/** * * \section COPYRIGHT * * Copyright 2013-2015 Software Radio Systems Limited * * \section LICENSE * * This file is part of the srsLTE library. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #include "prb_dl.h" #include "srslte/phy/phch/pdsch.h" #include "srslte/phy/utils/debug.h" #include "srslte/phy/utils/vector.h" #define MAX_PDSCH_RE(cp) (2 * SRSLTE_CP_NSYMB(cp) * 12) const static srslte_mod_t modulations[4] = { SRSLTE_MOD_BPSK, SRSLTE_MOD_QPSK, SRSLTE_MOD_16QAM, SRSLTE_MOD_64QAM }; //#define DEBUG_IDX #ifdef DEBUG_IDX cf_t *offset_original=NULL; extern int indices[100000]; extern int indices_ptr; #endif int srslte_pdsch_cp(srslte_pdsch_t *q, cf_t *input, cf_t *output, srslte_ra_dl_grant_t *grant, uint32_t lstart_grant, uint32_t nsubframe, bool put) { uint32_t s, n, l, lp, lstart, lend, nof_refs; bool is_pbch, is_sss; cf_t *in_ptr = input, *out_ptr = output; uint32_t offset = 0; #ifdef DEBUG_IDX indices_ptr = 0; if (put) { offset_original = output; } else { offset_original = input; } #endif if (q->cell.nof_ports == 1) { nof_refs = 2; } else { nof_refs = 4; } for (s = 0; s < 2; s++) { for (l = 0; l < SRSLTE_CP_NSYMB(q->cell.cp); l++) { for (n = 0; n < q->cell.nof_prb; n++) { // If this PRB is assigned if (grant->prb_idx[s][n]) { if (s == 0) { lstart = lstart_grant; } else { lstart = 0; } lend = SRSLTE_CP_NSYMB(q->cell.cp); is_pbch = is_sss = false; // Skip PSS/SSS signals if (s == 0 && (nsubframe == 0 || nsubframe == 5)) { if (n >= q->cell.nof_prb / 2 - 3 && n < q->cell.nof_prb / 2 + 3 + (q->cell.nof_prb%2)) { lend = SRSLTE_CP_NSYMB(q->cell.cp) - 2; is_sss = true; } } // Skip PBCH if (s == 1 && nsubframe == 0) { if (n >= q->cell.nof_prb / 2 - 3 && n < q->cell.nof_prb / 2 + 3 + (q->cell.nof_prb%2)) { lstart = 4; is_pbch = true; } } lp = l + s * SRSLTE_CP_NSYMB(q->cell.cp); if (put) { out_ptr = &output[(lp * q->cell.nof_prb + n) * SRSLTE_NRE]; } else { in_ptr = &input[(lp * q->cell.nof_prb + n) * SRSLTE_NRE]; } // This is a symbol in a normal PRB with or without references if (l >= lstart && l < lend) { if (SRSLTE_SYMBOL_HAS_REF(l, q->cell.cp, q->cell.nof_ports)) { if (nof_refs == 2) { if (l == 0) { offset = q->cell.id % 6; } else { offset = (q->cell.id + 3) % 6; } } else { offset = q->cell.id % 3; } prb_cp_ref(&in_ptr, &out_ptr, offset, nof_refs, nof_refs, put); } else { prb_cp(&in_ptr, &out_ptr, 1); } } // This is a symbol in a PRB with PBCH or Synch signals (SS). // If the number or total PRB is odd, half of the the PBCH or SS will fall into the symbol if ((q->cell.nof_prb % 2) && ((is_pbch && l < lstart) || (is_sss && l >= lend))) { if (n == q->cell.nof_prb / 2 - 3) { if (SRSLTE_SYMBOL_HAS_REF(l, q->cell.cp, q->cell.nof_ports)) { prb_cp_ref(&in_ptr, &out_ptr, offset, nof_refs, nof_refs/2, put); } else { prb_cp_half(&in_ptr, &out_ptr, 1); } } else if (n == q->cell.nof_prb / 2 + 3) { if (put) { out_ptr += 6; } else { in_ptr += 6; } if (SRSLTE_SYMBOL_HAS_REF(l, q->cell.cp, q->cell.nof_ports)) { prb_cp_ref(&in_ptr, &out_ptr, offset, nof_refs, nof_refs/2, put); } else { prb_cp_half(&in_ptr, &out_ptr, 1); } } } } } } } int r; if (put) { r = abs((int) (input - in_ptr)); } else { r = abs((int) (output - out_ptr)); } return r; } /** * Puts PDSCH in slot number 1 * * Returns the number of symbols written to sf_symbols * * 36.211 10.3 section 6.3.5 */ int srslte_pdsch_put(srslte_pdsch_t *q, cf_t *symbols, cf_t *sf_symbols, srslte_ra_dl_grant_t *grant, uint32_t lstart, uint32_t subframe) { return srslte_pdsch_cp(q, symbols, sf_symbols, grant, lstart, subframe, true); } /** * Extracts PDSCH from slot number 1 * * Returns the number of symbols written to PDSCH * * 36.211 10.3 section 6.3.5 */ int srslte_pdsch_get(srslte_pdsch_t *q, cf_t *sf_symbols, cf_t *symbols, srslte_ra_dl_grant_t *grant, uint32_t lstart, uint32_t subframe) { return srslte_pdsch_cp(q, sf_symbols, symbols, grant, lstart, subframe, false); } /** Initializes the PDSCH transmitter and receiver */ static int pdsch_init(srslte_pdsch_t *q, uint32_t max_prb, bool is_ue, uint32_t nof_antennas) { int ret = SRSLTE_ERROR_INVALID_INPUTS; if (q != NULL) { bzero(q, sizeof(srslte_pdsch_t)); ret = SRSLTE_ERROR; q->max_re = max_prb * MAX_PDSCH_RE(q->cell.cp); q->is_ue = is_ue; q->nof_rx_antennas = nof_antennas; INFO("Init PDSCH: %d PRBs, max_symbols: %d\n", max_prb, q->max_re); for (int i = 0; i < 4; i++) { if (srslte_modem_table_lte(&q->mod[i], modulations[i])) { goto clean; } srslte_modem_table_bytes(&q->mod[i]); } if (srslte_sch_init(&q->dl_sch)) { ERROR("Initiating DL SCH"); goto clean; } for (int i = 0; i < SRSLTE_MAX_CODEWORDS; i++) { // Allocate int16_t for reception (LLRs) q->e[i] = srslte_vec_malloc(sizeof(int16_t) * q->max_re * srslte_mod_bits_x_symbol(SRSLTE_MOD_64QAM)); if (!q->e[i]) { goto clean; } q->d[i] = srslte_vec_malloc(sizeof(cf_t) * q->max_re); if (!q->d[i]) { goto clean; } } for (int i = 0; i < SRSLTE_MAX_PORTS; i++) { q->x[i] = srslte_vec_malloc(sizeof(cf_t) * q->max_re); if (!q->x[i]) { goto clean; } q->symbols[i] = srslte_vec_malloc(sizeof(cf_t) * q->max_re); if (!q->symbols[i]) { goto clean; } if (q->is_ue) { for (int j = 0; j < SRSLTE_MAX_PORTS; j++) { q->ce[i][j] = srslte_vec_malloc(sizeof(cf_t) * q->max_re); if (!q->ce[i][j]) { goto clean; } } } } q->users = calloc(sizeof(srslte_pdsch_user_t*), q->is_ue?1:(1+SRSLTE_SIRNTI)); if (!q->users) { perror("malloc"); goto clean; } if (srslte_sequence_init(&q->tmp_seq, q->max_re * srslte_mod_bits_x_symbol(SRSLTE_MOD_64QAM))) { goto clean; } ret = SRSLTE_SUCCESS; } clean: if (ret == SRSLTE_ERROR) { srslte_pdsch_free(q); } return ret; } int srslte_pdsch_init_ue(srslte_pdsch_t *q, uint32_t max_prb, uint32_t nof_antennas) { return pdsch_init(q, max_prb, true, nof_antennas); } int srslte_pdsch_init_enb(srslte_pdsch_t *q, uint32_t max_prb) { return pdsch_init(q, max_prb, false, 0); } void srslte_pdsch_free(srslte_pdsch_t *q) { for (int i = 0; i < SRSLTE_MAX_CODEWORDS; i++) { if (q->e[i]) { free(q->e[i]); } if (q->d[i]) { free(q->d[i]); } } /* Free sch objects */ srslte_sch_free(&q->dl_sch); for (int i = 0; i < SRSLTE_MAX_PORTS; i++) { if (q->x[i]) { free(q->x[i]); } if (q->symbols[i]) { free(q->symbols[i]); } if (q->is_ue) { for (int j = 0; j < SRSLTE_MAX_PORTS; j++) { if (q->ce[i][j]) { free(q->ce[i][j]); } } } } if (q->users) { if (q->is_ue) { srslte_pdsch_free_rnti(q, 0); } else { for (int u=0;u<=SRSLTE_SIRNTI;u++) { if (q->users[u]) { srslte_pdsch_free_rnti(q, u); } } } free(q->users); } srslte_sequence_free(&q->tmp_seq); for (int i = 0; i < 4; i++) { srslte_modem_table_free(&q->mod[i]); } bzero(q, sizeof(srslte_pdsch_t)); } int srslte_pdsch_set_cell(srslte_pdsch_t *q, srslte_cell_t cell) { int ret = SRSLTE_ERROR_INVALID_INPUTS; if (q != NULL && srslte_cell_isvalid(&cell)) { memcpy(&q->cell, &cell, sizeof(srslte_cell_t)); q->max_re = q->cell.nof_prb * MAX_PDSCH_RE(q->cell.cp); INFO("PDSCH: Cell config PCI=%d, %d ports, %d PRBs, max_symbols: %d\n", q->cell.nof_ports, q->cell.id, q->cell.nof_prb, q->max_re); ret = SRSLTE_SUCCESS; } return ret; } /* Precalculate the PDSCH scramble sequences for a given RNTI. This function takes a while * to execute, so shall be called once the final C-RNTI has been allocated for the session. */ int srslte_pdsch_set_rnti(srslte_pdsch_t *q, uint16_t rnti) { uint32_t rnti_idx = q->is_ue?0:rnti; if (!q->users[rnti_idx] || q->is_ue) { if (!q->users[rnti_idx]) { q->users[rnti_idx] = calloc(1, sizeof(srslte_pdsch_user_t)); if(!q->users[rnti_idx]) { perror("calloc"); return -1; } } for (int i = 0; i < SRSLTE_NSUBFRAMES_X_FRAME; i++) { for (int j = 0; j < SRSLTE_MAX_CODEWORDS; j++) { if (srslte_sequence_pdsch(&q->users[rnti_idx]->seq[j][i], rnti, j, 2 * i, q->cell.id, q->max_re * srslte_mod_bits_x_symbol(SRSLTE_MOD_64QAM))) { fprintf(stderr, "Error initializing PDSCH scrambling sequence\n"); srslte_pdsch_free_rnti(q, rnti); return SRSLTE_ERROR; } } } q->ue_rnti = rnti; q->users[rnti_idx]->cell_id = q->cell.id; q->users[rnti_idx]->sequence_generated = true; } else { fprintf(stderr, "Error generating PDSCH sequence: rnti=0x%x already generated\n", rnti); } return SRSLTE_SUCCESS; } void srslte_pdsch_set_power_allocation(srslte_pdsch_t *q, float rho_a) { if (q) { q->rho_a = rho_a; } } void srslte_pdsch_free_rnti(srslte_pdsch_t* q, uint16_t rnti) { uint32_t rnti_idx = q->is_ue?0:rnti; if (q->users[rnti_idx]) { for (int i = 0; i < SRSLTE_NSUBFRAMES_X_FRAME; i++) { for (int j = 0; j < SRSLTE_MAX_CODEWORDS; j++) { srslte_sequence_free(&q->users[rnti_idx]->seq[j][i]); } } free(q->users[rnti_idx]); q->users[rnti_idx] = NULL; q->ue_rnti = 0; } } static void pdsch_decode_debug(srslte_pdsch_t *q, srslte_pdsch_cfg_t *cfg, cf_t *sf_symbols[SRSLTE_MAX_PORTS], cf_t *ce[SRSLTE_MAX_PORTS][SRSLTE_MAX_PORTS]) { if (SRSLTE_VERBOSE_ISDEBUG()) { char filename[FILENAME_MAX]; for (int j = 0; j < q->nof_rx_antennas; j++) { if (snprintf(filename, FILENAME_MAX, "subframe_p%d.dat", j) < 0) { ERROR("Generating file name"); break; } DEBUG("SAVED FILE %s: received subframe symbols\n", filename); srslte_vec_save_file(filename, sf_symbols[j], SRSLTE_SF_LEN_RE(q->cell.nof_prb, q->cell.cp)*sizeof(cf_t)); for (int i = 0; i < q->cell.nof_ports; i++) { if (snprintf(filename, FILENAME_MAX, "hest_%d%d.dat", i, j) < 0) { ERROR("Generating file name"); break; } DEBUG("SAVED FILE %s: channel estimates for Tx %d and Rx %d\n", filename, j, i); srslte_vec_save_file(filename, ce[i][j], SRSLTE_SF_LEN_RE(q->cell.nof_prb, q->cell.cp)*sizeof(cf_t)); } } for (int i=0;inof_layers;i++) { if (snprintf(filename, FILENAME_MAX, "pdsch_symbols_%d.dat", i) < 0) { ERROR("Generating file name"); break; } DEBUG("SAVED FILE %s: symbols after equalization\n", filename); srslte_vec_save_file(filename, q->d[i], cfg->nbits[0].nof_re*sizeof(cf_t)); if (snprintf(filename, FILENAME_MAX, "llr_%d.dat", i) < 0) { ERROR("Generating file name"); break; } DEBUG("SAVED FILE %s: LLR estimates after demodulation and descrambling\n", filename); srslte_vec_save_file(filename, q->e[i], cfg->nbits[0].nof_bits*sizeof(int16_t)); } } } /* Configures the structure srslte_pdsch_cfg_t from the DL DCI allocation dci_msg. * If dci_msg is NULL, the grant is assumed to be already stored in cfg->grant */ int srslte_pdsch_cfg(srslte_pdsch_cfg_t *cfg, srslte_cell_t cell, srslte_ra_dl_grant_t *grant, uint32_t cfi, uint32_t sf_idx, int rvidx) { int _rvids[SRSLTE_MAX_CODEWORDS] = {1}; _rvids[0] = rvidx; return srslte_pdsch_cfg_mimo(cfg, cell, grant, cfi, sf_idx, _rvids, SRSLTE_MIMO_TYPE_SINGLE_ANTENNA, 0); } /* Configures the structure srslte_pdsch_cfg_t from the DL DCI allocation dci_msg. * If dci_msg is NULL, the grant is assumed to be already stored in cfg->grant */ int srslte_pdsch_cfg_mimo(srslte_pdsch_cfg_t *cfg, srslte_cell_t cell, srslte_ra_dl_grant_t *grant, uint32_t cfi, uint32_t sf_idx, int rvidx[SRSLTE_MAX_CODEWORDS], srslte_mimo_type_t mimo_type, uint32_t pmi) { if (cfg && grant) { uint32_t nof_tb = SRSLTE_RA_DL_GRANT_NOF_TB(grant); memcpy(&cfg->grant, grant, sizeof(srslte_ra_dl_grant_t)); for (int cw = 0; cw < SRSLTE_MAX_CODEWORDS; cw++) { if (grant->tb_en[cw]) { if (srslte_cbsegm(&cfg->cb_segm[cw], (uint32_t) cfg->grant.mcs[cw].tbs)) { fprintf(stderr, "Error computing Codeword (%d) segmentation for TBS=%d\n", cw, cfg->grant.mcs[cw].tbs); return SRSLTE_ERROR; } } } srslte_ra_dl_grant_to_nbits(&cfg->grant, cfi, cell, sf_idx, cfg->nbits); cfg->sf_idx = sf_idx; memcpy(cfg->rv, rvidx, sizeof(uint32_t) * SRSLTE_MAX_CODEWORDS); cfg->mimo_type = mimo_type; cfg->tb_cw_swap = grant->tb_cw_swap; /* Check and configure PDSCH transmission modes */ switch(mimo_type) { case SRSLTE_MIMO_TYPE_SINGLE_ANTENNA: if (nof_tb != 1) { ERROR("Wrong number of transport blocks (%d) for single antenna.", nof_tb); return SRSLTE_ERROR; } cfg->nof_layers = 1; break; case SRSLTE_MIMO_TYPE_TX_DIVERSITY: if (nof_tb != 1) { ERROR("Wrong number of transport blocks (%d) for transmit diversity.", nof_tb); return SRSLTE_ERROR; } cfg->nof_layers = cell.nof_ports; break; case SRSLTE_MIMO_TYPE_SPATIAL_MULTIPLEX: if (nof_tb == 1) { cfg->codebook_idx = pmi; cfg->nof_layers = 1; } else if (nof_tb == 2) { cfg->codebook_idx = pmi + 1; cfg->nof_layers = 2; } else { ERROR("Wrong number of transport blocks (%d) for spatial multiplexing.", nof_tb); return SRSLTE_ERROR; } INFO("PDSCH configured for Spatial Multiplex; nof_codewords=%d; nof_layers=%d; codebook_idx=%d;\n", nof_tb, cfg->nof_layers, cfg->codebook_idx); break; case SRSLTE_MIMO_TYPE_CDD: if (nof_tb != 2) { ERROR("Wrong number of transport blocks (%d) for CDD.", nof_tb); return SRSLTE_ERROR; } cfg->nof_layers = 2; break; } return SRSLTE_SUCCESS; } else { return SRSLTE_ERROR_INVALID_INPUTS; } } static srslte_sequence_t *get_user_sequence(srslte_pdsch_t *q, uint16_t rnti, uint32_t codeword_idx, uint32_t sf_idx, uint32_t len) { uint32_t rnti_idx = q->is_ue?0:rnti; // The scrambling sequence is pregenerated for all RNTIs in the eNodeB but only for C-RNTI in the UE if (q->users[rnti_idx] && q->users[rnti_idx]->sequence_generated && q->users[rnti_idx]->cell_id == q->cell.id && q->ue_rnti == rnti && ((rnti >= SRSLTE_CRNTI_START && rnti < SRSLTE_CRNTI_END) || !q->is_ue)) { return &q->users[rnti_idx]->seq[codeword_idx][sf_idx]; } else { srslte_sequence_pdsch(&q->tmp_seq, rnti, codeword_idx, 2 * sf_idx, q->cell.id, len); return &q->tmp_seq; } } static int srslte_pdsch_codeword_encode(srslte_pdsch_t *q, srslte_pdsch_cfg_t *cfg, srslte_softbuffer_tx_t *softbuffer, uint16_t rnti, uint8_t *data, uint32_t codeword_idx, uint32_t tb_idx) { srslte_ra_nbits_t *nbits = &cfg->nbits[tb_idx]; srslte_ra_mcs_t *mcs = &cfg->grant.mcs[tb_idx]; uint32_t rv = cfg->rv[tb_idx]; bool valid_inputs = true; if (!softbuffer) { ERROR("Error encoding (TB%d -> CW%d), softbuffer=NULL", tb_idx, codeword_idx); valid_inputs = false; } if (nbits->nof_bits && valid_inputs) { INFO("Encoding PDSCH SF: %d (TB%d -> CW%d), Mod %s, NofBits: %d, NofSymbols: %d, NofBitsE: %d, rv_idx: %d\n", cfg->sf_idx, tb_idx, codeword_idx, srslte_mod_string(mcs->mod), mcs->tbs, nbits->nof_re, nbits->nof_bits, rv); /* Channel coding */ if (srslte_dlsch_encode2(&q->dl_sch, cfg, softbuffer, data, q->e[codeword_idx], tb_idx)) { ERROR("Error encoding (TB%d -> CW%d)", tb_idx, codeword_idx); return SRSLTE_ERROR; } /* Select scrambling sequence */ srslte_sequence_t *seq = get_user_sequence(q, rnti, codeword_idx, cfg->sf_idx, nbits->nof_bits); /* Bit scrambling */ srslte_scrambling_bytes(seq, (uint8_t *) q->e[codeword_idx], nbits->nof_bits); /* Bit mapping */ srslte_mod_modulate_bytes(&q->mod[mcs->mod], (uint8_t *) q->e[codeword_idx], q->d[codeword_idx], nbits->nof_bits); } else { return SRSLTE_ERROR_INVALID_INPUTS; } return SRSLTE_SUCCESS; } static int srslte_pdsch_codeword_decode(srslte_pdsch_t *q, srslte_pdsch_cfg_t *cfg, srslte_softbuffer_rx_t *softbuffer, uint16_t rnti, uint8_t *data, uint32_t codeword_idx, uint32_t tb_idx, bool *ack) { srslte_ra_nbits_t *nbits = &cfg->nbits[tb_idx]; srslte_ra_mcs_t *mcs = &cfg->grant.mcs[tb_idx]; uint32_t rv = cfg->rv[tb_idx]; int ret = SRSLTE_ERROR_INVALID_INPUTS; if (softbuffer && data && ack) { INFO("Decoding PDSCH SF: %d (CW%d -> TB%d), Mod %s, NofBits: %d, NofSymbols: %d, NofBitsE: %d, rv_idx: %d\n", cfg->sf_idx, codeword_idx, tb_idx, srslte_mod_string(mcs->mod), mcs->tbs, nbits->nof_re, nbits->nof_bits, rv); /* demodulate symbols * The MAX-log-MAP algorithm used in turbo decoding is unsensitive to SNR estimation, * thus we don't need tot set it in the LLRs normalization */ srslte_demod_soft_demodulate_s(mcs->mod, q->d[codeword_idx], q->e[codeword_idx], nbits->nof_re); /* Select scrambling sequence */ srslte_sequence_t *seq = get_user_sequence(q, rnti, codeword_idx, cfg->sf_idx, nbits->nof_bits); /* Bit scrambling */ srslte_scrambling_s_offset(seq, q->e[codeword_idx], 0, nbits->nof_bits); /* Return */ ret = srslte_dlsch_decode2(&q->dl_sch, cfg, softbuffer, q->e[codeword_idx], data, tb_idx); q->last_nof_iterations[codeword_idx] = srslte_sch_last_noi(&q->dl_sch); if (ret == SRSLTE_SUCCESS) { *ack = true; } else if (ret == SRSLTE_ERROR) { *ack = false; ret = SRSLTE_SUCCESS; } else if (ret == SRSLTE_ERROR_INVALID_INPUTS) { *ack = false; ret = SRSLTE_ERROR; } } else { ERROR("Detected NULL pointer in TB%d &softbuffer=%p &data=%p &ack=%p", codeword_idx, softbuffer, (void*)data, ack); } return ret; } /** Decodes the PDSCH from the received symbols */ int srslte_pdsch_decode(srslte_pdsch_t *q, srslte_pdsch_cfg_t *cfg, srslte_softbuffer_rx_t *softbuffers[SRSLTE_MAX_CODEWORDS], cf_t *sf_symbols[SRSLTE_MAX_PORTS], cf_t *ce[SRSLTE_MAX_PORTS][SRSLTE_MAX_PORTS], float noise_estimate, uint16_t rnti, uint8_t *data[SRSLTE_MAX_CODEWORDS], bool acks[SRSLTE_MAX_CODEWORDS]) { /* Set pointers for layermapping & precoding */ uint32_t i; cf_t *x[SRSLTE_MAX_LAYERS]; if (q != NULL && sf_symbols != NULL && data != NULL && cfg != NULL) { uint32_t nof_tb = SRSLTE_RA_DL_GRANT_NOF_TB(&cfg->grant); INFO("Decoding PDSCH SF: %d, RNTI: 0x%x, NofSymbols: %d, C_prb=%d, mimo_type=%d, nof_layers=%d, nof_tb=%d\n", cfg->sf_idx, rnti, cfg->nbits[0].nof_re, cfg->grant.nof_prb, cfg->nof_layers, nof_tb); // Extract Symbols and Channel Estimates for (int j=0;jnof_rx_antennas;j++) { int n = srslte_pdsch_get(q, sf_symbols[j], q->symbols[j], &cfg->grant, cfg->nbits[0].lstart, cfg->sf_idx); if (n != cfg->nbits[0].nof_re) { fprintf(stderr, "Error expecting %d symbols but got %d\n", cfg->nbits[0].nof_re, n); return SRSLTE_ERROR; } for (i = 0; i < q->cell.nof_ports; i++) { n = srslte_pdsch_get(q, ce[i][j], q->ce[i][j], &cfg->grant, cfg->nbits[0].lstart, cfg->sf_idx); if (n != cfg->nbits[0].nof_re) { fprintf(stderr, "Error expecting %d symbols but got %d\n", cfg->nbits[0].nof_re, n); return SRSLTE_ERROR; } } } // Prepare layers int nof_symbols [SRSLTE_MAX_CODEWORDS]; nof_symbols[0] = cfg->nbits[0].nof_re * nof_tb / cfg->nof_layers; nof_symbols[1] = cfg->nbits[1].nof_re * nof_tb / cfg->nof_layers; if (cfg->nof_layers == nof_tb) { /* Skip layer demap */ for (i = 0; i < cfg->nof_layers; i++) { x[i] = q->d[i]; } } else { /* number of layers equals number of ports */ for (i = 0; i < cfg->nof_layers; i++) { x[i] = q->x[i]; } memset(&x[cfg->nof_layers], 0, sizeof(cf_t*) * (SRSLTE_MAX_LAYERS - cfg->nof_layers)); } float pdsch_scaling = 1.0f; if (q->rho_a != 0.0f) { pdsch_scaling = q->rho_a; } // Pre-decoder if (srslte_predecoding_type(q->symbols, q->ce, x, q->nof_rx_antennas, q->cell.nof_ports, cfg->nof_layers, cfg->codebook_idx, cfg->nbits[0].nof_re, cfg->mimo_type, pdsch_scaling, noise_estimate)<0) { printf("Error predecoding\n"); return -1; } // Layer demapping only if necessary if (cfg->nof_layers != nof_tb) { srslte_layerdemap_type(x, q->d, cfg->nof_layers, nof_tb, nof_symbols[0], nof_symbols, cfg->mimo_type); } /* Codeword decoding: Implementation of 3GPP 36.212 Table 5.3.3.1.5-1 and Table 5.3.3.1.5-2 */ uint32_t cw_idx = (nof_tb == SRSLTE_MAX_TB && cfg->tb_cw_swap) ? 1 : 0; for (uint32_t tb_idx = 0; tb_idx < SRSLTE_MAX_TB; tb_idx++) { /* Decode only if transport block is enabled and the default ACK is not true */ if (cfg->grant.tb_en[tb_idx]) { if (!acks[tb_idx]) { int ret = srslte_pdsch_codeword_decode(q, cfg, softbuffers[tb_idx], rnti, data[tb_idx], cw_idx, tb_idx, &acks[tb_idx]); /* Check if there has been any execution error */ if (ret) { return ret; } } cw_idx = (cw_idx + 1) % SRSLTE_MAX_CODEWORDS; } } pdsch_decode_debug(q, cfg, sf_symbols, ce); return SRSLTE_SUCCESS; } else { return SRSLTE_ERROR_INVALID_INPUTS; } } int srslte_pdsch_pmi_select(srslte_pdsch_t *q, srslte_pdsch_cfg_t *cfg, cf_t *ce[SRSLTE_MAX_PORTS][SRSLTE_MAX_PORTS], float noise_estimate, uint32_t nof_ce, uint32_t pmi[SRSLTE_MAX_LAYERS], float sinr[SRSLTE_MAX_LAYERS][SRSLTE_MAX_CODEBOOKS]) { if (q->cell.nof_ports == 2 && q->nof_rx_antennas <= 2) { int nof_layers = 1; for (; nof_layers <= q->nof_rx_antennas; nof_layers++ ) { if (sinr[nof_layers - 1] && pmi) { if (srslte_precoding_pmi_select(ce, nof_ce, noise_estimate, nof_layers, &pmi[nof_layers - 1], sinr[nof_layers - 1]) < 0) { ERROR("PMI Select for %d layers", nof_layers); return SRSLTE_ERROR; } } } /* FIXME: Set other layers to 0 */ for (; nof_layers <= SRSLTE_MAX_LAYERS; nof_layers++ ) { if (sinr[nof_layers - 1] && pmi) { for (int cb = 0; cb < SRSLTE_MAX_CODEBOOKS; cb++) { sinr[nof_layers - 1][cb] = -INFINITY; } pmi[nof_layers - 1] = 0; } } } else { ERROR("Not implemented configuration"); return SRSLTE_ERROR_INVALID_INPUTS; } return SRSLTE_SUCCESS; } int srslte_pdsch_cn_compute(srslte_pdsch_t *q, cf_t *ce[SRSLTE_MAX_PORTS][SRSLTE_MAX_PORTS], uint32_t nof_ce, float *cn) { return srslte_precoding_cn(ce, q->cell.nof_ports, q->nof_rx_antennas, nof_ce, cn); } int srslte_pdsch_encode(srslte_pdsch_t *q, srslte_pdsch_cfg_t *cfg, srslte_softbuffer_tx_t *softbuffers[SRSLTE_MAX_CODEWORDS], uint8_t *data[SRSLTE_MAX_CODEWORDS], uint16_t rnti, cf_t *sf_symbols[SRSLTE_MAX_PORTS]) { int i; /* Set pointers for layermapping & precoding */ cf_t *x[SRSLTE_MAX_LAYERS]; int ret = SRSLTE_ERROR_INVALID_INPUTS; if (q != NULL && cfg != NULL) { uint32_t nof_tb = SRSLTE_RA_DL_GRANT_NOF_TB(&cfg->grant); for (i = 0; i < q->cell.nof_ports; i++) { if (sf_symbols[i] == NULL) { return SRSLTE_ERROR_INVALID_INPUTS; } } /* If both transport block size is zero return error */ if (!nof_tb) { return SRSLTE_ERROR_INVALID_INPUTS; } if (cfg->nbits[0].nof_re > q->max_re || cfg->nbits[1].nof_re > q->max_re) { fprintf(stderr, "Error too many RE per subframe (%d). PDSCH configured for %d RE (%d PRB)\n", cfg->nbits[0].nof_re, q->max_re, q->cell.nof_prb); return SRSLTE_ERROR_INVALID_INPUTS; } /* Implementation of 3GPP 36.212 Table 5.3.3.1.5-1 and Table 5.3.3.1.5-2 */ uint32_t cw_idx = (nof_tb == SRSLTE_MAX_TB && cfg->tb_cw_swap) ? 1 : 0; for (uint32_t tb_idx = 0; tb_idx < SRSLTE_MAX_TB; tb_idx++) { if (cfg->grant.tb_en[tb_idx]) { ret |= srslte_pdsch_codeword_encode(q, cfg, softbuffers[tb_idx], rnti, data[tb_idx], cw_idx, tb_idx); cw_idx = (cw_idx + 1) % SRSLTE_MAX_CODEWORDS; } } /* Set scaling configured by Power Allocation */ float scaling = 1.0f; if (q->rho_a != 0.0f) { scaling = q->rho_a; } // Layer mapping & precode if necessary if (q->cell.nof_ports > 1) { int nof_symbols; /* If number of layers is equal to transport blocks (codewords) skip layer mapping */ if (cfg->nof_layers == nof_tb) { for (i = 0; i < cfg->nof_layers; i++) { x[i] = q->d[i]; } nof_symbols = cfg->nbits[0].nof_re; } else { /* Initialise layer map pointers */ for (i = 0; i < cfg->nof_layers; i++) { x[i] = q->x[i]; } memset(&x[cfg->nof_layers], 0, sizeof(cf_t *) * (SRSLTE_MAX_LAYERS - cfg->nof_layers)); nof_symbols = srslte_layermap_type(q->d, x, nof_tb, cfg->nof_layers, (int[SRSLTE_MAX_CODEWORDS]) {cfg->nbits[0].nof_re, cfg->nbits[1].nof_re}, cfg->mimo_type); } /* Precode */ srslte_precoding_type(x, q->symbols, cfg->nof_layers, q->cell.nof_ports, cfg->codebook_idx, nof_symbols, scaling, cfg->mimo_type); } else { if (scaling == 1.0f) { memcpy(q->symbols[0], q->d[0], cfg->nbits[0].nof_re * sizeof(cf_t)); } else { srslte_vec_sc_prod_cfc(q->d[0], scaling, q->symbols[0], cfg->nbits[0].nof_re); } } /* mapping to resource elements */ for (i = 0; i < q->cell.nof_ports; i++) { srslte_pdsch_put(q, q->symbols[i], sf_symbols[i], &cfg->grant, cfg->nbits[0].lstart, cfg->sf_idx); } ret = SRSLTE_SUCCESS; } return ret; } void srslte_pdsch_set_max_noi(srslte_pdsch_t *q, uint32_t max_iter) { srslte_sch_set_max_noi(&q->dl_sch, max_iter); } float srslte_pdsch_last_noi(srslte_pdsch_t *q) { return srslte_pdsch_last_noi_cw(q, 0); } uint32_t srslte_pdsch_last_noi_cw(srslte_pdsch_t *q, uint32_t cw_idx) { return q->last_nof_iterations[cw_idx]; }