/** * * \section COPYRIGHT * * Copyright 2013-2015 Software Radio Systems Limited * * \section LICENSE * * This file is part of the srsLTE library. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include "srslte/common/phy_common.h" #include "srslte/utils/bit.h" #include "srslte/utils/vector.h" #include "srslte/utils/debug.h" #include "srslte/phch/ra.h" #include "srslte/utils/bit.h" #include "tbs_tables.h" #define min(a,b) (a= nof_prb / 2 - 3 && prb_idx < nof_prb / 2 + 3 + (nof_prb%2))) { if (subframe == 0) { if (slot == 0) { re = (SRSLTE_CP_NSYMB(cp) - nof_ctrl_symbols - 2) * SRSLTE_NRE; } else { if (SRSLTE_CP_ISEXT(cp)) { re = (SRSLTE_CP_NSYMB(cp) - 4) * SRSLTE_NRE; skip_refs = true; } else { re = (SRSLTE_CP_NSYMB(cp) - 4) * SRSLTE_NRE + 2 * nof_ports; } } } else if (subframe == 5) { if (slot == 0) { re = (SRSLTE_CP_NSYMB(cp) - nof_ctrl_symbols - 2) * SRSLTE_NRE; } } if ((nof_prb % 2) && (prb_idx == nof_prb / 2 - 3 || prb_idx == nof_prb / 2 + 3)) { if (slot == 0) { re += 2 * SRSLTE_NRE / 2; } else if (subframe == 0) { re += 4 * SRSLTE_NRE / 2 - nof_ports; if (SRSLTE_CP_ISEXT(cp)) { re -= nof_ports > 2 ? 2 : nof_ports; } } } } // remove references if (!skip_refs) { switch (nof_ports) { case 1: case 2: re -= 2 * (slot + 1) * nof_ports; break; case 4: if (slot == 1) { re -= 12; } else { re -= 4; if (nof_ctrl_symbols == 1) { re -= 4; } } break; } } return re; } int srslte_ul_dci_to_grant_prb_allocation(srslte_ra_ul_dci_t *dci, srslte_ra_ul_grant_t *grant, uint32_t n_rb_ho, uint32_t nof_prb) { bzero(grant, sizeof(srslte_ra_ul_grant_t)); grant->ncs_dmrs = dci->n_dmrs; grant->L_prb = dci->type2_alloc.L_crb; uint32_t n_prb_1 = dci->type2_alloc.RB_start; uint32_t n_rb_pusch = 0; if (n_rb_ho%2) { n_rb_ho++; } if (dci->freq_hop_fl == SRSLTE_RA_PUSCH_HOP_DISABLED || dci->freq_hop_fl == SRSLTE_RA_PUSCH_HOP_TYPE2) { /* For no freq hopping or type2 freq hopping, n_prb is the same * n_prb_tilde is calculated during resource mapping */ for (uint32_t i=0;i<2;i++) { grant->n_prb[i] = n_prb_1; } if (dci->freq_hop_fl == SRSLTE_RA_PUSCH_HOP_DISABLED) { grant->freq_hopping = 0; } else { grant->freq_hopping = 2; } INFO("prb1: %d, prb2: %d, L: %d\n", grant->n_prb[0], grant->n_prb[1], grant->L_prb); } else { /* Type1 frequency hopping as defined in 8.4.1 of 36.213 * frequency offset between 1st and 2nd slot is fixed. */ n_rb_pusch = nof_prb - n_rb_ho - (nof_prb%2); // starting prb idx for slot 0 is as given by resource grant grant->n_prb[0] = n_prb_1; if (n_prb_1 < n_rb_ho/2) { fprintf(stderr, "Invalid Frequency Hopping parameters. Offset: %d, n_prb_1: %d\n", n_rb_ho, n_prb_1); } uint32_t n_prb_1_tilde = n_prb_1; // prb idx for slot 1 switch(dci->freq_hop_fl) { case SRSLTE_RA_PUSCH_HOP_QUART: grant->n_prb[1] = (n_rb_pusch/4+ n_prb_1_tilde)%n_rb_pusch; break; case SRSLTE_RA_PUSCH_HOP_QUART_NEG: if (n_prb_1 < n_rb_pusch/4) { grant->n_prb[1] = (n_rb_pusch+ n_prb_1_tilde -n_rb_pusch/4); } else { grant->n_prb[1] = (n_prb_1_tilde -n_rb_pusch/4); } break; case SRSLTE_RA_PUSCH_HOP_HALF: grant->n_prb[1] = (n_rb_pusch/2+ n_prb_1_tilde)%n_rb_pusch; break; default: break; } INFO("n_rb_pusch: %d, prb1: %d, prb2: %d, L: %d\n", n_rb_pusch, grant->n_prb[0], grant->n_prb[1], grant->L_prb); grant->freq_hopping = 1; } return SRSLTE_SUCCESS; } srslte_mod_t last_mod[8]; uint32_t last_tbs_idx[8]; static int ul_dci_to_grant_mcs(srslte_ra_ul_dci_t *dci, srslte_ra_ul_grant_t *grant, uint32_t harq_pid) { int tbs = -1; // 8.6.2 First paragraph if (dci->mcs_idx <= 28) { /* Table 8.6.1-1 on 36.213 */ if (dci->mcs_idx < 11) { grant->mcs.mod = SRSLTE_MOD_QPSK; tbs = srslte_ra_tbs_from_idx(dci->mcs_idx, grant->L_prb); last_tbs_idx[harq_pid%8] = dci->mcs_idx; } else if (dci->mcs_idx < 21) { grant->mcs.mod = SRSLTE_MOD_16QAM; tbs = srslte_ra_tbs_from_idx(dci->mcs_idx-1, grant->L_prb); last_tbs_idx[harq_pid%8] = dci->mcs_idx-1; } else if (dci->mcs_idx < 29) { grant->mcs.mod = SRSLTE_MOD_64QAM; tbs = srslte_ra_tbs_from_idx(dci->mcs_idx-2, grant->L_prb); last_tbs_idx[harq_pid%8] = dci->mcs_idx-2; } else { fprintf(stderr, "Invalid MCS index %d\n", dci->mcs_idx); } last_mod[harq_pid%8] = grant->mcs.mod; } else if (dci->mcs_idx == 29 && dci->cqi_request && grant->L_prb <= 4) { // 8.6.1 and 8.6.2 36.213 second paragraph grant->mcs.mod = SRSLTE_MOD_QPSK; tbs = srslte_ra_tbs_from_idx(last_tbs_idx[harq_pid%8], grant->L_prb); } else if (dci->mcs_idx >= 29) { // Else use last TBS/Modulation and use mcs to obtain rv_idx tbs = srslte_ra_tbs_from_idx(last_tbs_idx[harq_pid%8], grant->L_prb); grant->mcs.mod = last_mod[harq_pid%8]; dci->rv_idx = dci->mcs_idx - 28; DEBUG("TTI=%d, harq_pid=%d, mcs_idx=%d, tbs=%d, mod=%d, rv=%d\n", harq_pid, harq_pid%8, dci->mcs_idx, tbs/8, grant->mcs.mod, dci->rv_idx); } if (tbs < 0) { fprintf(stderr, "Error computing TBS\n"); return SRSLTE_ERROR; } else { grant->mcs.tbs = (uint32_t) tbs; return SRSLTE_SUCCESS; } } void srslte_ra_ul_grant_to_nbits(srslte_ra_ul_grant_t *grant, srslte_cp_t cp, uint32_t N_srs, srslte_ra_nbits_t *nbits) { nbits->nof_symb = 2*(SRSLTE_CP_NSYMB(cp)-1) - N_srs; nbits->nof_re = nbits->nof_symb*grant->M_sc; nbits->nof_bits = nbits->nof_re * grant->Qm; } /** Compute PRB allocation for Uplink as defined in 8.1 and 8.4 of 36.213 */ int srslte_ra_ul_dci_to_grant(srslte_ra_ul_dci_t *dci, uint32_t nof_prb, uint32_t n_rb_ho, srslte_ra_ul_grant_t *grant, uint32_t harq_pid) { // Compute PRB allocation if (!srslte_ul_dci_to_grant_prb_allocation(dci, grant, n_rb_ho, nof_prb)) { // Compute MCS if (!ul_dci_to_grant_mcs(dci, grant, harq_pid)) { // Fill rest of grant structure grant->mcs.idx = dci->mcs_idx; grant->M_sc = grant->L_prb*SRSLTE_NRE; grant->M_sc_init = grant->M_sc; // FIXME: What should M_sc_init be? grant->Qm = srslte_mod_bits_x_symbol(grant->mcs.mod); } else { fprintf(stderr, "Error computing MCS\n"); return SRSLTE_ERROR; } } else { fprintf(stderr, "Error computing PRB allocation\n"); return SRSLTE_ERROR; } return SRSLTE_SUCCESS; } /* Computes the number of RE for each PRB in the prb_dist structure */ uint32_t srslte_ra_dl_grant_nof_re(srslte_ra_dl_grant_t *grant, srslte_cell_t cell, uint32_t sf_idx, uint32_t nof_ctrl_symbols) { uint32_t j, s; // Compute number of RE per PRB uint32_t nof_re = 0; for (s = 0; s < 2; s++) { for (j = 0; j < cell.nof_prb; j++) { if (grant->prb_idx[s][j]) { nof_re += ra_re_x_prb(sf_idx, s, j, cell.nof_prb, cell.nof_ports, nof_ctrl_symbols, cell.cp); } } } return nof_re; } /** Compute PRB allocation for Downlink as defined in 7.1.6 of 36.213 */ static int dl_dci_to_grant_prb_allocation(srslte_ra_dl_dci_t *dci, srslte_ra_dl_grant_t *grant, uint32_t nof_prb) { int i, j; uint32_t bitmask; uint32_t P = srslte_ra_type0_P(nof_prb); uint32_t n_rb_rbg_subset, n_rb_type1; bzero(grant, sizeof(srslte_ra_dl_grant_t)); switch (dci->alloc_type) { case SRSLTE_RA_ALLOC_TYPE0: bitmask = dci->type0_alloc.rbg_bitmask; int nb = (int) ceilf((float) nof_prb / P); for (i = 0; i < nb; i++) { if (bitmask & (1 << (nb - i - 1))) { for (j = 0; j < P; j++) { if (i*P+j < nof_prb) { grant->prb_idx[0][i * P + j] = true; grant->nof_prb++; } } } } memcpy(&grant->prb_idx[1], &grant->prb_idx[0], SRSLTE_MAX_PRB*sizeof(bool)); break; case SRSLTE_RA_ALLOC_TYPE1: n_rb_type1 = srslte_ra_type1_N_rb(nof_prb); if (dci->type1_alloc.rbg_subset < (nof_prb / P) % P) { n_rb_rbg_subset = ((nof_prb - 1) / (P * P)) * P + P; } else if (dci->type1_alloc.rbg_subset == ((nof_prb / P) % P)) { n_rb_rbg_subset = ((nof_prb - 1) / (P * P)) * P + ((nof_prb - 1) % P) + 1; } else { n_rb_rbg_subset = ((nof_prb - 1) / (P * P)) * P; } int shift = dci->type1_alloc.shift ? (n_rb_rbg_subset - n_rb_type1) : 0; bitmask = dci->type1_alloc.vrb_bitmask; for (i = 0; i < n_rb_type1; i++) { if (bitmask & (1 << (n_rb_type1 - i - 1))) { grant->prb_idx[0][((i + shift) / P) * P * P + dci->type1_alloc.rbg_subset * P + (i + shift) % P] = true; grant->nof_prb++; } } memcpy(&grant->prb_idx[1], &grant->prb_idx[0], SRSLTE_MAX_PRB*sizeof(bool)); break; case SRSLTE_RA_ALLOC_TYPE2: if (dci->type2_alloc.mode == SRSLTE_RA_TYPE2_LOC) { for (i = 0; i < dci->type2_alloc.L_crb; i++) { grant->prb_idx[0][i + dci->type2_alloc.RB_start] = true; grant->nof_prb++; } memcpy(&grant->prb_idx[1], &grant->prb_idx[0], SRSLTE_MAX_PRB*sizeof(bool)); } else { /* Mapping of Virtual to Physical RB for distributed type is defined in * 6.2.3.2 of 36.211 */ int N_gap, N_tilde_vrb, n_tilde_vrb, n_tilde_prb, n_tilde2_prb, N_null, N_row, n_vrb; int n_tilde_prb_odd, n_tilde_prb_even; if (dci->type2_alloc.n_gap == SRSLTE_RA_TYPE2_NG1) { N_tilde_vrb = srslte_ra_type2_n_vrb_dl(nof_prb, true); N_gap = srslte_ra_type2_ngap(nof_prb, true); } else { N_tilde_vrb = 2 * srslte_ra_type2_n_vrb_dl(nof_prb, true); N_gap = srslte_ra_type2_ngap(nof_prb, false); } N_row = (int) ceilf((float) N_tilde_vrb / (4 * P)) * P; N_null = 4 * N_row - N_tilde_vrb; for (i = 0; i < dci->type2_alloc.L_crb; i++) { n_vrb = i + dci->type2_alloc.RB_start; n_tilde_vrb = n_vrb % N_tilde_vrb; n_tilde_prb = 2 * N_row * (n_tilde_vrb % 2) + n_tilde_vrb / 2 + N_tilde_vrb * (n_vrb / N_tilde_vrb); n_tilde2_prb = N_row * (n_tilde_vrb % 4) + n_tilde_vrb / 4 + N_tilde_vrb * (n_vrb / N_tilde_vrb); if (N_null != 0 && n_tilde_vrb >= (N_tilde_vrb - N_null) && (n_tilde_vrb % 2) == 1) { n_tilde_prb_odd = n_tilde_prb - N_row; } else if (N_null != 0 && n_tilde_vrb >= (N_tilde_vrb - N_null) && (n_tilde_vrb % 2) == 0) { n_tilde_prb_odd = n_tilde_prb - N_row + N_null / 2; } else if (N_null != 0 && n_tilde_vrb < (N_tilde_vrb - N_null) && (n_tilde_vrb % 4) >= 2) { n_tilde_prb_odd = n_tilde2_prb - N_null / 2; } else { n_tilde_prb_odd = n_tilde2_prb; } n_tilde_prb_even = (n_tilde_prb_odd + N_tilde_vrb / 2) % N_tilde_vrb + N_tilde_vrb * (n_vrb / N_tilde_vrb); if (n_tilde_prb_odd < N_tilde_vrb / 2) { grant->prb_idx[0][n_tilde_prb_odd] = true; } else { grant->prb_idx[0][n_tilde_prb_odd + N_gap - N_tilde_vrb / 2] = true; } grant->nof_prb++; if (n_tilde_prb_even < N_tilde_vrb / 2) { grant->prb_idx[1][n_tilde_prb_even] = true; } else { grant->prb_idx[1][n_tilde_prb_even + N_gap - N_tilde_vrb / 2] = true; } } } break; default: return SRSLTE_ERROR; } return SRSLTE_SUCCESS; } /* Modulation order and transport block size determination 7.1.7 in 36.213 */ static int dl_dci_to_grant_mcs(srslte_ra_dl_dci_t *dci, srslte_ra_dl_grant_t *grant, bool crc_is_crnti) { uint32_t n_prb=0; int tbs = -1; uint32_t i_tbs = 0; if (!crc_is_crnti) { if (dci->dci_is_1a) { n_prb = dci->type2_alloc.n_prb1a == SRSLTE_RA_TYPE2_NPRB1A_2 ? 2 : 3; i_tbs = dci->mcs_idx; tbs = srslte_ra_tbs_from_idx(i_tbs, n_prb); } else { if (dci->mcs_idx < 32) { tbs = tbs_format1c_table[dci->mcs_idx]; } } grant->mcs.mod = SRSLTE_MOD_QPSK; } else { tbs = -1; n_prb = grant->nof_prb; if (dci->mcs_idx < 10) { grant->mcs.mod = SRSLTE_MOD_QPSK; i_tbs = dci->mcs_idx; } else if (dci->mcs_idx < 17) { grant->mcs.mod = SRSLTE_MOD_16QAM; i_tbs = dci->mcs_idx-1; } else if (dci->mcs_idx < 29) { grant->mcs.mod = SRSLTE_MOD_64QAM; i_tbs = dci->mcs_idx-2; } else if (dci->mcs_idx == 29) { grant->mcs.mod = SRSLTE_MOD_QPSK; tbs = 0; i_tbs = 0; } else if (dci->mcs_idx == 30) { grant->mcs.mod = SRSLTE_MOD_16QAM; tbs = 0; i_tbs = 0; } else if (dci->mcs_idx == 31) { grant->mcs.mod = SRSLTE_MOD_64QAM; tbs = 0; i_tbs = 0; } if (tbs == -1) { tbs = srslte_ra_tbs_from_idx(i_tbs, n_prb); } } if (tbs < 0) { return SRSLTE_ERROR; } else { grant->mcs.tbs = (uint32_t) tbs; return SRSLTE_SUCCESS; } } void srslte_ra_dl_grant_to_nbits(srslte_ra_dl_grant_t *grant, uint32_t cfi, srslte_cell_t cell, uint32_t sf_idx, srslte_ra_nbits_t *nbits) { // Compute number of RE nbits->nof_re = srslte_ra_dl_grant_nof_re(grant, cell, sf_idx, cell.nof_prb<10?(cfi+1):cfi); nbits->lstart = cell.nof_prb<10?(cfi+1):cfi; nbits->nof_symb = 2*SRSLTE_CP_NSYMB(cell.cp)-nbits->lstart; nbits->nof_bits = nbits->nof_re * grant->Qm; } /** Obtains a DL grant from a DCI grant for PDSCH */ int srslte_ra_dl_dci_to_grant(srslte_ra_dl_dci_t *dci, uint32_t nof_prb, uint16_t msg_rnti, srslte_ra_dl_grant_t *grant) { bool crc_is_crnti = false; if (msg_rnti >= SRSLTE_CRNTI_START && msg_rnti <= SRSLTE_CRNTI_END) { crc_is_crnti = true; } // Compute PRB allocation if (!dl_dci_to_grant_prb_allocation(dci, grant, nof_prb)) { // Compute MCS if (!dl_dci_to_grant_mcs(dci, grant, crc_is_crnti)) { // Fill rest of grant structure grant->mcs.idx = dci->mcs_idx; grant->Qm = srslte_mod_bits_x_symbol(grant->mcs.mod); // Apply Section 7.1.7.3. If RA-RNTI and Format1C rv_idx=0 if (msg_rnti >= SRSLTE_RARNTI_START && msg_rnti <= SRSLTE_RARNTI_END && dci->dci_is_1c) { dci->rv_idx = 0; } } else { return SRSLTE_ERROR; } } else { return SRSLTE_ERROR; } return SRSLTE_SUCCESS; } /* RBG size for type0 scheduling as in table 7.1.6.1-1 of 36.213 */ uint32_t srslte_ra_type0_P(uint32_t nof_prb) { if (nof_prb <= 10) { return 1; } else if (nof_prb <= 26) { return 2; } else if (nof_prb <= 63) { return 3; } else { return 4; } } /* Returns N_rb_type1 according to section 7.1.6.2 */ uint32_t srslte_ra_type1_N_rb(uint32_t nof_prb) { uint32_t P = srslte_ra_type0_P(nof_prb); return (uint32_t) ceilf((float) nof_prb / P) - (uint32_t) ceilf(log2f((float) P)) - 1; } /* Convert Type2 scheduling L_crb and RB_start to RIV value */ uint32_t srslte_ra_type2_to_riv(uint32_t L_crb, uint32_t RB_start, uint32_t nof_prb) { uint32_t riv; if (L_crb <= nof_prb / 2) { riv = nof_prb * (L_crb - 1) + RB_start; } else { riv = nof_prb * (nof_prb - L_crb + 1) + nof_prb - 1 - RB_start; } return riv; } /* Convert Type2 scheduling RIV value to L_crb and RB_start values */ void srslte_ra_type2_from_riv(uint32_t riv, uint32_t *L_crb, uint32_t *RB_start, uint32_t nof_prb, uint32_t nof_vrb) { *L_crb = (uint32_t) (riv / nof_prb) + 1; *RB_start = (uint32_t) (riv % nof_prb); if (*L_crb > nof_vrb - *RB_start) { *L_crb = nof_prb - (int) (riv / nof_prb) + 1; *RB_start = nof_prb - riv % nof_prb - 1; } } /* Table 6.2.3.2-1 in 36.211 */ uint32_t srslte_ra_type2_ngap(uint32_t nof_prb, bool ngap_is_1) { if (nof_prb <= 10) { return nof_prb / 2; } else if (nof_prb == 11) { return 4; } else if (nof_prb <= 19) { return 8; } else if (nof_prb <= 26) { return 12; } else if (nof_prb <= 44) { return 18; } else if (nof_prb <= 49) { return 27; } else if (nof_prb <= 63) { return ngap_is_1 ? 27 : 9; } else if (nof_prb <= 79) { return ngap_is_1 ? 32 : 16; } else { return ngap_is_1 ? 48 : 16; } } /* Table 7.1.6.3-1 in 36.213 */ uint32_t srslte_ra_type2_n_rb_step(uint32_t nof_prb) { if (nof_prb < 50) { return 2; } else { return 4; } } /* as defined in 6.2.3.2 of 36.211 */ uint32_t srslte_ra_type2_n_vrb_dl(uint32_t nof_prb, bool ngap_is_1) { uint32_t ngap = srslte_ra_type2_ngap(nof_prb, ngap_is_1); if (ngap_is_1) { return 2 * (ngap < (nof_prb - ngap) ? ngap : nof_prb - ngap); } else { return ((uint32_t) nof_prb / ngap) * 2 * ngap; } } /* Modulation and TBS index table for PDSCH from 3GPP TS 36.213 v10.3.0 table 7.1.7.1-1 */ int srslte_ra_tbs_idx_from_mcs(uint32_t mcs) { if(mcs < 29) { return mcs_tbs_idx_table[mcs]; } else { return SRSLTE_ERROR; } } int srslte_ra_mcs_from_tbs_idx(uint32_t tbs_idx) { for (int i=0;i<29;i++) { if (tbs_idx == mcs_tbs_idx_table[i]) { return i; } } return SRSLTE_ERROR; } /* Table 7.1.7.2.1-1: Transport block size table on 36.213 */ int srslte_ra_tbs_from_idx(uint32_t tbs_idx, uint32_t n_prb) { if (tbs_idx < 27 && n_prb > 0 && n_prb <= SRSLTE_MAX_PRB) { return tbs_table[tbs_idx][n_prb - 1]; } else { return SRSLTE_ERROR; } } /* Returns lowest nearest index of TBS value in table 7.1.7.2 on 36.213 * or -1 if the TBS value is not within the valid TBS values */ int srslte_ra_tbs_to_table_idx(uint32_t tbs, uint32_t n_prb) { uint32_t idx; if (n_prb > 0 && n_prb <= SRSLTE_MAX_PRB) { if (tbs <= tbs_table[0][n_prb-1]) { return 0; } for (idx = 0; idx < 27; idx++) { if (tbs_table[idx][n_prb-1] <= tbs && tbs_table[idx+1][n_prb-1] >= tbs) { return idx+1; } } } return SRSLTE_ERROR; } void srslte_ra_pusch_fprint(FILE *f, srslte_ra_ul_dci_t *dci, uint32_t nof_prb) { fprintf(f, " - Resource Allocation Type 2 mode :\t%s\n", dci->type2_alloc.mode == SRSLTE_RA_TYPE2_LOC ? "Localized" : "Distributed"); fprintf(f, " + Frequency Hopping:\t\t\t"); if (dci->freq_hop_fl == SRSLTE_RA_PUSCH_HOP_DISABLED) { fprintf(f, "No\n"); } else { fprintf(f, "Yes\n"); } fprintf(f, " + Resource Indicator Value:\t\t%d\n", dci->type2_alloc.riv); if (dci->type2_alloc.mode == SRSLTE_RA_TYPE2_LOC) { fprintf(f, " + VRB Assignment:\t\t\t%d VRB starting with VRB %d\n", dci->type2_alloc.L_crb, dci->type2_alloc.RB_start); } else { fprintf(f, " + VRB Assignment:\t\t\t%d VRB starting with VRB %d\n", dci->type2_alloc.L_crb, dci->type2_alloc.RB_start); fprintf(f, " + VRB gap selection:\t\t\tGap %d\n", dci->type2_alloc.n_gap == SRSLTE_RA_TYPE2_NG1 ? 1 : 2); fprintf(f, " + VRB gap:\t\t\t\t%d\n", srslte_ra_type2_ngap(nof_prb, dci->type2_alloc.n_gap == SRSLTE_RA_TYPE2_NG1)); } fprintf(f, " - Modulation and coding scheme index:\t%d\n", dci->mcs_idx); fprintf(f, " - New data indicator:\t\t\t%s\n", dci->ndi ? "Yes" : "No"); fprintf(f, " - Redundancy version:\t\t\t%d\n", dci->rv_idx); fprintf(f, " - TPC command for PUCCH:\t\t--\n"); } void srslte_ra_ul_grant_fprint(FILE *f, srslte_ra_ul_grant_t *grant) { fprintf(f, " - Number of PRBs:\t\t\t%d\n", grant->L_prb); fprintf(f, " - Modulation type:\t\t\t%s\n", srslte_mod_string(grant->mcs.mod)); fprintf(f, " - Transport block size:\t\t%d\n", grant->mcs.tbs); } char *ra_type_string(srslte_ra_type_t alloc_type) { switch (alloc_type) { case SRSLTE_RA_ALLOC_TYPE0: return "Type 0"; case SRSLTE_RA_ALLOC_TYPE1: return "Type 1"; case SRSLTE_RA_ALLOC_TYPE2: return "Type 2"; default: return "N/A"; } } void srslte_ra_pdsch_fprint(FILE *f, srslte_ra_dl_dci_t *dci, uint32_t nof_prb) { fprintf(f, " - Resource Allocation Type:\t\t%s\n", ra_type_string(dci->alloc_type)); switch (dci->alloc_type) { case SRSLTE_RA_ALLOC_TYPE0: fprintf(f, " + Resource Block Group Size:\t\t%d\n", srslte_ra_type0_P(nof_prb)); fprintf(f, " + RBG Bitmap:\t\t\t0x%x\n", dci->type0_alloc.rbg_bitmask); break; case SRSLTE_RA_ALLOC_TYPE1: fprintf(f, " + Resource Block Group Size:\t\t%d\n", srslte_ra_type0_P(nof_prb)); fprintf(f, " + RBG Bitmap:\t\t\t0x%x\n", dci->type1_alloc.vrb_bitmask); fprintf(f, " + RBG Subset:\t\t\t%d\n", dci->type1_alloc.rbg_subset); fprintf(f, " + RBG Shift:\t\t\t\t%s\n", dci->type1_alloc.shift ? "Yes" : "No"); break; case SRSLTE_RA_ALLOC_TYPE2: fprintf(f, " + Type:\t\t\t\t%s\n", dci->type2_alloc.mode == SRSLTE_RA_TYPE2_LOC ? "Localized" : "Distributed"); fprintf(f, " + Resource Indicator Value:\t\t%d\n", dci->type2_alloc.riv); if (dci->type2_alloc.mode == SRSLTE_RA_TYPE2_LOC) { fprintf(f, " + VRB Assignment:\t\t\t%d VRB starting with VRB %d\n", dci->type2_alloc.L_crb, dci->type2_alloc.RB_start); } else { fprintf(f, " + VRB Assignment:\t\t\t%d VRB starting with VRB %d\n", dci->type2_alloc.L_crb, dci->type2_alloc.RB_start); fprintf(f, " + VRB gap selection:\t\t\tGap %d\n", dci->type2_alloc.n_gap == SRSLTE_RA_TYPE2_NG1 ? 1 : 2); fprintf(f, " + VRB gap:\t\t\t\t%d\n", srslte_ra_type2_ngap(nof_prb, dci->type2_alloc.n_gap == SRSLTE_RA_TYPE2_NG1)); } break; } fprintf(f, " - Modulation and coding scheme index:\t%d\n", dci->mcs_idx); fprintf(f, " - HARQ process:\t\t\t%d\n", dci->harq_process); fprintf(f, " - New data indicator:\t\t\t%s\n", dci->ndi ? "Yes" : "No"); fprintf(f, " - Redundancy version:\t\t\t%d\n", dci->rv_idx); fprintf(f, " - TPC command for PUCCH:\t\t--\n"); } void srslte_ra_dl_grant_fprint(FILE *f, srslte_ra_dl_grant_t *grant) { srslte_ra_prb_fprint(f, grant); fprintf(f, " - Number of PRBs:\t\t\t%d\n", grant->nof_prb); fprintf(f, " - Modulation type:\t\t\t%s\n", srslte_mod_string(grant->mcs.mod)); fprintf(f, " - Transport block size:\t\t%d\n", grant->mcs.tbs); } void srslte_ra_prb_fprint(FILE *f, srslte_ra_dl_grant_t *grant) { if (grant->nof_prb > 0) { for (int j=0;j<2;j++) { fprintf(f, " - PRB Bitmap Assignment %dst slot:\n", j); for (int i=0;iprb_idx[j][i]) { fprintf(f, "%d, ", i); } } fprintf(f, "\n"); } } }