/** * * \section COPYRIGHT * * Copyright 2013-2017 Software Radio Systems Limited * * \section LICENSE * * This file is part of srsLTE. * * srsUE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsUE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #ifndef SCHED_H #define SCHED_H #include #include "srslte/common/log.h" #include "srslte/interfaces/enb_interfaces.h" #include "srslte/interfaces/sched_interface.h" #include "scheduler_ue.h" #include "scheduler_harq.h" #include namespace srsenb { class sched : public sched_interface { public: /************************************************************* * * Scheduling metric interface definition * ************************************************************/ class metric_dl { public: /* Virtual methods for user metric calculation */ virtual void new_tti(std::map &ue_db, uint32_t start_rb, uint32_t nof_rb, uint32_t nof_ctrl_symbols, uint32_t tti) = 0; virtual dl_harq_proc* get_user_allocation(sched_ue *user) = 0; }; class metric_ul { public: /* Virtual methods for user metric calculation */ virtual void new_tti(std::map &ue_db, uint32_t nof_rb, uint32_t tti) = 0; virtual ul_harq_proc* get_user_allocation(sched_ue *user) = 0; virtual void update_allocation(ul_harq_proc::ul_alloc_t alloc) = 0; }; /************************************************************* * * FAPI-like Interface * ************************************************************/ sched(); void init(rrc_interface_mac *rrc, srslte::log *log); void set_metric(metric_dl *dl_metric, metric_ul *ul_metric); int cell_cfg(cell_cfg_t *cell_cfg); void set_sched_cfg(sched_args_t *sched_cfg); int reset(); int ue_cfg(uint16_t rnti, ue_cfg_t *ue_cfg); int ue_rem(uint16_t rnti); bool ue_exists(uint16_t rnti); void phy_config_enabled(uint16_t rnti, bool enabled); int bearer_ue_cfg(uint16_t rnti, uint32_t lc_id, ue_bearer_cfg_t *cfg); int bearer_ue_rem(uint16_t rnti, uint32_t lc_id); uint32_t get_ul_buffer(uint16_t rnti); uint32_t get_dl_buffer(uint16_t rnti); int dl_rlc_buffer_state(uint16_t rnti, uint32_t lc_id, uint32_t tx_queue, uint32_t retx_queue); int dl_mac_buffer_state(uint16_t rnti, uint32_t ce_code); int dl_ack_info(uint32_t tti, uint16_t rnti, bool ack); int dl_rach_info(uint32_t tti, uint32_t ra_id, uint16_t rnti, uint32_t estimated_size); int dl_cqi_info(uint32_t tti, uint16_t rnti, uint32_t cqi_value); int ul_crc_info(uint32_t tti, uint16_t rnti, bool crc); int ul_sr_info(uint32_t tti, uint16_t rnti); int ul_bsr(uint16_t rnti, uint32_t lcid, uint32_t bsr); int ul_recv_len(uint16_t rnti, uint32_t lcid, uint32_t len); int ul_phr(uint16_t rnti, int phr); int ul_cqi_info(uint32_t tti, uint16_t rnti, uint32_t cqi, uint32_t ul_ch_code); int dl_sched(uint32_t tti, dl_sched_res_t *sched_result); int ul_sched(uint32_t tti, ul_sched_res_t *sched_result); /* Custom TPC functions */ void tpc_inc(uint16_t rnti); void tpc_dec(uint16_t rnti); static uint32_t get_rvidx(uint32_t retx_idx) { const static int rv_idx[4] = {0, 2, 3, 1}; return rv_idx[retx_idx%4]; } static void generate_cce_location(srslte_regs_t *regs, sched_ue::sched_dci_cce_t *location, uint32_t cfi, uint32_t sf_idx = 0, uint16_t rnti = 0); private: metric_dl *dl_metric; metric_ul *ul_metric; srslte::log *log_h; rrc_interface_mac *rrc; cell_cfg_t cfg; sched_args_t sched_cfg; const static int MAX_PRB = 100; const static int MAX_RBG = 25; const static int MAX_CCE = 128; // This is for computing DCI locations srslte_regs_t regs; bool used_cce[MAX_CCE]; typedef struct { int buf_rar; uint16_t rnti; uint32_t ra_id; uint32_t rar_tti; } sched_rar_t; typedef struct { bool is_in_window; uint32_t window_start; uint32_t n_tx; } sched_sib_t; int dl_sched_bc(dl_sched_bc_t bc[MAX_BC_LIST]); int dl_sched_rar(dl_sched_rar_t rar[MAX_RAR_LIST]); int dl_sched_data(dl_sched_data_t data[MAX_DATA_LIST]); int generate_format1a(uint32_t rb_start, uint32_t l_crb, uint32_t tbs, uint32_t rv, srslte_ra_dl_dci_t *dci); bool generate_dci(srslte_dci_location_t *sched_location, sched_ue::sched_dci_cce_t *locations, uint32_t aggr_level, sched_ue *user = NULL); std::map ue_db; sched_sib_t pending_sibs[MAX_SIBS]; typedef struct { bool enabled; uint16_t rnti; uint32_t L; uint32_t n_prb; uint32_t mcs; } pending_msg3_t; const static int SCHED_MAX_PENDING_RAR = 8; sched_rar_t pending_rar[SCHED_MAX_PENDING_RAR]; pending_msg3_t pending_msg3[10]; // Allowed DCI locations for SIB and RAR per CFI sched_ue::sched_dci_cce_t common_locations[3]; sched_ue::sched_dci_cce_t rar_locations[3][10]; uint32_t bc_aggr_level; uint32_t rar_aggr_level; uint32_t pdsch_re[10]; uint32_t avail_rbg; uint32_t P; uint32_t start_rbg; uint32_t si_n_rbg; uint32_t rar_n_rb; uint32_t nof_rbg; uint32_t sf_idx; uint32_t sfn; uint32_t current_tti; uint32_t current_cfi; bool configured; pthread_mutex_t mutex; }; } #endif