2;
}
k = (k + 1) % (4 * m);
break;
case UCI_BIT_PLACEHOLDER:
// do not change
break;
default:
q_m1 = q[i].type;
q[i].type = ((q[i].type == UCI_BIT_1 ? 1 : 0) + w_scram[wi][k / m]) % 2;
k = (k + 1) % (4 * m);
break;
2018-01-31 07:48:50 -08:00
}
}
}
2019-04-23 01:53:11 -07:00
/* Encode UCI ACK/RI bits as described in 5.2.2.6 of 36.212
* Currently only supporting 1-bit RI
*/
2019-04-23 01:53:11 -07:00
int srslte_uci_encode_ack_ri(srslte_pusch_cfg_t* cfg,
uint8_t* data,
uint32_t O_ack,
uint32_t O_cqi,
float beta,
uint32_t H_prime_total,
bool input_is_ri,
uint32_t N_bundle,
srslte_uci_bit_t* bits)
{
if (beta < 0) {
2019-04-23 01:53:11 -07:00
ERROR("Error beta is reserved\n");
return -1;
}
2019-04-23 01:53:11 -07:00
uint32_t Q_prime = Q_prime_ri_ack(cfg, O_ack, O_cqi, beta);
2019-04-23 01:53:11 -07:00
uint32_t Q_ack = 0;
uint32_t Qm = srslte_mod_bits_x_symbol(cfg->grant.tb.mod);
2019-04-23 01:53:11 -07:00
if (O_ack < 3) {
uint32_t enc_len = encode_ri_ack(data, O_ack, Qm, bits);
// Repeat bits Q_prime times, remainder bits will be ignored later
while (Q_ack < Q_prime * Qm) {
for (uint32_t j = 0; j < enc_len; j++) {
bits[Q_ack++].type = bits[j].type;
}
}
} else {
Q_ack = encode_ack_long(data, O_ack, Qm, Q_prime, bits);
}
2019-04-23 01:53:11 -07:00
// Generate interleaver positions
if (Q_ack > 0) {
for (uint32_t i = 0; i < Q_prime; i++) {
if (input_is_ri) {
uci_ulsch_interleave_ri_gen(i, Qm, H_prime_total, cfg->grant.nof_symb, &bits[Qm * i]);
2018-01-31 07:48:50 -08:00
} else {
2019-04-23 01:53:11 -07:00
uci_ulsch_interleave_ack_gen(i, Qm, H_prime_total, cfg->grant.nof_symb, &bits[Qm * i]);
2018-01-31 07:48:50 -08:00
}
2019-04-23 01:53:11 -07:00
}
// TDD-bundling scrambling
if (!input_is_ri && N_bundle && O_ack > 0) {
uci_ack_scramble_tdd(bits, O_ack, Q_prime * Qm, N_bundle);
2017-09-08 01:41:52 -07:00
}
}
2017-09-07 08:46:30 -07:00
2019-04-23 01:53:11 -07:00
return (int)Q_prime;
}
/* Decode UCI ACK/RI bits as described in 5.2.2.6 of 36.212
* Currently only supporting 1-bit RI
*/
2019-04-23 01:53:11 -07:00
int srslte_uci_decode_ack_ri(srslte_pusch_cfg_t* cfg,
int16_t* q_bits,
uint8_t* c_seq,
float beta,
uint32_t H_prime_total,
uint32_t O_cqi,
srslte_uci_bit_t* ack_ri_bits,
2020-04-15 06:38:48 -07:00
uint8_t* data,
bool* valid,
2019-04-23 01:53:11 -07:00
uint32_t nof_bits,
bool is_ri)
{
if (beta < 0) {
2020-03-04 05:53:41 -08:00
ERROR("Error beta (%f) is reserved\n", beta);
return SRSLTE_ERROR;
}
uint32_t Qprime = Q_prime_ri_ack(cfg, nof_bits, O_cqi, beta);
2019-04-23 01:53:11 -07:00
uint32_t Qm = srslte_mod_bits_x_symbol(cfg->grant.tb.mod);
2020-03-04 05:53:41 -08:00
int16_t llr_acc[32] = {}; ///< LLR accumulator
uint32_t nof_acc =
(nof_bits == 1) ? Qm : (nof_bits == 2) ? Qm * 3 : SRSLTE_UCI_M_BASIS_SEQ_LEN; ///< Number of required LLR
uint32_t count_acc = 0; ///< LLR counter
for (uint32_t i = 0; i < Qprime; i++) {
if (is_ri) {
2020-03-04 05:53:41 -08:00
uci_ulsch_interleave_ri_gen(i, Qm, H_prime_total, cfg->grant.nof_symb, &ack_ri_bits[count_acc]);
} else {
2020-03-04 05:53:41 -08:00
uci_ulsch_interleave_ack_gen(i, Qm, H_prime_total, cfg->grant.nof_symb, &ack_ri_bits[count_acc]);
}
2020-03-04 05:53:41 -08:00
/// Extract and accumulate LLR
for (uint32_t j = 0; j < Qm; j++, count_acc++) {
// Calculate circular LLR index
uint32_t acc_idx = count_acc % nof_acc;
uint32_t pos = ack_ri_bits[count_acc].position;
int16_t q = q_bits[pos];
// Remove scrambling of repeated bits
if (nof_bits == 1) {
if (acc_idx == 1 && pos > 0) {
q = (c_seq[pos] == c_seq[pos - 1]) ? +q : -q;
}
}
2020-03-04 05:53:41 -08:00
// Accumulate LLR
llr_acc[acc_idx] += q;
2020-03-04 05:53:41 -08:00
/// Limit accumulator boundaries
llr_acc[acc_idx] = SRSLTE_MIN(llr_acc[acc_idx], INT16_MAX / 2);
llr_acc[acc_idx] = SRSLTE_MAX(llr_acc[acc_idx], -INT16_MAX / 2);
}
}
2020-03-04 05:53:41 -08:00
/// Decode UCI HARQ/ACK bits as described in 5.2.2.6 of 36.212
int32_t thr = count_acc * ((Qm < 4) ? 100 : (Qm < 6) ? 200 : (Qm < 8) ? 700 : 1000) / 2;
int32_t corr = 0;
2020-03-04 05:53:41 -08:00
switch (nof_bits) {
case 1:
corr = decode_ri_ack_1bit(llr_acc, c_seq, data);
2020-03-04 05:53:41 -08:00
break;
case 2:
corr = decode_ri_ack_2bits(llr_acc, Qm, data);
2020-03-04 05:53:41 -08:00
break;
default:
// For more than 2 bits...
corr = srslte_uci_decode_m_basis_bits(llr_acc, SRSLTE_UCI_M_BASIS_SEQ_LEN, data, nof_bits);
}
if (valid) {
*valid = corr > thr;
2015-03-24 07:58:33 -07:00
}
return (int)Qprime;
}
uint32_t srslte_uci_cfg_total_ack(const srslte_uci_cfg_t* uci_cfg)
{
uint32_t nof_ack = 0;
for (uint32_t i = 0; i < SRSLTE_MAX_CARRIERS; i++) {
nof_ack += uci_cfg->ack[i].nof_acks;
}
return nof_ack;
}
void srslte_uci_data_reset(srslte_uci_data_t* uci_data)
{
bzero(uci_data, sizeof(srslte_uci_data_t));
/* Set all ACKs to DTX */
memset(uci_data->value.ack.ack_value, 2, SRSLTE_UCI_MAX_ACK_BITS);
}
2019-04-23 01:53:11 -07:00
int srslte_uci_data_info(srslte_uci_cfg_t* uci_cfg, srslte_uci_value_t* uci_data, char* str, uint32_t str_len)
{
int n = 0;
if (uci_cfg->is_scheduling_request_tti) {
n = srslte_print_check(str, str_len, n, ", sr=%s", uci_data->scheduling_request ? "yes" : "no");
}
uint32_t nof_acks = srslte_uci_cfg_total_ack(uci_cfg);
if (nof_acks) {
2019-04-23 01:53:11 -07:00
n = srslte_print_check(str, str_len, n, ", ack=");
if (uci_data->ack.valid) {
for (uint32_t i = 0; i < nof_acks; i++) {
n = srslte_print_check(str, str_len, n, "%d", uci_data->ack.ack_value[i]);
}
if (uci_cfg->ack[0].N_bundle) {
n = srslte_print_check(str, str_len, n, ", n_bundle=%d", uci_cfg->ack[0].N_bundle);
}
} else {
n = srslte_print_check(str, str_len, n, "invalid");
2019-04-23 01:53:11 -07:00
}
}
if (uci_cfg->cqi.ri_len) {
n = srslte_print_check(str, str_len, n, ", ri=%d", uci_data->ri);
}
char cqi_str[SRSLTE_CQI_STR_MAX_CHAR] = "";
if (uci_cfg->cqi.data_enable) {
srslte_cqi_value_tostring(&uci_cfg->cqi, &uci_data->cqi, cqi_str, SRSLTE_CQI_STR_MAX_CHAR);
n = srslte_print_check(str, str_len, n, "%s", cqi_str);
}
return n;
}