/** * * \section COPYRIGHT * * Copyright 2013-2014 The libLTE Developers. See the * COPYRIGHT file at the top-level directory of this distribution. * * \section LICENSE * * This file is part of the libLTE library. * * libLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * libLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * A copy of the GNU Lesser General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #include #include #include #include "liblte/phy/phch/pusch.h" #include "liblte/phy/phch/uci.h" #include "liblte/phy/common/phy_common.h" #include "liblte/phy/utils/bit.h" #include "liblte/phy/utils/debug.h" #include "liblte/phy/utils/vector.h" #include "liblte/phy/filter/dft_precoding.h" #define MAX_PUSCH_RE(cp) (2 * CP_NSYMB(cp) * 12) const static lte_mod_t modulations[4] = { LTE_BPSK, LTE_QPSK, LTE_QAM16, LTE_QAM64 }; static int f_hop_sum(pusch_t *q, uint32_t i) { uint32_t sum = 0; for (uint32_t k=i*10+1;kseq_type2_fo.c[k]<<(k-(i*10+1))); } return sum; } static int f_hop(pusch_t *q, pusch_hopping_cfg_t *hopping, int i) { if (i == -1) { return 0; } else { if (hopping->n_sb == 1) { return 0; } else if (hopping->n_sb == 2) { return (f_hop(q, hopping, i-1) + f_hop_sum(q, i))%2; } else { return (f_hop(q, hopping, i-1) + f_hop_sum(q, i)%(hopping->n_sb-1)+1)%hopping->n_sb; } } } static int f_m(pusch_t *q, pusch_hopping_cfg_t *hopping, uint32_t i) { if (hopping->n_sb == 1) { if (hopping->hop_mode == hop_mode_inter_sf) { return hopping->current_tx_nb%2; } else { return i%2; } } else { return q->seq_type2_fo.c[i*10]; } } int pusch_cp(pusch_t *q, harq_t *harq, cf_t *input, cf_t *output, bool advance_input) { cf_t *in_ptr = input; cf_t *out_ptr = output; pusch_hopping_cfg_t *hopping = &q->hopping_cfg; uint32_t L_ref = 3; if (CP_ISEXT(q->cell.cp)) { L_ref = 2; } INFO("PUSCH Freq hopping: %d\n", harq->ul_alloc.freq_hopping); for (uint32_t slot=0;slot<2;slot++) { uint32_t n_prb_tilde = harq->ul_alloc.n_prb[slot]; if (harq->ul_alloc.freq_hopping == 1) { if (hopping->hop_mode == hop_mode_inter_sf) { n_prb_tilde = harq->ul_alloc.n_prb[hopping->current_tx_nb%2]; } else { n_prb_tilde = harq->ul_alloc.n_prb[slot]; } } if (harq->ul_alloc.freq_hopping == 2) { /* Freq hopping type 2 as defined in 5.3.4 of 36.211 */ uint32_t n_vrb_tilde = harq->ul_alloc.n_prb[0]; if (hopping->n_sb > 1) { n_vrb_tilde -= (hopping->hopping_offset-1)/2+1; } int i=0; if (hopping->hop_mode == hop_mode_inter_sf) { i = harq->sf_idx; } else { i = 2*harq->sf_idx+slot; } uint32_t n_rb_sb = q->cell.nof_prb; if (hopping->n_sb > 1) { n_rb_sb = (n_rb_sb-hopping->hopping_offset-hopping->hopping_offset%2)/hopping->n_sb; } n_prb_tilde = (n_vrb_tilde+f_hop(q, hopping, i)*n_rb_sb+ (n_rb_sb-1)-2*(n_vrb_tilde%n_rb_sb)*f_m(q, hopping, i))%(n_rb_sb*hopping->n_sb); INFO("n_prb_tilde: %d, n_vrb_tilde: %d, n_rb_sb: %d, n_sb: %d\n", n_prb_tilde, n_vrb_tilde, n_rb_sb, hopping->n_sb); if (hopping->n_sb > 1) { n_prb_tilde += (hopping->hopping_offset-1)/2+1; } } harq->ul_alloc.n_prb_tilde[slot] = n_prb_tilde; INFO("Allocating PUSCH %d PRB to index %d at slot %d\n",harq->ul_alloc.L_prb, n_prb_tilde,slot); for (uint32_t l=0;lcell.cp);l++) { if (l != L_ref) { uint32_t idx = RE_IDX(q->cell.nof_prb, l+slot*CP_NSYMB(q->cell.cp), n_prb_tilde*RE_X_RB); if (advance_input) { out_ptr = &output[idx]; } else { in_ptr = &input[idx]; } memcpy(out_ptr, in_ptr, harq->ul_alloc.L_prb * RE_X_RB * sizeof(cf_t)); if (advance_input) { in_ptr += harq->ul_alloc.L_prb*RE_X_RB; } else { out_ptr += harq->ul_alloc.L_prb*RE_X_RB; } } } } return RE_X_RB*harq->ul_alloc.L_prb; } int pusch_put(pusch_t *q, harq_t *harq, cf_t *input, cf_t *output) { return pusch_cp(q, harq, input, output, true); } int pusch_get(pusch_t *q, harq_t *harq, cf_t *input, cf_t *output) { return pusch_cp(q, harq, input, output, false); } /** Initializes the PDCCH transmitter and receiver */ int pusch_init(pusch_t *q, lte_cell_t cell) { int ret = LIBLTE_ERROR_INVALID_INPUTS; int i; if (q != NULL && lte_cell_isvalid(&cell)) { bzero(q, sizeof(pusch_t)); ret = LIBLTE_ERROR; q->cell = cell; q->max_re = q->cell.nof_prb * MAX_PUSCH_RE(q->cell.cp); INFO("Init PUSCH: %d ports %d PRBs, max_symbols: %d\n", q->cell.nof_ports, q->cell.nof_prb, q->max_re); for (i = 0; i < 4; i++) { if (modem_table_lte(&q->mod[i], modulations[i], true)) { goto clean; } } /* Precompute sequence for type2 frequency hopping */ if (sequence_LTE_pr(&q->seq_type2_fo, 210, q->cell.id)) { fprintf(stderr, "Error initiating type2 frequency hopping sequence\n"); goto clean; } demod_soft_init(&q->demod, q->max_re); demod_soft_alg_set(&q->demod, APPROX); sch_init(&q->dl_sch); if (dft_precoding_init(&q->dft_precoding, cell.nof_prb)) { fprintf(stderr, "Error initiating DFT transform precoding\n"); goto clean; } /* This is for equalization at receiver */ if (precoding_init(&q->equalizer, SF_LEN_RE(cell.nof_prb, cell.cp))) { fprintf(stderr, "Error initializing precoding\n"); goto clean; } q->rnti_is_set = false; // Allocate floats for reception (LLRs). Buffer casted to uint8_t for transmission q->pusch_q = vec_malloc(sizeof(float) * q->max_re * lte_mod_bits_x_symbol(LTE_QAM64)); if (!q->pusch_q) { goto clean; } // Allocate floats for reception (LLRs). Buffer casted to uint8_t for transmission q->pusch_g = vec_malloc(sizeof(float) * q->max_re * lte_mod_bits_x_symbol(LTE_QAM64)); if (!q->pusch_g) { goto clean; } q->pusch_d = vec_malloc(sizeof(cf_t) * q->max_re); if (!q->pusch_d) { goto clean; } q->ce = vec_malloc(sizeof(cf_t) * q->max_re); if (!q->ce) { goto clean; } q->pusch_z = vec_malloc(sizeof(cf_t) * q->max_re); if (!q->pusch_z) { goto clean; } ret = LIBLTE_SUCCESS; } clean: if (ret == LIBLTE_ERROR) { pusch_free(q); } return ret; } void pusch_free(pusch_t *q) { int i; if (q->pusch_q) { free(q->pusch_q); } if (q->pusch_d) { free(q->pusch_d); } if (q->pusch_g) { free(q->pusch_g); } if (q->ce) { free(q->ce); } if (q->pusch_z) { free(q->pusch_z); } dft_precoding_free(&q->dft_precoding); precoding_free(&q->equalizer); for (i = 0; i < NSUBFRAMES_X_FRAME; i++) { sequence_free(&q->seq_pusch[i]); } for (i = 0; i < 4; i++) { modem_table_free(&q->mod[i]); } demod_soft_free(&q->demod); sch_free(&q->dl_sch); bzero(q, sizeof(pusch_t)); } void pusch_set_hopping_cfg(pusch_t *q, pusch_hopping_cfg_t *cfg) { memcpy(&q->hopping_cfg, cfg, sizeof(pusch_hopping_cfg_t)); } /* Precalculate the PUSCH scramble sequences for a given RNTI. This function takes a while * to execute, so shall be called once the final C-RNTI has been allocated for the session. * For the connection procedure, use pusch_encode_rnti() or pusch_decode_rnti() functions */ int pusch_set_rnti(pusch_t *q, uint16_t rnti) { uint32_t i; for (i = 0; i < NSUBFRAMES_X_FRAME; i++) { if (sequence_pusch(&q->seq_pusch[i], rnti, 2 * i, q->cell.id, q->max_re * lte_mod_bits_x_symbol(LTE_QAM64))) { return LIBLTE_ERROR; } } q->rnti_is_set = true; q->rnti = rnti; return LIBLTE_SUCCESS; } /** Decodes the PUSCH from the received symbols */ int pusch_decode(pusch_t *q, harq_t *harq, cf_t *sf_symbols, cf_t *ce, float noise_estimate, uint8_t *data) { uint32_t n; if (q != NULL && sf_symbols != NULL && data != NULL && harq != NULL) { if (q->rnti_is_set) { INFO("Decoding PUSCH SF: %d, Mod %s, NofBits: %d, NofSymbols: %d, NofBitsE: %d, rv_idx: %d\n", harq->sf_idx, lte_mod_string(harq->mcs.mod), harq->mcs.tbs, harq->nof_re, harq->nof_bits, harq->rv); /* extract symbols */ n = pusch_get(q, harq, sf_symbols, q->pusch_d); if (n != harq->nof_re) { fprintf(stderr, "Error expecting %d symbols but got %d\n", harq->nof_re, n); return LIBLTE_ERROR; } /* extract channel estimates */ n = pusch_get(q, harq, ce, q->ce); if (n != harq->nof_re) { fprintf(stderr, "Error expecting %d symbols but got %d\n", harq->nof_re, n); return LIBLTE_ERROR; } predecoding_single(&q->equalizer, q->pusch_d, q->ce, q->pusch_z, harq->nof_re, noise_estimate); dft_predecoding(&q->dft_precoding, q->pusch_z, q->pusch_d, harq->ul_alloc.L_prb, harq->nof_symb); /* demodulate symbols * The MAX-log-MAP algorithm used in turbo decoding is unsensitive to SNR estimation, * thus we don't need tot set it in the LLRs normalization */ demod_soft_sigma_set(&q->demod, sqrt(0.5)); demod_soft_table_set(&q->demod, &q->mod[harq->mcs.mod]); demod_soft_demodulate(&q->demod, q->pusch_d, q->pusch_q, harq->nof_re); /* descramble */ scrambling_f_offset(&q->seq_pusch[harq->sf_idx], q->pusch_q, 0, harq->nof_bits); return ulsch_decode(&q->dl_sch, harq, q->pusch_q, data); } else { fprintf(stderr, "Must call pusch_set_rnti() before calling pusch_decode()\n"); return LIBLTE_ERROR; } } else { return LIBLTE_ERROR_INVALID_INPUTS; } } int pusch_encode_rnti(pusch_t *q, harq_t *harq_process, uint8_t *data, uint16_t rnti, cf_t *sf_symbols) { uci_data_t uci_data; bzero(&uci_data, sizeof(uci_data_t)); return pusch_uci_encode_rnti(q, harq_process, data, uci_data, rnti, sf_symbols); } int pusch_encode(pusch_t *q, harq_t *harq_process, uint8_t *data, cf_t *sf_symbols) { if (q->rnti_is_set) { uci_data_t uci_data; bzero(&uci_data, sizeof(uci_data_t)); return pusch_uci_encode_rnti(q, harq_process, data, uci_data, q->rnti, sf_symbols); } else { fprintf(stderr, "Must call pusch_set_rnti() to set the encoder/decoder RNTI\n"); return LIBLTE_ERROR; } } int pusch_uci_encode(pusch_t *q, harq_t *harq, uint8_t *data, uci_data_t uci_data, cf_t *sf_symbols) { if (q->rnti_is_set) { return pusch_uci_encode_rnti(q, harq, data, uci_data, q->rnti, sf_symbols); } else { fprintf(stderr, "Must call pusch_set_rnti() to set the encoder/decoder RNTI\n"); return LIBLTE_ERROR; } } /** Converts the PUSCH data bits to symbols mapped to the slot ready for transmission */ int pusch_uci_encode_rnti(pusch_t *q, harq_t *harq, uint8_t *data, uci_data_t uci_data, uint16_t rnti, cf_t *sf_symbols) { int ret = LIBLTE_ERROR_INVALID_INPUTS; if (q != NULL && data != NULL && harq != NULL) { if (harq->mcs.tbs > harq->nof_bits) { fprintf(stderr, "Invalid code rate %.2f\n", (float) harq->mcs.tbs / harq->nof_bits); return LIBLTE_ERROR_INVALID_INPUTS; } if (harq->nof_re > q->max_re) { fprintf(stderr, "Error too many RE per subframe (%d). PUSCH configured for %d RE (%d PRB)\n", harq->nof_re, q->max_re, q->cell.nof_prb); return LIBLTE_ERROR_INVALID_INPUTS; } INFO("Encoding PUSCH SF: %d, Mod %s, RNTI: %d, TBS: %d, NofSymbols: %d, NofBitsE: %d, rv_idx: %d\n", harq->sf_idx, lte_mod_string(harq->mcs.mod), rnti, harq->mcs.tbs, harq->nof_re, harq->nof_bits, harq->rv); bzero(q->pusch_q, harq->nof_bits); if (ulsch_uci_encode(&q->dl_sch, harq, data, uci_data, q->pusch_g, q->pusch_q)) { fprintf(stderr, "Error encoding TB\n"); return LIBLTE_ERROR; } if (rnti != q->rnti) { sequence_t seq; if (sequence_pusch(&seq, rnti, 2 * harq->sf_idx, q->cell.id, harq->nof_bits)) { return LIBLTE_ERROR; } scrambling_b_offset_pusch(&seq, (uint8_t*) q->pusch_q, 0, harq->nof_bits); sequence_free(&seq); } else { scrambling_b_offset_pusch(&q->seq_pusch[harq->sf_idx], (uint8_t*) q->pusch_q, 0, harq->nof_bits); } mod_modulate(&q->mod[harq->mcs.mod], (uint8_t*) q->pusch_q, q->pusch_d, harq->nof_bits); dft_precoding(&q->dft_precoding, q->pusch_d, q->pusch_z, harq->ul_alloc.L_prb, harq->nof_symb); /* mapping to resource elements */ pusch_put(q, harq, q->pusch_z, sf_symbols); ret = LIBLTE_SUCCESS; } return ret; }