/** * * \section COPYRIGHT * * Copyright 2013-2021 Software Radio Systems Limited * * By using this file, you agree to the terms and conditions set * forth in the LICENSE file which can be found at the top level of * the distribution. * */ #ifndef SRSUE_PHCH_COMMON_H #define SRSUE_PHCH_COMMON_H #include "phy_metrics.h" #include "srsran/adt/circular_array.h" #include "srsran/common/gen_mch_tables.h" #include "srsran/common/tti_sempahore.h" #include "srsran/interfaces/phy_common_interface.h" #include "srsran/interfaces/phy_interface_types.h" #include "srsran/interfaces/radio_interfaces.h" #include "srsran/interfaces/rrc_interface_types.h" #include "srsran/interfaces/ue_phy_interfaces.h" #include "srsran/radio/radio.h" #include "srsran/srslog/srslog.h" #include "srsran/srsran.h" #include "srsue/hdr/phy/scell/scell_state.h" #include "ta_control.h" #include #include #include #include namespace srsue { class stack_interface_phy_lte; class rsrp_insync_itf { public: virtual void in_sync() = 0; virtual void out_of_sync() = 0; virtual void set_cfo(float cfo) = 0; }; /* Subclass that manages variables common to all workers */ class phy_common : public srsran::phy_common_interface { public: /* Common variables used by all phy workers */ phy_args_t* args = nullptr; stack_interface_phy_lte* stack = nullptr; srsran::phy_cfg_mbsfn_t mbsfn_config = {}; std::atomic cell_is_selecting = {false}; // Secondary serving cell states scell::state cell_state; // Save last TBS for uplink (mcs >= 28) srsran_ra_tb_t last_ul_tb[SRSRAN_MAX_HARQ_PROC][SRSRAN_MAX_CARRIERS] = {}; // Save last TBS for DL (Format1C) int last_dl_tbs[SRSRAN_MAX_HARQ_PROC][SRSRAN_MAX_CARRIERS][SRSRAN_MAX_CODEWORDS] = {}; srsran::tti_semaphore semaphore; // Time Aligment Controller, internal thread safe ta_control ta; // Last reported RI std::atomic last_ri = {0}; phy_common(srslog::basic_logger& logger); ~phy_common(); void init(phy_args_t* args, srsran::radio_interface_phy* _radio, stack_interface_phy_lte* _stack, rsrp_insync_itf* rsrp_insync); uint32_t ul_pidof(uint32_t tti, srsran_tdd_config_t* tdd_config); // Set configurations for lib objects void set_ue_dl_cfg(srsran_ue_dl_cfg_t* ue_dl_cfg); void set_ue_ul_cfg(srsran_ue_ul_cfg_t* ue_ul_cfg); void set_pdsch_cfg(srsran_pdsch_cfg_t* pdsch_cfg); void set_rar_grant(uint8_t grant_payload[SRSRAN_RAR_GRANT_LEN], uint16_t rnti, srsran_tdd_config_t tdd_config); void set_dl_pending_grant(uint32_t tti, uint32_t cc_idx, uint32_t grant_cc_idx, const srsran_dci_dl_t* dl_dci); bool get_dl_pending_grant(uint32_t tti, uint32_t cc_idx, uint32_t* grant_cc_idx, srsran_dci_dl_t* dl_dci); void set_ul_pending_ack(srsran_ul_sf_cfg_t* sf, uint32_t cc_idx, srsran_phich_grant_t phich_grant, srsran_dci_ul_t* dci_ul); bool get_ul_pending_ack(srsran_dl_sf_cfg_t* sf, uint32_t cc_idx, srsran_phich_grant_t* phich_grant, srsran_dci_ul_t* dci_ul); bool is_any_ul_pending_ack(); bool get_ul_received_ack(srsran_ul_sf_cfg_t* sf, uint32_t cc_idx, bool* ack_value, srsran_dci_ul_t* dci_ul); void set_ul_received_ack(srsran_dl_sf_cfg_t* sf, uint32_t cc_idx, bool ack_value, uint32_t I_phich, srsran_dci_ul_t* dci_ul); void set_ul_pending_grant(srsran_dl_sf_cfg_t* sf, uint32_t cc_idx, srsran_dci_ul_t* dci); bool get_ul_pending_grant(srsran_ul_sf_cfg_t* sf, uint32_t cc_idx, uint32_t* pid, srsran_dci_ul_t* dci); /** * If there is a UL Grant it returns the lowest index component carrier that has a grant, otherwise it returns 0. * * @param tti_tx TTI in which the transmission is happening * @return The number of carrier if a grant is available, otherwise 0 */ uint32_t get_ul_uci_cc(uint32_t tti_tx) const; void set_rar_grant_tti(uint32_t tti); void set_dl_pending_ack(srsran_dl_sf_cfg_t* sf, uint32_t cc_idx, uint8_t value[SRSRAN_MAX_CODEWORDS], srsran_pdsch_ack_resource_t resource); bool get_dl_pending_ack(srsran_ul_sf_cfg_t* sf, uint32_t cc_idx, srsran_pdsch_ack_cc_t* ack); void worker_end(const worker_context_t& w_ctx, const bool& tx_enable, srsran::rf_buffer_t& buffer) override; void set_cell(const srsran_cell_t& c); class sr_signal { public: void reset() { std::lock_guard lock(mutex); enabled = false; last_tx_tti = -1; } bool is_triggered() { std::lock_guard lock(mutex); return enabled; } void trigger() { std::lock_guard lock(mutex); enabled = true; last_tx_tti = -1; } int get_last_tx_tti() { std::lock_guard lock(mutex); return last_tx_tti; } bool set_last_tx_tti(int last_tx_tti_) { std::lock_guard lock(mutex); if (enabled) { enabled = false; last_tx_tti = last_tx_tti_; return true; } return false; } private: std::mutex mutex; bool enabled = false; int last_tx_tti = -1; }; sr_signal sr; srsran::radio_interface_phy* get_radio(); void set_dl_metrics(uint32_t cc_idx, const dl_metrics_t& m); void get_dl_metrics(dl_metrics_t::array_t& m); void set_ch_metrics(uint32_t cc_idx, const ch_metrics_t& m); void get_ch_metrics(ch_metrics_t::array_t& m); void set_ul_metrics(uint32_t cc_idx, const ul_metrics_t& m); void get_ul_metrics(ul_metrics_t::array_t& m); void set_sync_metrics(const uint32_t& cc_idx, const sync_metrics_t& m); void get_sync_metrics(sync_metrics_t::array_t& m); void reset(); void reset_radio(); void build_mch_table(); void build_mcch_table(); void set_mcch(); bool is_mbsfn_sf(srsran_mbsfn_cfg_t* cfg, uint32_t tti); void set_mch_period_stop(uint32_t stop); /** * Deduces the UL EARFCN from a DL EARFCN. If the UL-EARFCN was defined in the UE PHY arguments it will use the * corresponding UL-EARFCN to the DL-EARFCN. Otherwise, it will use default. * * @param dl_earfcn * @return the deduced UL EARFCN */ uint32_t get_ul_earfcn(uint32_t dl_earfcn); /** * @brief Resets measurements from a given CC * @param cc_idx CC index */ void reset_measurements(uint32_t cc_idx); void update_measurements(uint32_t cc_idx, const srsran_chest_dl_res_t& chest_res, srsran_dl_sf_cfg_t sf_cfg_dl, float tx_crs_power, std::vector& serving_cells, cf_t* rssi_power_buffer = nullptr); void update_cfo_measurement(uint32_t cc_idx, float cfo_hz); float get_sinr_db(uint32_t cc_idx) { std::unique_lock lock(meas_mutex); return avg_sinr_db[cc_idx]; } float get_pusch_power() { std::unique_lock lock(meas_mutex); return cur_pusch_power; } float get_pathloss() { std::unique_lock lock(meas_mutex); return cur_pathloss; } float get_rx_gain_offset() { std::unique_lock lock(meas_mutex); return rx_gain_offset; } void neighbour_cells_reset(uint32_t cc_idx) { std::unique_lock lock(meas_mutex); avg_rsrp_neigh[cc_idx] = NAN; } void set_neighbour_cells(uint32_t cc_idx, const std::vector& meas) { // Add RSRP in the linear domain and average float total_rsrp = 0; for (auto& m : meas) { total_rsrp += srsran_convert_dB_to_power(m.rsrp); } if (std::isnormal(total_rsrp)) { std::unique_lock lock(meas_mutex); if (std::isnormal(avg_rsrp_neigh[cc_idx])) { avg_rsrp_neigh[cc_idx] = SRSRAN_VEC_EMA(total_rsrp, avg_rsrp_neigh[cc_idx], 0.9); } else { avg_rsrp_neigh[cc_idx] = total_rsrp; } } } private: std::mutex meas_mutex; float cur_pathloss = 0.0f; float cur_pusch_power = 0.0f; float rx_gain_offset = 0.0f; std::array pathloss = {}; std::array avg_rsrp = {}; std::array avg_rsrp_dbm = {}; std::array avg_rsrq_db = {}; std::array avg_rssi_dbm = {}; std::array avg_cfo_hz = {}; std::array avg_sinr_db = {}; std::array avg_snr_db = {}; std::array avg_noise = {}; std::array avg_rsrp_neigh = {}; static constexpr uint32_t pcell_report_period = 20; uint32_t rssi_read_cnt = 0; rsrp_insync_itf* insync_itf = nullptr; bool have_mtch_stop = false; std::mutex mtch_mutex; std::condition_variable mtch_cvar; std::atomic is_pending_tx_end{false}; srsran::radio_interface_phy* radio_h = nullptr; srslog::basic_logger& logger; srsran::channel_ptr ul_channel = nullptr; int rar_grant_tti = -1; typedef struct { bool enable; srsran_phich_grant_t phich_grant; srsran_dci_ul_t dci_ul; } pending_ul_ack_t; srsran::circular_array pending_ul_ack[SRSRAN_MAX_CARRIERS][2] = {}; std::mutex pending_ul_ack_mutex; typedef struct { bool hi_value; bool hi_present; srsran_dci_ul_t dci_ul; } received_ul_ack_t; srsran::circular_array received_ul_ack[SRSRAN_MAX_CARRIERS] = {}; std::mutex received_ul_ack_mutex; typedef struct { bool enable; uint32_t pid; srsran_dci_ul_t dci; } pending_ul_grant_t; srsran::circular_array pending_ul_grant[SRSRAN_MAX_CARRIERS] = {}; mutable std::mutex pending_ul_grant_mutex; typedef struct { bool enable; uint8_t value[SRSRAN_MAX_CODEWORDS]; // 0/1 or 2 for DTX srsran_pdsch_ack_resource_t resource; } received_ack_t; srsran::circular_array pending_dl_ack[SRSRAN_MAX_CARRIERS] = {}; srsran::circular_array pending_dl_dai[SRSRAN_MAX_CARRIERS] = {}; std::mutex pending_dl_ack_mutex; std::mutex pending_dl_grant_mutex; // Cross-carried grants scheduled from PCell typedef struct { bool enable; uint32_t grant_cc_idx; srsran_dci_dl_t dl_dci; } pending_dl_grant_t; pending_dl_grant_t pending_dl_grant[FDD_HARQ_DELAY_UL_MS][SRSRAN_MAX_CARRIERS] = {}; srsran_cell_t cell = {}; std::mutex metrics_mutex; ch_metrics_t::array_t ch_metrics = {}; dl_metrics_t::array_t dl_metrics = {}; ul_metrics_t::array_t ul_metrics = {}; sync_metrics_t::array_t sync_metrics = {}; // MBSFN bool sib13_configured = false; bool mcch_configured = false; uint32_t mch_period_stop = 0; uint8_t mch_table[40] = {}; uint8_t mcch_table[10] = {}; bool is_mch_subframe(srsran_mbsfn_cfg_t* cfg, uint32_t phy_tti); bool is_mcch_subframe(srsran_mbsfn_cfg_t* cfg, uint32_t phy_tti); // NR carriers buffering synchronization, LTE workers are in charge of transmitting bool tx_enabled = false; srsran::rf_buffer_t tx_buffer = {}; }; } // namespace srsue #endif // SRSUE_PDCH_COMMON_H