/** * * \section COPYRIGHT * * Copyright 2013-2014 The libLTE Developers. See the * COPYRIGHT file at the top-level directory of this distribution. * * \section LICENSE * * This file is part of the libLTE library. * * libLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * libLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * A copy of the GNU Lesser General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #include #include #include #include "prb.h" #include "lte/phch/pbch.h" #include "lte/common/base.h" #include "lte/utils/bit.h" #include "lte/utils/vector.h" #include "lte/utils/debug.h" const char crc_mask[4][16] = { {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, {0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1} }; bool pbch_exists(int nframe, int nslot) { return (!(nframe % 5) && nslot == 1); } int pbch_cp(cf_t *input, cf_t *output, int nof_prb, lte_cp_t cp, int cell_id, bool put) { int i; cf_t *ptr; assert(cell_id >= 0); if (put) { ptr = input; output += nof_prb * RE_X_RB / 2 - 36; } else { ptr = output; input += nof_prb * RE_X_RB / 2 - 36; } /* symbol 0 & 1 */ for (i=0;i<2;i++) { prb_cp_ref(&input, &output, cell_id%3, 4, 6, put); } /* symbols 2 & 3 */ if (CP_ISNORM(cp)) { for (i=0;i<2;i++) { prb_cp(&input, &output, 6); } } else { prb_cp(&input, &output, 6); prb_cp_ref(&input, &output, cell_id%3, 4, 6, put); } if (put) { return input - ptr; } else { return output - ptr; } } /** * Puts PBCH in slot number 1 * * Returns the number of symbols written to slot1_data * * 36.211 10.3 section 6.6.4 */ int pbch_put(cf_t *pbch, cf_t *slot1_data, int nof_prb, lte_cp_t cp, int cell_id) { return pbch_cp(pbch, slot1_data, nof_prb, cp, cell_id, true); } /** * Extracts PBCH from slot number 1 * * Returns the number of symbols written to pbch * * 36.211 10.3 section 6.6.4 */ int pbch_get(cf_t *slot1_data, cf_t *pbch, int nof_prb, lte_cp_t cp, int cell_id) { return pbch_cp(slot1_data, pbch, nof_prb, cp, cell_id, false); } /** Initializes the PBCH transmitter and receiver */ int pbch_init(pbch_t *q, int nof_prb, int cell_id, lte_cp_t cp) { int ret = -1; if (cell_id < 0) { return -1; } bzero(q, sizeof(pbch_t)); q->cell_id = cell_id; q->cp = cp; q->nof_prb = nof_prb; if (modem_table_std(&q->mod, LTE_QPSK, true)) { goto clean; } demod_soft_init(&q->demod); demod_soft_table_set(&q->demod, &q->mod); demod_soft_alg_set(&q->demod, APPROX); if (sequence_pbch(&q->seq_pbch, q->cp, q->cell_id)) { goto clean; } int poly[3] = {0x6D, 0x4F, 0x57}; if (viterbi_init(&q->decoder, viterbi_37, poly, 40, true)) { goto clean; } q->encoder.K = 7; q->encoder.R = 3; q->encoder.tail_biting = true; memcpy(q->encoder.poly, poly, 3 * sizeof(int)); q->nof_symbols = (CP_ISNORM(q->cp)) ? PBCH_RE_CPNORM: PBCH_RE_CPEXT; q->pbch_d = malloc(sizeof(cf_t) * q->nof_symbols); if (!q->pbch_d) { goto clean; } int i; for (i=0;ice[i] = malloc(sizeof(cf_t) * q->nof_symbols); if (!q->ce[i]) { goto clean; } q->pbch_x[i] = malloc(sizeof(cf_t) * q->nof_symbols); if (!q->pbch_x[i]) { goto clean; } q->pbch_symbols[i] = malloc(sizeof(cf_t) * q->nof_symbols); if (!q->pbch_symbols[i]) { goto clean; } } q->pbch_llr = malloc(sizeof(float) * q->nof_symbols * 4 * 2); if (!q->pbch_llr) { goto clean; } q->temp = malloc(sizeof(float) * q->nof_symbols * 4 * 2); if (!q->temp) { goto clean; } q->pbch_rm_f = malloc(sizeof(float) * 120); if (!q->pbch_rm_f) { goto clean; } q->pbch_rm_b = malloc(sizeof(float) * q->nof_symbols * 4 * 2); if (!q->pbch_rm_b) { goto clean; } q->data = malloc(sizeof(char) * 40); if (!q->data) { goto clean; } q->data_enc = malloc(sizeof(char) * 120); if (!q->data_enc) { goto clean; } ret = 0; clean: if (ret == -1) { pbch_free(q); } return ret; } void pbch_free(pbch_t *q) { if (q->pbch_d) { free(q->pbch_d); } int i; for (i=0;ice[i]) { free(q->ce[i]); } if (q->pbch_x[i]) { free(q->pbch_x[i]); } if (q->pbch_symbols[i]) { free(q->pbch_symbols[i]); } } if (q->pbch_llr) { free(q->pbch_llr); } if (q->temp) { free(q->temp); } if (q->pbch_rm_f) { free(q->pbch_rm_f); } if (q->pbch_rm_b) { free(q->pbch_rm_b); } if (q->data_enc) { free(q->data_enc); } if (q->data) { free(q->data); } sequence_free(&q->seq_pbch); modem_table_free(&q->mod); viterbi_free(&q->decoder); } /** Unpacks MIB from PBCH message. * msg buffer must be 24 byte length at least */ void pbch_mib_unpack(char *msg, pbch_mib_t *mib) { int bw, phich_res; bw = bit_unpack(&msg, 3); switch(bw) { case 0: mib->nof_prb = 6; break; case 1: mib->nof_prb = 15; break; default: mib->nof_prb = (bw-1)*25; break; } if (*msg) { mib->phich_length = PHICH_EXT; } else { mib->phich_length = PHICH_NORM; } msg++; phich_res = bit_unpack(&msg, 2); switch(phich_res) { case 0: mib->phich_resources = R_1_6; break; case 1: mib->phich_resources = R_1_2; break; case 2: mib->phich_resources = R_1; break; case 3: mib->phich_resources = R_2; break; } mib->sfn = bit_unpack(&msg, 8) << 2; } /** Unpacks MIB from PBCH message. * msg buffer must be 24 byte length at least */ void pbch_mib_pack(pbch_mib_t *mib, char *msg) { int bw, phich_res=0; bzero(msg, 24); if (mib->nof_prb<=6) { bw = 0; } else if (mib->nof_prb <= 15) { bw = 1; } else { bw = 1 + mib->nof_prb/25; } bit_pack(bw, &msg, 3); *msg = mib->phich_length == PHICH_EXT; msg++; switch(mib->phich_resources) { case R_1_6: phich_res = 0; break; case R_1_2: phich_res = 1; break; case R_1: phich_res = 2; break; case R_2: phich_res = 3; break; } bit_pack(phich_res, &msg, 2); bit_pack(mib->sfn >> 2, &msg, 8); } void pbch_mib_fprint(FILE *stream, pbch_mib_t *mib) { printf(" - Nof ports: %d\n", mib->nof_ports); printf(" - PRB: %d\n", mib->nof_prb); printf(" - PHICH Length: %s\n", mib->phich_length==PHICH_EXT?"Extended":"Normal"); printf(" - PHICH Resources: "); switch(mib->phich_resources) { case R_1_6: printf("1/6"); break; case R_1_2: printf("1/2"); break; case R_1: printf("1"); break; case R_2: printf("2"); break; } printf("\n"); printf(" - SFN: %d\n", mib->sfn); } void pbch_decode_reset(pbch_t *q) { q->frame_idx = 0; } void crc_set_mask(char *data, int nof_ports) { int i; for (i=0;i<16;i++) { data[24+i] = (data[24+i] + crc_mask[nof_ports-1][i]) % 2; } } /* Checks CRC after applying the mask for the given number of ports. * * The bits buffer size must be at least 40 bytes. * * Returns 0 if the data is correct, -1 otherwise */ int pbch_crc_check(char *bits, int nof_ports) { char data[40]; memcpy(data, bits, 40 * sizeof(char)); crc_set_mask(data, nof_ports); return crc(0, data, 40, 16, LTE_CRC16, 0); } int pbch_decode_frame(pbch_t *q, pbch_mib_t *mib, int src, int dst, int n, int nof_bits, int nof_ports) { int j; memcpy(&q->temp[dst*nof_bits], &q->pbch_llr[src*nof_bits], n*nof_bits*sizeof(float)); /* descramble */ scrambling_f_offset(&q->seq_pbch, &q->temp[dst*nof_bits], dst*nof_bits, n*nof_bits); for (j=0;jtemp[j] = RX_NULL; } for (j=(dst+n)*nof_bits;j<4*nof_bits;j++) { q->temp[j] = RX_NULL; } /* unrate matching */ rm_conv_rx(q->temp, q->pbch_rm_f, 4 * nof_bits, 120); /* FIXME: If channel estimates are zero, received LLR are NaN. Check and return error */ for (j=0;j<120;j++) { if (isnan(q->pbch_rm_f[j]) || isinf(q->pbch_rm_f[j])) { return 0; } } /* decode */ viterbi_decode_f(&q->decoder, q->pbch_rm_f, q->data, 40); int c=0; for (j=0;j<40;j++) { c+=q->data[j]; } if (!c) { c=1; } if (!pbch_crc_check(q->data, nof_ports)) { /* unpack MIB */ pbch_mib_unpack(q->data, mib); mib->nof_ports = nof_ports; mib->sfn += dst-src; return 1; } else { return 0; } } /* Decodes the PBCH channel * * The PBCH spans in 40 ms. This function is called every 10 ms. It tries to decode the MIB * given the symbols of the slot #1 of each radio frame. Successive calls will use more frames * to help the decoding process. * * Returns 1 if successfully decoded MIB, 0 if not and -1 on error */ int pbch_decode(pbch_t *q, cf_t *slot1_symbols, cf_t *ce[MAX_PORTS_CTRL], float ebno, pbch_mib_t *mib) { int src, dst, res, nb; int nant_[3] = {1, 2, 4}; int na, nant; /* Set pointers for layermapping & precoding */ int i; int nof_bits = 2 * q->nof_symbols; cf_t *x[MAX_LAYERS]; /* number of layers equals number of ports */ for (i=0;ipbch_x[i]; } memset(&x[MAX_PORTS_CTRL], 0, sizeof(cf_t*) * (MAX_LAYERS - MAX_PORTS_CTRL)); /* extract symbols */ if (q->nof_symbols != pbch_get(slot1_symbols, q->pbch_symbols[0], q->nof_prb, q->cp, q->cell_id)) { fprintf(stderr, "There was an error getting the PBCH symbols\n"); return -1; } /* extract channel estimates */ for (i=0;inof_symbols != pbch_get(ce[i], q->ce[i], q->nof_prb, q->cp, q->cell_id)) { fprintf(stderr, "There was an error getting the PBCH symbols\n"); return -1; } } q->frame_idx++; res = 0; /* Try decoding for 1 to 4 antennas */ for (na=0;na<3 && !res;na++) { nant = nant_[na]; INFO("Trying %d TX antennas with %d frames\n", nant, q->frame_idx); /* in conctrol channels, only diversity is supported */ if (nant == 1) { /* no need for layer demapping */ predecoding_single_zf(q->pbch_symbols[0], q->ce[0], q->pbch_d, q->nof_symbols); } else { predecoding_diversity_zf(q->pbch_symbols, q->ce, x, nant, q->nof_symbols); layerdemap_diversity(x, q->pbch_d, nant, q->nof_symbols/nant); } /* demodulate symbols */ demod_soft_sigma_set(&q->demod, ebno); demod_soft_demodulate(&q->demod, q->pbch_d, &q->pbch_llr[nof_bits * (q->frame_idx - 1)], q->nof_symbols); /* We don't know where the 40 ms begin, so we try all combinations. E.g. if we received * 4 frames, try 1,2,3,4 individually, 12, 23, 34 in pairs, 123, 234 and finally 1234. * We know they are ordered. * * FIXME: There are unnecessary checks because 2,3,4 have already been processed in the previous * calls. */ for (nb=0;nbframe_idx && !res;nb++) { for (dst=0;(dst<4-nb) && !res;dst++) { for (src=0;srcframe_idx-nb && !res;src++) { DEBUG("Trying %d blocks at offset %d as subframe mod4 number %d\n", nb+1, src, dst); res = pbch_decode_frame(q, mib, src, dst, nb+1, nof_bits, nant); } } } } /* If not found, make room for the next packet of radio frame symbols */ if (q->frame_idx == 4) { memmove(q->pbch_llr, &q->pbch_llr[nof_bits], nof_bits * 3 * sizeof(float)); q->frame_idx = 3; } return res; } /** Converts the MIB message to symbols mapped to SLOT #1 ready for transmission */ void pbch_encode(pbch_t *q, pbch_mib_t *mib, cf_t *slot1_symbols[MAX_PORTS_CTRL], int nof_ports) { int i; int nof_bits = 2 * q->nof_symbols; assert(nof_ports <= MAX_PORTS_CTRL); /* Set pointers for layermapping & precoding */ cf_t *x[MAX_LAYERS]; /* number of layers equals number of ports */ for (i=0;ipbch_x[i]; } memset(&x[nof_ports], 0, sizeof(cf_t*) * (MAX_LAYERS - nof_ports)); if (q->frame_idx == 0) { /* pack MIB */ pbch_mib_pack(mib, q->data); /* encode & modulate */ crc(0, q->data, 24, 16, 0x11021, 1); crc_set_mask(q->data, nof_ports); convcoder_encode(&q->encoder, q->data, q->data_enc, 40); rm_conv_tx(q->data_enc, q->pbch_rm_b, 120, 4 * nof_bits); } scrambling_b_offset(&q->seq_pbch, &q->pbch_rm_b[q->frame_idx * nof_bits], q->frame_idx * nof_bits, nof_bits); mod_modulate(&q->mod, &q->pbch_rm_b[q->frame_idx * nof_bits], q->pbch_d, nof_bits); /* layer mapping & precoding */ if (nof_ports > 1) { layermap_diversity(q->pbch_d, x, nof_ports, q->nof_symbols); precoding_diversity(x, q->pbch_symbols, nof_ports, q->nof_symbols/nof_ports); } else { memcpy(q->pbch_symbols[0], q->pbch_d, q->nof_symbols * sizeof(cf_t)); } /* mapping to resource elements */ for (i=0;ipbch_symbols[i], slot1_symbols[i], q->nof_prb, q->cp, q->cell_id); } q->frame_idx++; if (q->frame_idx == 4) { q->frame_idx = 0; } }