srsLTE/lte/phy/lib/phch/src/sch.c

592 lines
16 KiB
C
Raw Normal View History

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2014 The libLTE Developers. See the
* COPYRIGHT file at the top-level directory of this distribution.
*
* \section LICENSE
*
* This file is part of the libLTE library.
*
* libLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* libLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* A copy of the GNU Lesser General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>
#include <math.h>
#include "liblte/phy/phch/pusch.h"
#include "liblte/phy/phch/sch.h"
#include "liblte/phy/phch/uci.h"
#include "liblte/phy/common/phy_common.h"
#include "liblte/phy/utils/bit.h"
#include "liblte/phy/utils/debug.h"
#include "liblte/phy/utils/vector.h"
int sch_init(sch_t *q) {
int ret = LIBLTE_ERROR_INVALID_INPUTS;
if (q) {
bzero(q, sizeof(sch_t));
if (crc_init(&q->crc_tb, LTE_CRC24A, 24)) {
fprintf(stderr, "Error initiating CRC\n");
goto clean;
}
if (crc_init(&q->crc_cb, LTE_CRC24B, 24)) {
fprintf(stderr, "Error initiating CRC\n");
goto clean;
}
if (tcod_init(&q->encoder, MAX_LONG_CB)) {
fprintf(stderr, "Error initiating Turbo Coder\n");
goto clean;
}
if (tdec_init(&q->decoder, MAX_LONG_CB)) {
fprintf(stderr, "Error initiating Turbo Decoder\n");
goto clean;
}
// Allocate floats for reception (LLRs)
q->cb_in = malloc(sizeof(uint8_t) * MAX_LONG_CB);
if (!q->cb_in) {
goto clean;
}
q->cb_out = malloc(sizeof(float) * (3 * MAX_LONG_CB + 12));
if (!q->cb_out) {
goto clean;
}
if (uci_cqi_init(&q->uci_cqi)) {
goto clean;
}
ret = LIBLTE_SUCCESS;
}
clean:
if (ret == LIBLTE_ERROR) {
sch_free(q);
}
return ret;
}
void sch_free(sch_t *q) {
if (q->cb_in) {
free(q->cb_in);
}
if (q->cb_out) {
free(q->cb_out);
}
tdec_free(&q->decoder);
tcod_free(&q->encoder);
uci_cqi_free(&q->uci_cqi);
bzero(q, sizeof(sch_t));
}
float sch_average_noi(sch_t *q) {
return q->average_nof_iterations;
}
uint32_t sch_last_noi(sch_t *q) {
return q->nof_iterations;
}
/* Encode a transport block according to 36.212 5.3.2
*
*/
static int encode_tb(sch_t *q, uint8_t *data, uint8_t *e_bits, uint32_t tbs, uint32_t nb_e,
harq_t *harq_process, uint32_t rv_idx)
{
uint8_t parity[24];
uint8_t *p_parity = parity;
uint32_t par;
uint32_t i;
uint32_t cb_len, rp, wp, rlen, F, n_e;
int ret = LIBLTE_ERROR_INVALID_INPUTS;
uint32_t Qm = lte_mod_bits_x_symbol(harq_process->mcs.mod);
if (q != NULL &&
data != NULL &&
harq_process != NULL)
{
uint32_t Gp = nb_e / Qm;
uint32_t gamma = Gp%harq_process->cb_segm.C;
if (rv_idx == 0) {
/* Compute transport block CRC */
par = crc_checksum(&q->crc_tb, data, tbs);
/* parity bits will be appended later */
bit_pack(par, &p_parity, 24);
if (VERBOSE_ISDEBUG()) {
DEBUG("DATA: ", 0);
vec_fprint_b(stdout, data, tbs);
DEBUG("PARITY: ", 0);
vec_fprint_b(stdout, parity, 24);
}
}
wp = 0;
rp = 0;
for (i = 0; i < harq_process->cb_segm.C; i++) {
/* Get read lengths */
if (i < harq_process->cb_segm.C2) {
cb_len = harq_process->cb_segm.K2;
} else {
cb_len = harq_process->cb_segm.K1;
}
if (harq_process->cb_segm.C > 1) {
rlen = cb_len - 24;
} else {
rlen = cb_len;
}
if (i == 0) {
F = harq_process->cb_segm.F;
} else {
F = 0;
}
if (i <= harq_process->cb_segm.C - gamma - 1) {
n_e = Qm * (Gp/harq_process->cb_segm.C);
} else {
n_e = Qm * ((uint32_t) ceilf((float) Gp/harq_process->cb_segm.C));
}
INFO("CB#%d: cb_len: %d, rlen: %d, wp: %d, rp: %d, F: %d, E: %d\n", i,
cb_len, rlen - F, wp, rp, F, n_e);
if (rv_idx == 0) {
/* Copy data to another buffer, making space for the Codeblock CRC */
if (i < harq_process->cb_segm.C - 1) {
// Copy data
memcpy(&q->cb_in[F], &data[rp], (rlen - F) * sizeof(uint8_t));
} else {
INFO("Last CB, appending parity: %d from %d and 24 to %d\n",
rlen - F - 24, rp, rlen - 24);
/* Append Transport Block parity bits to the last CB */
memcpy(&q->cb_in[F], &data[rp], (rlen - 24 - F) * sizeof(uint8_t));
memcpy(&q->cb_in[rlen - 24], parity, 24 * sizeof(uint8_t));
}
/* Filler bits are treated like zeros for the CB CRC calculation */
for (int j = 0; j < F; j++) {
q->cb_in[j] = 0;
}
/* Attach Codeblock CRC */
if (harq_process->cb_segm.C > 1) {
crc_attach(&q->crc_cb, q->cb_in, rlen);
}
/* Set the filler bits to <NULL> */
for (int j = 0; j < F; j++) {
q->cb_in[j] = TX_NULL;
}
if (VERBOSE_ISDEBUG()) {
DEBUG("CB#%d: ", i);
vec_fprint_b(stdout, q->cb_in, cb_len);
}
/* Turbo Encoding */
tcod_encode(&q->encoder, q->cb_in, (uint8_t*) q->cb_out, cb_len);
}
/* Rate matching */
if (rm_turbo_tx(harq_process->pdsch_w_buff_c[i], harq_process->w_buff_size,
(uint8_t*) q->cb_out, 3 * cb_len + 12,
&e_bits[wp], n_e, rv_idx))
{
fprintf(stderr, "Error in rate matching\n");
return LIBLTE_ERROR;
}
/* Set read/write pointers */
rp += (rlen - F);
wp += n_e;
}
INFO("END CB#%d: wp: %d, rp: %d\n", i, wp, rp);
ret = LIBLTE_SUCCESS;
}
return ret;
}
/* Decode a transport block according to 36.212 5.3.2
*
*/
static int decode_tb(sch_t *q, float *e_bits, uint8_t *data, uint32_t tbs, uint32_t nb_e,
harq_t *harq_process, uint32_t rv_idx)
{
uint8_t parity[24];
uint8_t *p_parity = parity;
uint32_t par_rx, par_tx;
uint32_t i;
uint32_t cb_len, rp, wp, rlen, F, n_e;
uint32_t Qm = lte_mod_bits_x_symbol(harq_process->mcs.mod);
if (q != NULL &&
data != NULL &&
harq_process != NULL)
{
rp = 0;
rp = 0;
wp = 0;
uint32_t Gp = nb_e / Qm;
uint32_t gamma = Gp%harq_process->cb_segm.C;
bool early_stop = true;
for (i = 0; i < harq_process->cb_segm.C && early_stop; i++) {
/* Get read/write lengths */
if (i < harq_process->cb_segm.C2) {
cb_len = harq_process->cb_segm.K2;
} else {
cb_len = harq_process->cb_segm.K1;
}
if (harq_process->cb_segm.C == 1) {
rlen = cb_len;
} else {
rlen = cb_len - 24;
}
if (i == 0) {
F = harq_process->cb_segm.F;
} else {
F = 0;
}
if (i <= harq_process->cb_segm.C - gamma - 1) {
n_e = Qm * (Gp/harq_process->cb_segm.C);
} else {
n_e = Qm * ((uint32_t) ceilf((float) Gp/harq_process->cb_segm.C));
}
INFO("CB#%d: cb_len: %d, rlen: %d, wp: %d, rp: %d, F: %d, E: %d\n", i,
cb_len, rlen - F, wp, rp, F, n_e);
/* Rate Unmatching */
if (rm_turbo_rx(harq_process->pdsch_w_buff_f[i], harq_process->w_buff_size,
&e_bits[rp], n_e,
(float*) q->cb_out, 3 * cb_len + 12, rv_idx, F)) {
fprintf(stderr, "Error in rate matching\n");
return LIBLTE_ERROR;
}
if (VERBOSE_ISDEBUG()) {
DEBUG("CB#%d RMOUT: ", i);
vec_fprint_f(stdout, q->cb_out, 3*cb_len+12);
}
/* Turbo Decoding with CRC-based early stopping */
q->nof_iterations = 0;
uint32_t len_crc;
uint8_t *cb_in_ptr;
crc_t *crc_ptr;
early_stop = false;
tdec_reset(&q->decoder, cb_len);
do {
tdec_iteration(&q->decoder, (float*) q->cb_out, cb_len);
q->nof_iterations++;
if (harq_process->cb_segm.C > 1) {
len_crc = cb_len;
cb_in_ptr = q->cb_in;
crc_ptr = &q->crc_cb;
} else {
len_crc = tbs+24;
cb_in_ptr = &q->cb_in[F];
crc_ptr = &q->crc_tb;
}
tdec_decision(&q->decoder, q->cb_in, cb_len);
/* Check Codeblock CRC and stop early if incorrect */
if (!crc_checksum(crc_ptr, cb_in_ptr, len_crc)) {
early_stop = true;
}
} while (q->nof_iterations < TDEC_MAX_ITERATIONS && !early_stop);
q->average_nof_iterations = VEC_EMA((float) q->nof_iterations, q->average_nof_iterations, 0.2);
if (VERBOSE_ISDEBUG()) {
DEBUG("CB#%d IN: ", i);
vec_fprint_b(stdout, q->cb_in, cb_len);
}
// If CB CRC is not correct, early_stop will be false and wont continue with rest of CBs
/* Copy data to another buffer, removing the Codeblock CRC */
if (i < harq_process->cb_segm.C - 1) {
memcpy(&data[wp], &q->cb_in[F], (rlen - F) * sizeof(uint8_t));
} else {
DEBUG("Last CB, appending parity: %d to %d from %d and 24 from %d\n",
rlen - F - 24, wp, F, rlen - 24);
/* Append Transport Block parity bits to the last CB */
memcpy(&data[wp], &q->cb_in[F], (rlen - F - 24) * sizeof(uint8_t));
memcpy(parity, &q->cb_in[rlen - 24], 24 * sizeof(uint8_t));
}
/* Set read/write pointers */
wp += (rlen - F);
rp += n_e;
}
if (!early_stop) {
INFO("CB %d failed. TB is erroneous.\n",i-1);
return LIBLTE_ERROR;
} else {
INFO("END CB#%d: wp: %d, rp: %d\n", i, wp, rp);
// Compute transport block CRC
par_rx = crc_checksum(&q->crc_tb, data, tbs);
// check parity bits
par_tx = bit_unpack(&p_parity, 24);
if (!par_rx) {
INFO("\n\tCAUTION!! Received all-zero transport block\n\n", 0);
}
if (par_rx == par_tx) {
INFO("TB decoded OK\n",i);
return LIBLTE_SUCCESS;
} else {
INFO("Error in TB parity\n",i);
return LIBLTE_ERROR;
}
}
} else {
return LIBLTE_ERROR_INVALID_INPUTS;
}
}
int dlsch_decode(sch_t *q, float *e_bits, uint8_t *data, uint32_t tbs, uint32_t nb_e,
harq_t *harq_process, uint32_t rv_idx)
{
return decode_tb(q, e_bits, data, tbs, nb_e, harq_process, rv_idx);
}
int dlsch_encode(sch_t *q, uint8_t *data, uint8_t *e_bits, uint32_t tbs, uint32_t nb_e,
harq_t *harq_process, uint32_t rv_idx) {
return encode_tb(q, data, e_bits, tbs, nb_e, harq_process, rv_idx);
}
int ulsch_decode(sch_t *q, float *e_bits, uint8_t *data, uint32_t tbs, uint32_t nb_e,
harq_t *harq_process, uint32_t rv_idx)
{
return decode_tb(q, e_bits, data, tbs, nb_e, harq_process, rv_idx);
}
uint8_t ulsch_y_idx[10000];
uint8_t ulsch_y_mat[10000];
/* UL-SCH channel interleaver according to 5.5.2.8 of 36.212 */
void ulsch_interleave(uint8_t *q_bits, uint32_t nb_q,
uint8_t q_bits_ack[6], uint32_t Q_prime_ack,
uint8_t q_bits_ri[6], uint32_t Q_prime_ri,
2015-02-11 23:57:37 -08:00
uint32_t Q_m, uint8_t *g_bits)
{
uint32_t C_mux;
uint32_t H_prime;
uint32_t H_prime_total;
uint32_t R_mux;
uint32_t R_prime_mux;
uint32_t i;
uint32_t j;
uint32_t k;
uint32_t r;
uint32_t idx;
uint32_t ri_column_set[4] = {1, 4, 7, 10};
uint32_t ack_column_set[4] = {2, 3, 8, 9};
uint32_t C_ri;
uint32_t C_ack;
uint32_t N_pusch_symbs = 12;
// Step 1: Define C_mux
C_mux = N_pusch_symbs;
// Step 2: Define R_mux and R_prime_mux
H_prime = nb_q;
H_prime_total = H_prime + Q_prime_ri;
R_mux = (H_prime_total*Q_m)/C_mux;
R_prime_mux = R_mux/Q_m;
// Initialize the matricies
printf("Cmux*R_prime=%d*%d=%d, H_prime=%d, H_prime_total=%d\n",C_mux, R_prime_mux, C_mux*R_prime_mux, H_prime, H_prime_total);
for(i=0; i<C_mux*R_prime_mux; i++) {
ulsch_y_idx[i] = 100;
}
for(i=0; i<C_mux*R_mux; i++) {
ulsch_y_mat[i] = 0;
}
// Step 3: Interleave the RI control bits
i = 0;
j = 0;
r = R_prime_mux-1;
while(i < Q_prime_ri) {
C_ri = ri_column_set[j];
ulsch_y_idx[r*C_mux + C_ri] = 1;
for(k=0; k<Q_m; k++) {
ulsch_y_mat[(C_mux*r*Q_m) + C_ri*Q_m + k] = q_bits_ri[Q_m*i+k];
}
i++;
r = R_prime_mux - 1 - i/4;
j = (j + 3) % 4;
}
printf("H_prime: %d, C_mux: %d, R_prime: %d\n", H_prime, C_mux, R_prime_mux);
// Step 4: Interleave the data bits
i = 0;
k = 0;
while(k < H_prime) {
if(ulsch_y_idx[i] == 100) {
ulsch_y_idx[i] = 1;
for(j=0; j<Q_m; j++) {
ulsch_y_mat[i*Q_m + j] = q_bits[Q_m*k+j];
}
k++;
}
i++;
}
// Step 5: Interleave the ACK control bits
i = 0;
j = 0;
r = R_prime_mux-1;
while(i < Q_prime_ack) {
C_ack = ack_column_set[j];
ulsch_y_idx[r*C_mux + C_ack] = 2;
for(k=0; k<Q_m; k++) {
ulsch_y_mat[(C_mux*r*Q_m) + C_ack*Q_m + k] = q_bits_ack[Q_m*i+k];
}
i++;
r = R_prime_mux - 1 - i/4;
j = (j + 3) % 4;
}
// Step 6: Read out the bits
idx = 0;
printf("go for C_mux: %d, R_prime: %d, Q_m: %d\n", C_mux, R_prime_mux, Q_m);
for(i=0; i<C_mux; i++) {
for(j=0; j<R_prime_mux; j++) {
for(k=0; k<Q_m; k++) {
2015-02-11 23:57:37 -08:00
g_bits[idx++] = ulsch_y_mat[j*C_mux*Q_m + i*Q_m + k];
}
}
}
}
2015-02-11 23:57:37 -08:00
int ulsch_encode(sch_t *q, uint8_t *data, uint8_t *g_bits,
harq_t *harq_process, uint32_t rv_idx, uint8_t *q_bits)
{
uci_data_t uci_data;
bzero(&uci_data, sizeof(uci_data_t));
2015-02-11 23:57:37 -08:00
return ulsch_uci_encode(q, data, uci_data, g_bits, NULL, NULL, harq_process, rv_idx, q_bits);
}
2015-02-11 23:57:37 -08:00
int ulsch_uci_encode(sch_t *q, uint8_t *data, uci_data_t uci_data, uint8_t *g_bits,
uint8_t *g_bits_ack, uint8_t *g_bits_ri,
harq_t *harq_process, uint32_t rv_idx, uint8_t *q_bits)
{
int ret;
uint32_t e_offset = 0;
uint32_t Q_prime_cqi = 0;
uint32_t Q_prime_ack = 0;
uint32_t Q_prime_ri = 0;
uint32_t Q_m = lte_mod_bits_x_symbol(harq_process->mcs.mod);
2015-02-10 07:49:11 -08:00
uint32_t nof_symbols = 12*harq_process->prb_alloc.slot[0].nof_prb*RE_X_RB;
uint32_t nb_q = nof_symbols * Q_m;
// Encode ACK
if (uci_data.uci_ack_len > 0) {
2015-02-10 07:49:11 -08:00
float beta = uci_data.beta_ack;
if (harq_process->mcs.tbs == 0) {
beta /= uci_data.beta_cqi;
}
2015-02-11 23:57:37 -08:00
ret = uci_encode_ri_ack(uci_data.uci_ack, uci_data.uci_cqi_len, beta, harq_process, g_bits_ack);
if (ret < 0) {
return ret;
}
Q_prime_ack = (uint32_t) ret;
}
// Encode RI
if (uci_data.uci_ri_len > 0) {
2015-02-10 07:49:11 -08:00
float beta = uci_data.beta_ri;
if (harq_process->mcs.tbs == 0) {
beta /= uci_data.beta_cqi;
}
2015-02-11 23:57:37 -08:00
ret = uci_encode_ri_ack(uci_data.uci_ri, uci_data.uci_cqi_len, beta, harq_process, g_bits_ri);
if (ret < 0) {
return ret;
}
Q_prime_ri = (uint32_t) ret;
}
// Encode CQI
if (uci_data.uci_cqi_len > 0) {
ret = uci_encode_cqi(&q->uci_cqi, uci_data.uci_cqi, uci_data.uci_cqi_len, uci_data.beta_cqi,
2015-02-11 23:57:37 -08:00
Q_prime_ri, harq_process, g_bits);
if (ret < 0) {
return ret;
}
Q_prime_cqi = (uint32_t) ret;
}
e_offset += Q_prime_cqi*Q_m;
2015-02-10 07:49:11 -08:00
printf("Q_prime_ack=%d, Q_prime_cqi=%d, Q_prime_ri=%d\n",Q_prime_ack, Q_prime_cqi, Q_prime_ri);
// Encode UL-SCH
2015-02-10 07:49:11 -08:00
if (harq_process->mcs.tbs > 0) {
uint32_t G = nb_q/Q_m - Q_prime_ri - Q_prime_cqi;
2015-02-11 23:57:37 -08:00
ret = encode_tb(q, data, &g_bits[e_offset], harq_process->mcs.tbs,
2015-02-10 07:49:11 -08:00
G*Q_m, harq_process, rv_idx);
if (ret) {
return ret;
}
}
// Multiplexing and Interleaving
2015-02-11 23:57:37 -08:00
ulsch_interleave(g_bits, nb_q/Q_m-Q_prime_ri,
g_bits_ack, Q_prime_ack,
g_bits_ri, Q_prime_ri,
Q_m, q_bits);
return LIBLTE_SUCCESS;
}