/* * Copyright 2013-2019 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "srsenb/hdr/stack/mac/scheduler.h" #include "srsenb/hdr/stack/mac/scheduler_carrier.h" #include "srsenb/hdr/stack/mac/scheduler_ue.h" #include #include #include #include #include #include #include "srsenb/hdr/phy/phy.h" #include "srsenb/hdr/stack/mac/mac.h" #include "srslte/common/log_filter.h" #include "srslte/interfaces/enb_interfaces.h" #include "srslte/interfaces/sched_interface.h" #include "srslte/phy/utils/debug.h" #include "scheduler_test_common.h" #include "scheduler_test_utils.h" #include "srslte/common/test_common.h" /******************************************************** * Random Tester for Scheduler. * Current Checks: * - Check correct timing of PRACH, RAR, and Msg3 * - Check whether Msg4 contains ConRes * - Check allocs of users that no longer exist * - Check collisions in PDCCH, PUSCH, and PDSCH * - Unexpected Msg3, RAR allocs or with wrong values * - Users without data to Tx cannot be allocated in UL * - Retxs always take precedence * - Invalid BC SIB index or TBS * - Harqs: * - invalid pids scheduled * - empty harqs scheduled * - invalid harq TTI * - consistent NCCE loc * - invalid retx number * - DL adaptive retx/new tx <=> PDCCH alloc *******************************************************/ uint32_t const seed = std::chrono::system_clock::now().time_since_epoch().count(); // uint32_t const seed = 2452071795; // uint32_t const seed = 1581009287; // prb==25 bool check_old_pids = false; struct ue_stats_t { uint64_t nof_dl_rbs = 0; uint64_t nof_ul_rbs = 0; }; std::map ue_stats; /******************* * Logging * *******************/ class sched_test_log final : public srslte::test_log_filter { public: sched_test_log() : srslte::test_log_filter("TEST") { exit_on_error = true; } ~sched_test_log() override { log_diagnostics(); } void log_diagnostics() override { info("UE stats:\n"); for (auto& e : ue_stats) { info("0x%x: {DL RBs: %" PRIu64 ", UL RBs: %" PRIu64 "}\n", e.first, e.second.nof_dl_rbs, e.second.nof_ul_rbs); } info("Number of assertion warnings: %u\n", warn_counter); info("Number of assertion errors: %u\n", error_counter); info("This was the seed: %u\n", seed); } }; srslte::scoped_log log_global{}; /******************* * Dummies * *******************/ constexpr uint32_t CARRIER_IDX = 0; // Designed for testing purposes struct sched_tester : public srsenb::common_sched_tester { struct tester_user_results { uint32_t dl_pending_data = 0; uint32_t ul_pending_data = 0; ///< data pending for UL bool has_dl_tx = false; bool has_ul_tx = false; ///< has either tx or retx bool has_ul_retx = false; bool has_ul_newtx = false; ///< *no* retx, but has tx bool ul_retx_got_delayed = false; srsenb::dl_harq_proc dl_harqs[srsenb::sched_ue_carrier::SCHED_MAX_HARQ_PROC]; srsenb::ul_harq_proc ul_harq; }; struct sched_tti_data { std::map ue_data; ///< stores buffer state of each user tester_user_results total_ues; ///< stores combined UL/DL buffer state }; // sched results sched_tti_data tti_data; void rem_user(uint16_t rnti) override; int test_pdcch_collisions(); int assert_no_empty_allocs(); int test_sch_collisions(); int test_harqs(); private: void new_test_tti() override; void before_sched() override; int process_results() override; }; void sched_tester::rem_user(uint16_t rnti) { common_sched_tester::rem_user(rnti); tti_data.ue_data.erase(rnti); } void sched_tester::new_test_tti() { common_sched_tester::new_test_tti(); // NOTE: make a local copy, since some of these variables may be cleared during scheduling tti_data.ue_data.clear(); tti_data.total_ues = tester_user_results(); } void sched_tester::before_sched() { // check pending data buffers for (auto& it : ue_db) { uint16_t rnti = it.first; srsenb::sched_ue* user = &it.second; tester_user_results d; srsenb::ul_harq_proc* hul = user->get_ul_harq(tti_info.tti_params.tti_tx_ul, CARRIER_IDX); d.ul_pending_data = get_ul_buffer(rnti); // user->get_pending_ul_new_data(tti_info.tti_params.tti_tx_ul) or hul->has_pending_retx(); // // get_ul_buffer(rnti); d.dl_pending_data = get_dl_buffer(rnti); d.has_ul_retx = hul->has_pending_retx(); d.has_ul_tx = d.has_ul_retx or d.ul_pending_data > 0; srsenb::dl_harq_proc* hdl = user->get_pending_dl_harq(tti_info.tti_params.tti_tx_dl, CARRIER_IDX); d.has_dl_tx = (hdl != nullptr) or (it.second.get_empty_dl_harq(tti_info.tti_params.tti_tx_dl, CARRIER_IDX) != nullptr and d.dl_pending_data > 0); d.has_ul_newtx = not d.has_ul_retx and d.ul_pending_data > 0; tti_data.ue_data.insert(std::make_pair(rnti, d)); tti_data.total_ues.dl_pending_data += d.dl_pending_data; tti_data.total_ues.ul_pending_data += d.ul_pending_data; tti_data.total_ues.has_ul_tx |= d.has_ul_tx; tti_data.total_ues.has_dl_tx |= d.has_dl_tx; tti_data.total_ues.has_ul_newtx |= d.has_ul_newtx; for (uint32_t i = 0; i < srsenb::sched_ue_carrier::SCHED_MAX_HARQ_PROC; ++i) { const srsenb::dl_harq_proc& h = user->get_dl_harq(i, CARRIER_IDX); tti_data.ue_data[rnti].dl_harqs[i] = h; } // NOTE: ACK might have just cleared the harq for tti_info.tti_params.tti_tx_ul tti_data.ue_data[rnti].ul_harq = *user->get_ul_harq(tti_info.tti_params.tti_tx_ul, CARRIER_IDX); } // TODO: Check whether pending pending_rar.rar_tti correspond to a prach_tti } int sched_tester::process_results() { const auto& sf_result = carrier_schedulers[CARRIER_IDX]->get_sf_result(tti_info.tti_params.tti_rx); TESTASSERT(tti_info.tti_params.tti_rx == sf_result.tti_params.tti_rx); test_pdcch_collisions(); TESTASSERT(ue_tester->test_all(0, tti_info.dl_sched_result[CARRIER_IDX], tti_info.ul_sched_result[CARRIER_IDX]) == SRSLTE_SUCCESS); test_sch_collisions(); assert_no_empty_allocs(); test_harqs(); output_tester[CARRIER_IDX].test_sib_scheduling(tti_info.tti_params, tti_info.dl_sched_result[CARRIER_IDX]); return SRSLTE_SUCCESS; } int sched_tester::assert_no_empty_allocs() { // Test if allocations only take place for users with pending data or in RAR for (auto& iter : tti_data.ue_data) { uint16_t rnti = iter.first; // srsenb::sched_ue* user = &ue_db[rnti]; if (not iter.second.has_ul_tx) { for (uint32_t i = 0; i < tti_info.ul_sched_result[CARRIER_IDX].nof_dci_elems; ++i) { auto& pusch = tti_info.ul_sched_result[CARRIER_IDX].pusch[i]; if (pusch.dci.rnti == rnti and pusch.needs_pdcch) { // TODO: This test does not work for adaptive re-tx TESTERROR("There was a user without data that got allocated in UL\n"); } } } // srsenb::ul_harq_proc* hul = user->get_ul_harq(tti_info.tti_params.tti_tx_ul); iter.second.ul_retx_got_delayed = iter.second.has_ul_retx and iter.second.ul_harq.is_empty(0); tti_data.total_ues.ul_retx_got_delayed |= iter.second.ul_retx_got_delayed; // Retxs cannot give space to newtx allocations CONDERROR(tti_data.total_ues.ul_retx_got_delayed, "There was a retx that was erased for user rnti=0x%x\n", rnti); } // There must be allocations if there is pending data/retxs. // bool no_dl_allocs = true; // for (auto& it : tti_data.ue_data) { // if (it.second.dl_sched != nullptr) { // no_dl_allocs = false; // } // } // CONDERROR(tti_data.total_ues.has_dl_tx and no_dl_allocs, "There was pending DL data but no user got allocated\n"); // TODO: You have to verify if there is space for the retx since it is non-adaptive return SRSLTE_SUCCESS; } /** * Tests whether there were collisions in the DCI allocations */ int sched_tester::test_pdcch_collisions() { srslte::bounded_bitset<128, true> used_cce; used_cce.resize(srslte_regs_pdcch_ncce(sched_cell_params[CARRIER_IDX].regs.get(), sched_cfg.nof_ctrl_symbols)); /* TEST: Check if there are collisions in the PDCCH */ TESTASSERT(output_tester[CARRIER_IDX].test_pdcch_collisions(tti_info.dl_sched_result[CARRIER_IDX], tti_info.ul_sched_result[CARRIER_IDX], &used_cce) == SRSLTE_SUCCESS); /* TEST: Check whether dci values are correct */ TESTASSERT(output_tester[CARRIER_IDX].test_dci_values_consistency( tti_info.dl_sched_result[CARRIER_IDX], tti_info.ul_sched_result[CARRIER_IDX]) == SRSLTE_SUCCESS); /* verify if sched_result "used_cce" coincide with sched "used_cce" */ const auto& sf_result = carrier_schedulers[CARRIER_IDX]->get_sf_result(tti_info.tti_params.tti_rx); if (used_cce != sf_result.pdcch_mask) { std::string mask_str = sf_result.pdcch_mask.to_string(); TESTERROR("The used_cce do not match: (%s!=%s)\n", mask_str.c_str(), used_cce.to_string().c_str()); } // TODO: Check postponed retxs // typedef std::map::iterator it_t; // // There must be allocations if there is pending data/retxs. // if(total_ues.has_ul_tx and ul_sched_result.empty()) { // for (it_t it = ue_db.begin(); it != ue_db.end(); ++it) { // uint32_t aggr_level = it->second.get_aggr_level(srslte_dci_format_sizeof(SRSLTE_DCI_FORMAT0, cfg.cell.nof_prb, // cfg.cell.nof_ports)); if (find_empty_dci(it->second.get_locations(current_cfi, sf_idx), aggr_level) > 0) { // TESTERROR("[%d] There was pending UL data and free CCEs, but no user got allocated\n", // tti_info.tti_params.tti_rx); // } // } // } return SRSLTE_SUCCESS; } int sched_tester::test_harqs() { /* check consistency of DL harq procedures and allocations */ for (uint32_t i = 0; i < tti_info.dl_sched_result[CARRIER_IDX].nof_data_elems; ++i) { const auto& data = tti_info.dl_sched_result[CARRIER_IDX].data[i]; uint32_t h_id = data.dci.pid; uint16_t rnti = data.dci.rnti; const srsenb::dl_harq_proc& h = ue_db[rnti].get_dl_harq(h_id, CARRIER_IDX); CONDERROR(h.is_empty(), "Cannot schedule an empty harq proc\n"); CONDERROR(h.get_tti() != tti_info.tti_params.tti_tx_dl, "The scheduled DL harq pid=%d does not a valid tti=%u\n", h_id, tti_info.tti_params.tti_tx_dl); CONDERROR(h.get_n_cce() != data.dci.location.ncce, "Harq DCI location does not match with result\n"); if (tti_data.ue_data[rnti].dl_harqs[h_id].has_pending_retx(0, tti_info.tti_params.tti_tx_dl)) { // retx CONDERROR(tti_data.ue_data[rnti].dl_harqs[h_id].nof_retx(0) + 1 != h.nof_retx(0), "A dl harq of user rnti=0x%x was likely overwritten.\n", rnti); CONDERROR(h.nof_retx(0) >= sim_args0.ue_cfg.maxharq_tx, "The number of retx=%d exceeded its max=%d\n", h.nof_retx(0), sim_args0.ue_cfg.maxharq_tx); } else { // newtx CONDERROR(h.nof_retx(0) != 0, "A new harq was scheduled but with invalid number of retxs\n"); } } for (uint32_t i = 0; i < tti_info.ul_sched_result[CARRIER_IDX].nof_dci_elems; ++i) { const auto& pusch = tti_info.ul_sched_result[CARRIER_IDX].pusch[i]; uint16_t rnti = pusch.dci.rnti; const auto& ue_data = tti_data.ue_data[rnti]; const srsenb::ul_harq_proc* h = ue_db[rnti].get_ul_harq(tti_info.tti_params.tti_tx_ul, CARRIER_IDX); CONDERROR(h == nullptr or h->is_empty(), "scheduled UL harq does not exist or is empty\n"); CONDERROR(h->get_tti() != tti_info.tti_params.tti_tx_ul, "The scheduled UL harq does not a valid tti=%u\n", tti_info.tti_params.tti_tx_ul); CONDERROR(h->has_pending_ack(), "At the end of the TTI, there shouldnt be any pending ACKs\n"); if (h->has_pending_retx()) { // retx CONDERROR(ue_data.ul_harq.is_empty(0), "reTx in an UL harq that was empty\n"); CONDERROR(h->nof_retx(0) != ue_data.ul_harq.nof_retx(0) + 1, "A retx UL harq was scheduled but with invalid number of retxs\n"); CONDERROR(h->is_adaptive_retx() and not pusch.needs_pdcch, "Adaptive retxs need PDCCH alloc\n"); } else { CONDERROR(h->nof_retx(0) != 0, "A new harq was scheduled but with invalid number of retxs\n"); CONDERROR(not ue_data.ul_harq.is_empty(0), "UL new tx in a UL harq that was not empty\n"); } } /* Check PHICH allocations */ for (uint32_t i = 0; i < tti_info.ul_sched_result[CARRIER_IDX].nof_phich_elems; ++i) { const auto& phich = tti_info.ul_sched_result[CARRIER_IDX].phich[i]; CONDERROR(tti_data.ue_data.count(phich.rnti) == 0, "Allocated PHICH rnti no longer exists\n"); const auto& hprev = tti_data.ue_data[phich.rnti].ul_harq; const auto* h = ue_db[phich.rnti].get_ul_harq(tti_info.tti_params.tti_tx_ul, CARRIER_IDX); CONDERROR(not hprev.has_pending_ack(), "Alloc PHICH did not have any pending ack\n"); bool maxretx_flag = hprev.nof_retx(0) + 1 >= hprev.max_nof_retx(); if (phich.phich == sched_interface::ul_sched_phich_t::ACK) { CONDERROR(!hprev.is_empty(), "ack phich for UL harq that is not empty\n"); } else { CONDERROR(h->get_pending_data() == 0 and !maxretx_flag, "NACKed harq has no pending data\n"); } } for (const auto& ue : ue_db) { const auto& hprev = tti_data.ue_data[ue.first].ul_harq; if (not hprev.has_pending_ack()) { continue; } uint32_t i = 0; for (; i < tti_info.ul_sched_result[CARRIER_IDX].nof_phich_elems; ++i) { const auto& phich = tti_info.ul_sched_result[CARRIER_IDX].phich[i]; if (phich.rnti == ue.first) { break; } } CONDERROR(i == tti_info.ul_sched_result[CARRIER_IDX].nof_phich_elems, "harq had pending ack but no phich was allocked\n"); } // Check whether some pids got old if (check_old_pids) { for (auto& user : ue_db) { for (int i = 0; i < srsenb::sched_ue_carrier::SCHED_MAX_HARQ_PROC; i++) { if (not user.second.get_dl_harq(i, CARRIER_IDX).is_empty(0)) { if (srslte_tti_interval(tti_info.tti_params.tti_tx_dl, user.second.get_dl_harq(i, CARRIER_IDX).get_tti()) > 49) { TESTERROR( "The pid=%d for rnti=0x%x got old.\n", user.second.get_dl_harq(i, CARRIER_IDX).get_id(), user.first); } } } } } return SRSLTE_SUCCESS; } int sched_tester::test_sch_collisions() { const auto& sf_result = carrier_schedulers[CARRIER_IDX]->get_sf_result(tti_info.tti_params.tti_rx); srsenb::prbmask_t ul_allocs(sched_cell_params[CARRIER_IDX].cfg.cell.nof_prb); /* TEST: any collision in PUCCH and PUSCH */ TESTASSERT(output_tester[CARRIER_IDX].test_pusch_collisions( tti_info.tti_params, tti_info.ul_sched_result[CARRIER_IDX], ul_allocs) == SRSLTE_SUCCESS); /* TEST: check whether cumulative UL PRB masks coincide */ if (ul_allocs != sf_result.ul_mask) { TESTERROR("The UL PRB mask and the scheduler result UL mask are not consistent\n"); } // update ue stats with number of allocated UL PRBs for (uint32_t i = 0; i < tti_info.ul_sched_result[CARRIER_IDX].nof_dci_elems; ++i) { uint32_t L, RBstart; srslte_ra_type2_from_riv(tti_info.ul_sched_result[CARRIER_IDX].pusch[i].dci.type2_alloc.riv, &L, &RBstart, sched_cell_params[CARRIER_IDX].cfg.cell.nof_prb, sched_cell_params[CARRIER_IDX].cfg.cell.nof_prb); ue_stats[tti_info.ul_sched_result[CARRIER_IDX].pusch[i].dci.rnti].nof_ul_rbs += L; } /* TEST: check any collision in PDSCH */ srsenb::rbgmask_t rbgmask(sched_cell_params[CARRIER_IDX].cfg.cell.nof_prb); TESTASSERT(output_tester[CARRIER_IDX].test_pdsch_collisions( tti_info.tti_params, tti_info.dl_sched_result[CARRIER_IDX], rbgmask) == SRSLTE_SUCCESS); // update ue stats with number of DL RB allocations srslte::bounded_bitset<100, true> alloc_mask(sched_cell_params[CARRIER_IDX].cfg.cell.nof_prb); for (uint32_t i = 0; i < tti_info.dl_sched_result[CARRIER_IDX].nof_data_elems; ++i) { TESTASSERT(srsenb::extract_dl_prbmask(sched_cell_params[CARRIER_IDX].cfg.cell, tti_info.dl_sched_result[CARRIER_IDX].data[i].dci, &alloc_mask) == SRSLTE_SUCCESS); ue_stats[tti_info.dl_sched_result[CARRIER_IDX].data[i].dci.rnti].nof_dl_rbs += alloc_mask.count(); } // TEST: check if resulting DL mask is equal to scheduler internal DL mask if (rbgmask != sf_result.dl_mask) { TESTERROR("The DL PRB mask and the scheduler result DL mask are not consistent (%s!=%s)\n", rbgmask.to_string().c_str(), sf_result.dl_mask.to_string().c_str()); } return SRSLTE_SUCCESS; } void test_scheduler_rand(sched_sim_events sim) { // Create classes sched_tester tester; srsenb::sched my_sched; tester.init(nullptr); tester.sim_cfg(std::move(sim.sim_args)); tester.test_next_ttis(sim.tti_events); } sched_sim_events rand_sim_params(uint32_t nof_ttis) { sched_sim_events sim_gen; uint32_t max_conn_dur = 10000, min_conn_dur = 500; float P_ul_sr = srsenb::randf() * 0.5, P_dl = srsenb::randf() * 0.5; float P_prach = 0.99f; // 0.1f + randf()*0.3f; float ul_sr_exps[] = {1, 4}; // log rand float dl_data_exps[] = {1, 4}; // log rand uint32_t max_nof_users = 5; std::uniform_int_distribution<> connection_dur_dist(min_conn_dur, max_conn_dur); std::uniform_int_distribution dist_prb_idx(0, 5); uint32_t prb_idx = dist_prb_idx(srsenb::get_rand_gen()); uint32_t nof_prb = std::array({6, 15, 25, 50, 75, 100})[prb_idx]; sched_sim_event_generator generator; sim_gen.sim_args.cell_cfg = {generate_default_cell_cfg(nof_prb)}; sim_gen.sim_args.ue_cfg = generate_default_ue_cfg(); sim_gen.sim_args.P_retx = 0.1; sim_gen.sim_args.start_tti = 0; sim_gen.sim_args.sim_log = log_global.get(); generator.tti_events.resize(nof_ttis); for (uint32_t tti = 0; tti < nof_ttis; ++tti) { for (auto& u : generator.current_users) { uint32_t rnti = u.first; if (srsenb::randf() < P_ul_sr) { float exp = ul_sr_exps[0] + srsenb::randf() * (ul_sr_exps[1] - ul_sr_exps[0]); generator.add_ul_data(rnti, (uint32_t)pow(10, exp)); } if (srsenb::randf() < P_dl) { float exp = dl_data_exps[0] + srsenb::randf() * (dl_data_exps[1] - dl_data_exps[0]); generator.add_dl_data(rnti, (uint32_t)pow(10, exp)); } } // may add new user (For now, we only support one UE per PRACH) bool is_prach_tti = srslte_prach_tti_opportunity_config_fdd(sim_gen.sim_args.cell_cfg[CARRIER_IDX].prach_config, tti, -1); if (is_prach_tti and generator.current_users.size() < max_nof_users and srsenb::randf() < P_prach) { generator.add_new_default_user(connection_dur_dist(srsenb::get_rand_gen())); } generator.step_tti(); } sim_gen.tti_events = std::move(generator.tti_events); return sim_gen; } int main() { // Setup seed srsenb::set_randseed(seed); printf("This is the chosen seed: %u\n", seed); srslte::logmap::set_default_log_level(srslte::LOG_LEVEL_INFO); uint32_t N_runs = 1, nof_ttis = 10240 + 10; for (uint32_t n = 0; n < N_runs; ++n) { printf("Sim run number: %u\n", n + 1); sched_sim_events sim = rand_sim_params(nof_ttis); test_scheduler_rand(std::move(sim)); } return 0; }