/** * * \section COPYRIGHT * * Copyright 2013-2014 The libLTE Developers. See the * COPYRIGHT file at the top-level directory of this distribution. * * \section LICENSE * * This file is part of the libLTE library. * * libLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * libLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * A copy of the GNU Lesser General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #include #include #include #include "liblte/phy/phch/uci.h" #include "liblte/phy/phch/harq.h" #include "liblte/phy/fec/convcoder.h" #include "liblte/phy/fec/crc.h" #include "liblte/phy/fec/rm_conv.h" #include "liblte/phy/common/phy_common.h" #include "liblte/phy/utils/vector.h" #include "liblte/phy/utils/debug.h" /* Table 5.2.2.6.4-1: Basis sequence for (32, O) code */ static uint8_t M_basis_seq[32][11]={ {1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }, {1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1 }, {1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1 }, {1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1 }, {1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1 }, {1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1 }, {1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1 }, {1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1 }, {1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1 }, {1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1 }, {1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1 }, {1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1 }, {1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1 }, {1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1 }, {1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1 }, {1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1 }, {1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0 }, {1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0 }, {1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0 }, {1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 }, {1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 }, {1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1 }, {1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1 }, {1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1 }, {1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0 }, {1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1 }, {1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0 }, {1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0 }, {1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0 }, {1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0 }, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, }; int uci_cqi_init(uci_cqi_t *q) { if (crc_init(&q->crc, LTE_CRC8, 8)) { return LIBLTE_ERROR; } return LIBLTE_SUCCESS; } void uci_cqi_free(uci_cqi_t *q) { } static uint32_t Q_prime_cqi(uint32_t O, float beta, uint32_t Q_prime_ri, harq_t *harq_process) { uint32_t M_sc = harq_process->prb_alloc.slot[0].nof_prb * RE_X_RB; uint32_t K = harq_process->cb_segm.C1*harq_process->cb_segm.K1 + harq_process->cb_segm.C2*harq_process->cb_segm.K2; uint32_t Q_prime = 0; if (K > 0) { uint32_t M_sc_init = harq_process->nof_prb_pusch_init * RE_X_RB; uint32_t L = (O<11)?0:8; uint32_t x = (uint32_t) ceilf((float) (O+L)*M_sc_init*harq_process->N_symb_ul*beta/K); Q_prime = MIN(x, M_sc * harq_process->N_symb_ul - Q_prime_ri); } else { Q_prime = 12*harq_process->prb_alloc.slot[0].nof_prb*RE_X_RB - Q_prime_ri; } return Q_prime; } /* Encode UCI CQI/PMI for payloads equal or lower to 11 bits (Sec 5.2.2.6.4) */ int encode_cqi_short(uci_cqi_t *q, uint8_t *data, uint32_t nof_bits, uint8_t *q_bits, uint32_t Q) { if (nof_bits < MAX_CQI_LEN && q != NULL && data != NULL && q_bits != NULL) { for (int i=0;i<32;i++) { q->encoded_cqi[i] = 0; for (int n=0;nencoded_cqi[i] += (data[n] * M_basis_seq[i][n]); } } for (int i=0;iencoded_cqi[i%32]%2; } return LIBLTE_SUCCESS; } else { return LIBLTE_ERROR_INVALID_INPUTS; } } /* Encode UCI CQI/PMI for payloads greater than 11 bits (go through CRC, conv coder and rate match) */ int encode_cqi_long(uci_cqi_t *q, uint8_t *data, uint32_t nof_bits, uint8_t *q_bits, uint32_t Q) { convcoder_t encoder; if (nof_bits + 8 < MAX_CQI_LEN && q != NULL && data != NULL && q_bits != NULL) { int poly[3] = { 0x6D, 0x4F, 0x57 }; encoder.K = 7; encoder.R = 3; encoder.tail_biting = true; memcpy(encoder.poly, poly, 3 * sizeof(int)); memcpy(q->tmp_cqi, data, sizeof(uint8_t) * nof_bits); crc_attach(&q->crc, q->tmp_cqi, nof_bits); convcoder_encode(&encoder, q->tmp_cqi, q->encoded_cqi, nof_bits + 8); DEBUG("CConv output: ", 0); if (VERBOSE_ISDEBUG()) { vec_fprint_b(stdout, q->encoded_cqi, 3 * (nof_bits + 8)); } rm_conv_tx(q->encoded_cqi, 3 * (nof_bits + 8), q_bits, Q); return LIBLTE_SUCCESS; } else { return LIBLTE_ERROR_INVALID_INPUTS; } } /* Encode UCI CQI/PMI as described in 5.2.2.6 of 36.212 */ int uci_encode_cqi(uci_cqi_t *q, uint8_t *cqi_data, uint32_t cqi_len, float beta, uint32_t Q_prime_ri, harq_t *harq_process, uint8_t *q_bits) { uint32_t Q_prime = Q_prime_cqi(cqi_len, beta, Q_prime_ri, harq_process); uint32_t Q_m = lte_mod_bits_x_symbol(harq_process->mcs.mod); int ret = LIBLTE_ERROR; if (cqi_len <= 11) { ret = encode_cqi_short(q, cqi_data, cqi_len, q_bits, Q_prime*Q_m); } else { ret = encode_cqi_long(q, cqi_data, cqi_len, q_bits, Q_prime*Q_m); } if (ret) { return ret; } else { return (int) Q_prime; } } /* Inserts UCI-ACK bits into the correct positions in the g buffer before interleaving */ static int uci_ulsch_interleave_ack(uint8_t ack_coded_bits[6], uint32_t ack_q_bit_idx, uint32_t Q_m, uint32_t H_prime_total, uint32_t N_pusch_symbs, lte_cp_t cp, uint8_t *q_bits) { const uint32_t ack_column_set_norm[4] = {2, 3, 8, 9}; const uint32_t ack_column_set_ext[4] = {1, 2, 6, 7}; if (H_prime_total/N_pusch_symbs > 1+ack_q_bit_idx/4) { uint32_t row = H_prime_total/N_pusch_symbs-1-ack_q_bit_idx/4; uint32_t colidx = (3*ack_q_bit_idx)%4; uint32_t col = CP_ISNORM(cp)?ack_column_set_norm[colidx]:ack_column_set_ext[colidx]; for(uint32_t k=0; k 1+ri_q_bit_idx/4) { uint32_t row = H_prime_total/N_pusch_symbs-1-ri_q_bit_idx/4; uint32_t colidx = (3*ri_q_bit_idx)%4; uint32_t col = CP_ISNORM(cp)?ri_column_set_norm[colidx]:ri_column_set_ext[colidx]; printf("r=%d-%d\n",H_prime_total/N_pusch_symbs,1+ri_q_bit_idx/4); for(uint32_t k=0; kprb_alloc.slot[0].nof_prb * RE_X_RB; uint32_t K = harq_process->cb_segm.C1*harq_process->cb_segm.K1 + harq_process->cb_segm.C2*harq_process->cb_segm.K2; // If not carrying UL-SCH, get Q_prime according to 5.2.4.1 if (K == 0) { if (O_cqi <= 11) { K = O_cqi; } else { K = O_cqi+8; } } uint32_t M_sc_init = harq_process->nof_prb_pusch_init * RE_X_RB; uint32_t x = (uint32_t) ceilf((float) O*M_sc_init*harq_process->N_symb_ul*beta/K); uint32_t Q_prime = MIN(x, 4*M_sc); return Q_prime; } static void encode_ri_ack(uint8_t data, uint8_t q_encoded_bits[6], uint8_t Q_m) { q_encoded_bits[0] = data; q_encoded_bits[1] = 2; for (uint32_t i=2;imcs.mod); uint32_t Qprime = Q_prime_ri_ack(1, O_cqi, beta, harq_process); uint8_t q_encoded_bits[6]; encode_ri_ack(data, q_encoded_bits, Q_m); for (uint32_t i=0;iN_symb_ul, harq_process->cell.cp, q_bits); } return (int) Qprime; } /* Encode UCI RI bits as described in 5.2.2.6 of 36.212 * Currently only supporting 1-bit RI */ int uci_encode_ri(uint8_t data, uint32_t O_cqi, float beta, harq_t *harq_process, uint32_t H_prime_total, uint8_t *q_bits) { uint32_t Q_m = lte_mod_bits_x_symbol(harq_process->mcs.mod); uint32_t Qprime = Q_prime_ri_ack(1, O_cqi, beta, harq_process); uint8_t q_encoded_bits[6]; encode_ri_ack(data, q_encoded_bits, Q_m); for (uint32_t i=0;iN_symb_ul, harq_process->cell.cp, q_bits); } return (int) Qprime; }