/** * Copyright 2013-2022 Software Radio Systems Limited * * This file is part of srsRAN. * * srsRAN is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsRAN is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "srsran/srsran.h" #include #include #include #include #include #include #include #include #include "srsran/phy/ch_estimation/refsignal_ul.h" #include "srsran/phy/common/phy_common.h" #include "srsran/phy/dft/dft_precoding.h" #include "srsran/phy/phch/pusch.h" #include "srsran/phy/phch/pusch_cfg.h" #include "srsran/phy/phch/uci.h" #include "srsran/phy/utils/bit.h" #include "srsran/phy/utils/debug.h" #include "srsran/phy/utils/vector.h" #define MAX_PUSCH_RE(cp) (2 * SRSRAN_CP_NSYMB(cp) * 12) #define ACK_SNR_TH -1.0 /* Allocate/deallocate PUSCH RBs to the resource grid */ static int pusch_cp(srsran_pusch_t* q, srsran_pusch_grant_t* grant, cf_t* input, cf_t* output, bool is_shortened, bool advance_input) { cf_t* in_ptr = input; cf_t* out_ptr = output; uint32_t L_ref = 3; if (SRSRAN_CP_ISEXT(q->cell.cp)) { L_ref = 2; } for (uint32_t slot = 0; slot < 2; slot++) { uint32_t N_srs = 0; if (is_shortened && slot == 1) { N_srs = 1; } INFO("%s PUSCH %d PRB to index %d at slot %d", advance_input ? "Allocating" : "Getting", grant->L_prb, grant->n_prb_tilde[slot], slot); for (uint32_t l = 0; l < SRSRAN_CP_NSYMB(q->cell.cp) - N_srs; l++) { if (l != L_ref) { uint32_t idx = SRSRAN_RE_IDX( q->cell.nof_prb, l + slot * SRSRAN_CP_NSYMB(q->cell.cp), grant->n_prb_tilde[slot] * SRSRAN_NRE); if (advance_input) { out_ptr = &output[idx]; } else { in_ptr = &input[idx]; } memcpy(out_ptr, in_ptr, grant->L_prb * SRSRAN_NRE * sizeof(cf_t)); if (advance_input) { in_ptr += grant->L_prb * SRSRAN_NRE; } else { out_ptr += grant->L_prb * SRSRAN_NRE; } } } } if (advance_input) { return in_ptr - input; } else { return out_ptr - output; } } static int pusch_put(srsran_pusch_t* q, srsran_pusch_grant_t* grant, cf_t* input, cf_t* output, bool is_shortened) { return pusch_cp(q, grant, input, output, is_shortened, true); } static int pusch_get(srsran_pusch_t* q, srsran_pusch_grant_t* grant, cf_t* input, cf_t* output, bool is_shortened) { return pusch_cp(q, grant, input, output, is_shortened, false); } /** Initializes the PDCCH transmitter and receiver */ static int pusch_init(srsran_pusch_t* q, uint32_t max_prb, bool is_ue) { int ret = SRSRAN_ERROR_INVALID_INPUTS; if (q != NULL) { bzero(q, sizeof(srsran_pusch_t)); ret = SRSRAN_ERROR; q->max_re = max_prb * MAX_PUSCH_RE(SRSRAN_CP_NORM); INFO("Init PUSCH: %d PRBs", max_prb); for (srsran_mod_t i = 0; i < SRSRAN_MOD_NITEMS; i++) { if (srsran_modem_table_lte(&q->mod[i], i)) { goto clean; } srsran_modem_table_bytes(&q->mod[i]); } q->is_ue = is_ue; srsran_sch_init(&q->ul_sch); if (srsran_dft_precoding_init(&q->dft_precoding, max_prb, is_ue)) { ERROR("Error initiating DFT transform precoding"); goto clean; } // Allocate int16 for reception (LLRs). Buffer casted to uint8_t for transmission q->q = srsran_vec_i16_malloc(q->max_re * srsran_mod_bits_x_symbol(SRSRAN_MOD_64QAM)); if (!q->q) { goto clean; } // Allocate int16 for reception (LLRs). Buffer casted to uint8_t for transmission q->g = srsran_vec_i16_malloc(q->max_re * srsran_mod_bits_x_symbol(SRSRAN_MOD_64QAM)); if (!q->g) { goto clean; } q->d = srsran_vec_cf_malloc(q->max_re); if (!q->d) { goto clean; } // Allocate eNb specific buffers if (!q->is_ue) { q->ce = srsran_vec_cf_malloc(q->max_re); if (!q->ce) { goto clean; } q->evm_buffer = srsran_evm_buffer_alloc(srsran_ra_tbs_from_idx(SRSRAN_RA_NOF_TBS_IDX - 1, 6)); if (!q->evm_buffer) { ERROR("Allocating EVM buffer"); goto clean; } } q->z = srsran_vec_cf_malloc(q->max_re); if (!q->z) { goto clean; } ret = SRSRAN_SUCCESS; } clean: if (ret == SRSRAN_ERROR) { srsran_pusch_free(q); } return ret; } int srsran_pusch_init_ue(srsran_pusch_t* q, uint32_t max_prb) { return pusch_init(q, max_prb, true); } int srsran_pusch_init_enb(srsran_pusch_t* q, uint32_t max_prb) { return pusch_init(q, max_prb, false); } void srsran_pusch_free(srsran_pusch_t* q) { int i; if (q->q) { free(q->q); } if (q->d) { free(q->d); } if (q->g) { free(q->g); } if (q->ce) { free(q->ce); } if (q->z) { free(q->z); } if (q->evm_buffer) { srsran_evm_free(q->evm_buffer); } srsran_dft_precoding_free(&q->dft_precoding); for (i = 0; i < SRSRAN_MOD_NITEMS; i++) { srsran_modem_table_free(&q->mod[i]); } srsran_sch_free(&q->ul_sch); bzero(q, sizeof(srsran_pusch_t)); } int srsran_pusch_set_cell(srsran_pusch_t* q, srsran_cell_t cell) { int ret = SRSRAN_ERROR_INVALID_INPUTS; if (q != NULL && srsran_cell_isvalid(&cell)) { // Resize EVM buffer, only for eNb if (!q->is_ue && q->evm_buffer) { srsran_evm_buffer_resize(q->evm_buffer, srsran_ra_tbs_from_idx(SRSRAN_RA_NOF_TBS_IDX - 1, cell.nof_prb)); } q->cell = cell; q->max_re = cell.nof_prb * MAX_PUSCH_RE(cell.cp); ret = SRSRAN_SUCCESS; } return ret; } int srsran_pusch_assert_grant(const srsran_pusch_grant_t* grant) { // Check for valid number of PRB if (!srsran_dft_precoding_valid_prb(grant->L_prb)) { return SRSRAN_ERROR_INVALID_INPUTS; } // Check RV limits, -1 is for RAR, 0-3 normal HARQ if (grant->tb.rv < -1 || grant->tb.rv > 3) { return SRSRAN_ERROR_OUT_OF_BOUNDS; } // Check for positive TBS if (grant->tb.tbs < 0) { return SRSRAN_ERROR_OUT_OF_BOUNDS; } return SRSRAN_SUCCESS; } /** Converts the PUSCH data bits to symbols mapped to the slot ready for transmission */ int srsran_pusch_encode(srsran_pusch_t* q, srsran_ul_sf_cfg_t* sf, srsran_pusch_cfg_t* cfg, srsran_pusch_data_t* data, cf_t* sf_symbols) { int ret = SRSRAN_ERROR_INVALID_INPUTS; if (q != NULL && cfg != NULL) { /* Limit UL modulation if not supported by the UE or disabled by higher layers */ if (!cfg->enable_64qam) { if (cfg->grant.tb.mod >= SRSRAN_MOD_64QAM) { cfg->grant.tb.mod = SRSRAN_MOD_16QAM; cfg->grant.tb.nof_bits = cfg->grant.nof_re * srsran_mod_bits_x_symbol(SRSRAN_MOD_16QAM); } } if (cfg->grant.nof_re > q->max_re) { ERROR("Error too many RE per subframe (%d). PUSCH configured for %d RE (%d PRB)", cfg->grant.nof_re, q->max_re, q->cell.nof_prb); return SRSRAN_ERROR_INVALID_INPUTS; } int err = srsran_pusch_assert_grant(&cfg->grant); if (err != SRSRAN_SUCCESS) { return err; } INFO("Encoding PUSCH SF: %d, Mod %s, RNTI: %d, TBS: %d, NofRE: %d, NofSymbols=%d, NofBitsE: %d, rv_idx: %d", sf->tti % 10, srsran_mod_string(cfg->grant.tb.mod), cfg->rnti, cfg->grant.tb.tbs, cfg->grant.nof_re, cfg->grant.nof_symb, cfg->grant.tb.nof_bits, cfg->grant.tb.rv); bzero(q->q, cfg->grant.tb.nof_bits); if ((ret = srsran_ulsch_encode(&q->ul_sch, cfg, data->ptr, &data->uci, q->g, q->q)) < 0) { ERROR("Error encoding TB"); return SRSRAN_ERROR; } uint32_t nof_ri_ack_bits = (uint32_t)ret; // Run scrambling srsran_sequence_pusch_apply_pack((uint8_t*)q->q, (uint8_t*)q->q, cfg->rnti, 2 * (sf->tti % SRSRAN_NOF_SF_X_FRAME), q->cell.id, cfg->grant.tb.nof_bits); // Correct UCI placeholder/repetition bits uint8_t* d = q->q; for (int i = 0; i < nof_ri_ack_bits; i++) { if (q->ul_sch.ack_ri_bits[i].type == UCI_BIT_PLACEHOLDER) { d[q->ul_sch.ack_ri_bits[i].position / 8] |= (1 << (7 - q->ul_sch.ack_ri_bits[i].position % 8)); } else if (q->ul_sch.ack_ri_bits[i].type == UCI_BIT_REPETITION) { if (q->ul_sch.ack_ri_bits[i].position > 1) { uint32_t p = q->ul_sch.ack_ri_bits[i].position; uint8_t bit = d[(p - 1) / 8] & (1 << (7 - (p - 1) % 8)); if (bit) { d[p / 8] |= 1 << (7 - p % 8); } else { d[p / 8] &= ~(1 << (7 - p % 8)); } } } } // Bit mapping srsran_mod_modulate_bytes(&q->mod[cfg->grant.tb.mod], (uint8_t*)q->q, q->d, cfg->grant.tb.nof_bits); // DFT precoding srsran_dft_precoding(&q->dft_precoding, q->d, q->z, cfg->grant.L_prb, cfg->grant.nof_symb); // Mapping to resource elements uint32_t n = pusch_put(q, &cfg->grant, q->z, sf_symbols, sf->shortened); if (n != cfg->grant.nof_re) { ERROR("Error trying to allocate %d symbols but %d were allocated (tti=%d, short=%d, L=%d)", cfg->grant.nof_re, n, sf->tti, sf->shortened, cfg->grant.L_prb); return SRSRAN_ERROR; } ret = SRSRAN_SUCCESS; } return ret; } /** Decodes the PUSCH from the received symbols */ int srsran_pusch_decode(srsran_pusch_t* q, srsran_ul_sf_cfg_t* sf, srsran_pusch_cfg_t* cfg, srsran_chest_ul_res_t* channel, cf_t* sf_symbols, srsran_pusch_res_t* out) { int ret = SRSRAN_ERROR_INVALID_INPUTS; uint32_t n; if (q != NULL && sf_symbols != NULL && out != NULL && cfg != NULL) { struct timeval t[3]; if (cfg->meas_time_en) { gettimeofday(&t[1], NULL); } /* Limit UL modulation if not supported by the UE or disabled by higher layers */ if (!cfg->enable_64qam) { if (cfg->grant.tb.mod >= SRSRAN_MOD_64QAM) { cfg->grant.tb.mod = SRSRAN_MOD_16QAM; cfg->grant.tb.nof_bits = cfg->grant.nof_re * srsran_mod_bits_x_symbol(SRSRAN_MOD_16QAM); } } INFO("Decoding PUSCH SF: %d, Mod %s, NofBits: %d, NofRE: %d, NofSymbols=%d, NofBitsE: %d, rv_idx: %d", sf->tti % 10, srsran_mod_string(cfg->grant.tb.mod), cfg->grant.tb.tbs, cfg->grant.nof_re, cfg->grant.nof_symb, cfg->grant.tb.nof_bits, cfg->grant.tb.rv); /* extract symbols */ n = pusch_get(q, &cfg->grant, sf_symbols, q->d, sf->shortened); if (n != cfg->grant.nof_re) { ERROR("Error expecting %d symbols but got %d", cfg->grant.nof_re, n); return SRSRAN_ERROR; } // Measure Energy per Resource Element if (cfg->meas_epre_en) { out->epre_dbfs = srsran_convert_power_to_dB(srsran_vec_avg_power_cf(q->d, n)); } else { out->epre_dbfs = NAN; } /* extract channel estimates */ n = pusch_get(q, &cfg->grant, channel->ce, q->ce, sf->shortened); if (n != cfg->grant.nof_re) { ERROR("Error expecting %d symbols but got %d", cfg->grant.nof_re, n); return SRSRAN_ERROR; } // Equalization srsran_predecoding_single(q->d, q->ce, q->z, NULL, cfg->grant.nof_re, 1.0f, channel->noise_estimate); // DFT predecoding srsran_dft_precoding(&q->dft_precoding, q->z, q->d, cfg->grant.L_prb, cfg->grant.nof_symb); // Soft demodulation if (q->llr_is_8bit) { srsran_demod_soft_demodulate_b(cfg->grant.tb.mod, q->d, q->q, cfg->grant.nof_re); } else { srsran_demod_soft_demodulate_s(cfg->grant.tb.mod, q->d, q->q, cfg->grant.nof_re); } if (cfg->meas_evm_en && q->evm_buffer) { if (q->llr_is_8bit) { out->evm = srsran_evm_run_b(q->evm_buffer, &q->mod[cfg->grant.tb.mod], q->d, q->q, cfg->grant.tb.nof_bits); } else { out->evm = srsran_evm_run_s(q->evm_buffer, &q->mod[cfg->grant.tb.mod], q->d, q->q, cfg->grant.tb.nof_bits); } } else { out->evm = NAN; } // Descrambling if (q->llr_is_8bit) { srsran_sequence_pusch_apply_c( q->q, q->q, cfg->rnti, 2 * (sf->tti % SRSRAN_NOF_SF_X_FRAME), q->cell.id, cfg->grant.tb.nof_bits); } else { srsran_sequence_pusch_apply_s( q->q, q->q, cfg->rnti, 2 * (sf->tti % SRSRAN_NOF_SF_X_FRAME), q->cell.id, cfg->grant.tb.nof_bits); } // Generate packed sequence for UCI decoder uint8_t* c = (uint8_t*)q->z; // Reuse Z srsran_sequence_pusch_gen_unpack( c, cfg->rnti, 2 * (sf->tti % SRSRAN_NOF_SF_X_FRAME), q->cell.id, cfg->grant.tb.nof_bits); // Set max number of iterations srsran_sch_set_max_noi(&q->ul_sch, cfg->max_nof_iterations); // Decode ret = srsran_ulsch_decode(&q->ul_sch, cfg, q->q, q->g, c, out->data, &out->uci); out->crc = (ret == 0); // Save number of iterations out->avg_iterations_block = q->ul_sch.avg_iterations; // Save O_cqi for power control cfg->last_O_cqi = srsran_cqi_size(&cfg->uci_cfg.cqi); ret = SRSRAN_SUCCESS; if (cfg->meas_time_en) { gettimeofday(&t[2], NULL); get_time_interval(t); cfg->meas_time_value = t[0].tv_usec; } } return ret; } uint32_t srsran_pusch_grant_tx_info(srsran_pusch_grant_t* grant, srsran_uci_cfg_t* uci_cfg, srsran_uci_value_t* uci_data, char* str, uint32_t str_len) { uint32_t len = srsran_ra_ul_info(grant, str, str_len); if (uci_data) { len += srsran_uci_data_info(uci_cfg, uci_data, &str[len], str_len - len); } return len; } uint32_t srsran_pusch_tx_info(srsran_pusch_cfg_t* cfg, srsran_uci_value_t* uci_data, char* str, uint32_t str_len) { uint32_t len = srsran_print_check(str, str_len, 0, "rnti=0x%x", cfg->rnti); len += srsran_pusch_grant_tx_info(&cfg->grant, &cfg->uci_cfg, uci_data, &str[len], str_len - len); if (cfg->meas_time_en) { len = srsran_print_check(str, str_len, len, ", t=%d us", cfg->meas_time_value); } return len; } uint32_t srsran_pusch_rx_info(srsran_pusch_cfg_t* cfg, srsran_pusch_res_t* res, srsran_chest_ul_res_t* chest_res, char* str, uint32_t str_len) { uint32_t len = srsran_print_check(str, str_len, 0, "rnti=0x%x", cfg->rnti); len += srsran_ra_ul_info(&cfg->grant, &str[len], str_len); len = srsran_print_check( str, str_len, len, ", crc=%s, avg_iter=%.1f", res->crc ? "OK" : "KO", res->avg_iterations_block); len += srsran_uci_data_info(&cfg->uci_cfg, &res->uci, &str[len], str_len - len); len = srsran_print_check(str, str_len, len, ", snr=%.1f dB", chest_res->snr_db); // Append Energy Per Resource Element if (cfg->meas_epre_en) { len = srsran_print_check(str, str_len, len, ", epre=%.1f dBfs", res->epre_dbfs); } // Append Time Aligment information if available if (cfg->meas_ta_en) { len = srsran_print_check(str, str_len, len, ", ta=%.1f us", chest_res->ta_us); } // Append CFO information if available if (!isnan(chest_res->cfo_hz)) { len = srsran_print_check(str, str_len, len, ", cfo=%.1f hz", chest_res->cfo_hz); } // Append EVM measurement if available if (cfg->meas_evm_en) { len = srsran_print_check(str, str_len, len, ", evm=%.1f %%", res->evm * 100); } if (cfg->meas_time_en) { len = srsran_print_check(str, str_len, len, ", t=%d us", cfg->meas_time_value); } return len; }