/* * Copyright 2013-2019 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "pdcp_nr_test.h" #include // Encryption and Integrity Keys uint8_t k_int[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x30, 0x31}; uint8_t k_enc[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x30, 0x31}; // Security Configuration, common to all tests. pdcp_security_cfg sec_cfg = { k_int, k_enc, k_int, k_enc, srslte::INTEGRITY_ALGORITHM_ID_128_EIA2, srslte::CIPHERING_ALGORITHM_ID_128_EEA2, }; // Test SDUs for tx uint8_t sdu1[] = {0x18, 0xe2}; uint8_t sdu2[] = {0xde, 0xad}; // Test PDUs for rx (generated from SDU1) uint8_t pdu1_count0_snlen12[] = {0x80, 0x00, 0x8f, 0xe3, 0xe0, 0xdf, 0x82, 0x92}; uint8_t pdu1_count2048_snlen12[] = {0x88, 0x00, 0x8d, 0x2c, 0x47, 0x5e, 0xb1, 0x5b}; uint8_t pdu1_count4096_snlen12[] = {0x80, 0x00, 0x97, 0xbe, 0xa3, 0x32, 0xfa, 0x61}; uint8_t pdu1_count4294967295_snlen12[] = {0x8f, 0xff, 0x1e, 0x47, 0xe6, 0x86, 0x28, 0x6c}; uint8_t pdu1_count0_snlen18[] = {0x80, 0x00, 0x00, 0x8f, 0xe3, 0xe0, 0xdf, 0x82, 0x92}; uint8_t pdu1_count131072_snlen18[] = {0x82, 0x00, 0x00, 0x15, 0x01, 0xf4, 0xb0, 0xfc, 0xc5}; uint8_t pdu1_count262144_snlen18[] = {0x80, 0x00, 0x00, 0xc2, 0x47, 0xa8, 0xdd, 0xc0, 0x73}; uint8_t pdu1_count4294967295_snlen18[] = {0x83, 0xff, 0xff, 0x1e, 0x47, 0xe6, 0x86, 0x28, 0x6c}; // Test PDUs for rx (generated from SDU2) uint8_t pdu2_count1_snlen12[] = {0x80, 0x01, 0x5e, 0x3d, 0x64, 0xaf, 0xac, 0x7c}; uint8_t pdu2_count1_snlen18[] = {0x80, 0x00, 0x01, 0x5e, 0x3d, 0x64, 0xaf, 0xac, 0x7c}; // This is the normal initial state. All state variables are set to zero pdcp_initial_state normal_init_state = {}; // Some tests regarding COUNT wraparound take really long. // This puts the PCDC state closer to wraparound quickly. pdcp_initial_state near_wraparound_init_state = { .tx_next = 4294967295, .rx_next = 4294967295, .rx_deliv = 4294967295, .rx_reord = 0}; /* * Genric function to test transmission of in-sequence packets */ int test_tx(uint32_t n_packets, const pdcp_initial_state& init_state, uint8_t pdcp_sn_len, uint64_t n_pdus_exp, srslte::unique_byte_buffer_t pdu_exp, srslte::byte_buffer_pool* pool, srslte::log* log) { srslte::pdcp_config_t cfg = {1, srslte::PDCP_RB_IS_DRB, srslte::SECURITY_DIRECTION_UPLINK, srslte::SECURITY_DIRECTION_DOWNLINK, pdcp_sn_len, srslte::pdcp_t_reordering_t::ms500, srslte::pdcp_discard_timer_t::infinity}; pdcp_nr_test_helper pdcp_hlp(cfg, sec_cfg, log); srslte::pdcp_entity_nr* pdcp = &pdcp_hlp.pdcp; rlc_dummy* rlc = &pdcp_hlp.rlc; pdcp_hlp.set_pdcp_initial_state(init_state); // Run test for (uint32_t i = 0; i < n_packets; ++i) { // Test SDU srslte::unique_byte_buffer_t sdu = allocate_unique_buffer(*pool); sdu->append_bytes(sdu1, sizeof(sdu1)); pdcp->write_sdu(std::move(sdu), true); } srslte::unique_byte_buffer_t pdu_act = allocate_unique_buffer(*pool); rlc->get_last_sdu(pdu_act); TESTASSERT(rlc->rx_count == n_pdus_exp); TESTASSERT(compare_two_packets(pdu_act, pdu_exp) == 0); return 0; } /* * Genric function to test reception of in-sequence packets */ int test_rx(std::vector events, const pdcp_initial_state& init_state, uint8_t pdcp_sn_len, uint32_t n_sdus_exp, const srslte::unique_byte_buffer_t& sdu_exp, srslte::byte_buffer_pool* pool, srslte::log* log) { srslte::pdcp_config_t cfg_rx = {1, srslte::PDCP_RB_IS_DRB, srslte::SECURITY_DIRECTION_DOWNLINK, srslte::SECURITY_DIRECTION_UPLINK, pdcp_sn_len, srslte::pdcp_t_reordering_t::ms500, srslte::pdcp_discard_timer_t::infinity}; pdcp_nr_test_helper pdcp_hlp_rx(cfg_rx, sec_cfg, log); srslte::pdcp_entity_nr* pdcp_rx = &pdcp_hlp_rx.pdcp; gw_dummy* gw_rx = &pdcp_hlp_rx.gw; srslte::timer_handler* timers_rx = &pdcp_hlp_rx.timers; pdcp_hlp_rx.set_pdcp_initial_state(init_state); // Generate test message and encript/decript SDU. for (pdcp_test_event_t& event : events) { // Decript and integrity check the PDU pdcp_rx->write_pdu(std::move(event.pkt)); for (uint32_t i = 0; i < event.ticks; ++i) { timers_rx->step_all(); } } // Test if the number of RX packets TESTASSERT(gw_rx->rx_count == n_sdus_exp); srslte::unique_byte_buffer_t sdu_act = allocate_unique_buffer(*pool); gw_rx->get_last_pdu(sdu_act); TESTASSERT(compare_two_packets(sdu_exp, sdu_act) == 0); return 0; } /* * Genric function to test transmission of in-sequence packets */ int test_tx_sdu_discard(const pdcp_initial_state& init_state, srslte::pdcp_discard_timer_t discard_timeout, bool imediate_notify, srslte::byte_buffer_pool* pool, srslte::log* log) { srslte::pdcp_config_t cfg = {1, srslte::PDCP_RB_IS_DRB, srslte::SECURITY_DIRECTION_UPLINK, srslte::SECURITY_DIRECTION_DOWNLINK, srslte::PDCP_SN_LEN_12, srslte::pdcp_t_reordering_t::ms500, discard_timeout}; pdcp_nr_test_helper pdcp_hlp(cfg, sec_cfg, log); srslte::pdcp_entity_nr* pdcp = &pdcp_hlp.pdcp; rlc_dummy* rlc = &pdcp_hlp.rlc; srslte::timer_handler* timers = &pdcp_hlp.timers; pdcp_hlp.set_pdcp_initial_state(init_state); // Test SDU srslte::unique_byte_buffer_t sdu = allocate_unique_buffer(*pool); sdu->append_bytes(sdu1, sizeof(sdu1)); pdcp->write_sdu(std::move(sdu), true); for (uint32_t i = 0; i < static_cast(cfg.discard_timer) - 1; ++i) { timers->step_all(); } TESTASSERT(rlc->discard_count == 0); timers->step_all(); if (imediate_notify) { TESTASSERT(rlc->discard_count == 0); // RLC imediatly notified the PDCP of tx, there should be no timeouts } else { TESTASSERT(rlc->discard_count == 1); // RLC does not notify the the PDCP of tx, there should be a timeout } return 0; } /* * TX Test: PDCP Entity with SN LEN = 12 and 18. * PDCP entity configured with EIA2 and EEA2 */ int test_tx_all(srslte::byte_buffer_pool* pool, srslte::log* log) { //uint64_t n_packets; ///* // * TX Test 1: PDCP Entity with SN LEN = 12 // * TX_NEXT = 0. // * Input: {0x18, 0xE2} // * Output: PDCP Header {0x80, 0x00}, Ciphered Text {0x8f, 0xe3}, MAC-I {0xe0, 0xdf, 0x82, 0x92} // */ //n_packets = 1; //srslte::unique_byte_buffer_t pdu_exp_count0_len12 = allocate_unique_buffer(*pool); //pdu_exp_count0_len12->append_bytes(pdu1_count0_snlen12, sizeof(pdu1_count0_snlen12)); //TESTASSERT(test_tx(n_packets, // normal_init_state, // srslte::PDCP_SN_LEN_12, // n_packets, // std::move(pdu_exp_count0_len12), // pool, // log) == 0); ///* // * TX Test 2: PDCP Entity with SN LEN = 12 // * TX_NEXT = 2048. // * Input: {0x18, 0xE2} // * Output: PDCP Header {0x88, 0x00}, Ciphered Text {0x8d, 0x2c}, MAC-I {0x47, 0x5e, 0xb1, 0x5b} // */ //n_packets = 2049; //srslte::unique_byte_buffer_t pdu_exp_count2048_len12 = allocate_unique_buffer(*pool); //pdu_exp_count2048_len12->append_bytes(pdu1_count2048_snlen12, sizeof(pdu1_count2048_snlen12)); //TESTASSERT(test_tx(n_packets, // normal_init_state, // srslte::PDCP_SN_LEN_12, // n_packets, // std::move(pdu_exp_count2048_len12), // pool, // log) == 0); ///* // * TX Test 3: PDCP Entity with SN LEN = 12 // * TX_NEXT = 4096. // * Input: {0x18, 0xE2} // * Output: PDCP Header {0x80,0x00}, Ciphered Text {0x97, 0xbe}, MAC-I {0xa3, 0x32, 0xfa, 0x61} // */ //n_packets = 4097; //srslte::unique_byte_buffer_t pdu_exp_count4096_len12 = allocate_unique_buffer(*pool); //pdu_exp_count4096_len12->append_bytes(pdu1_count4096_snlen12, sizeof(pdu1_count4096_snlen12)); //TESTASSERT(test_tx(n_packets, // normal_init_state, // srslte::PDCP_SN_LEN_12, // n_packets, // std::move(pdu_exp_count4096_len12), // pool, // log) == 0); ///* // * TX Test 4: PDCP Entity with SN LEN = 18 // * TX_NEXT = 0. // * Input: {0x18, 0xE2} // * Output: PDCP Header {0x80, 0x80, 0x00}, Ciphered Text {0x8f, 0xe3}, MAC-I {0xe0, 0xdf, 0x82, 0x92} // */ //n_packets = 1; //srslte::unique_byte_buffer_t pdu_exp_count0_len18 = allocate_unique_buffer(*pool); //pdu_exp_count0_len18->append_bytes(pdu1_count0_snlen18, sizeof(pdu1_count0_snlen18)); //TESTASSERT(test_tx(n_packets, // normal_init_state, // srslte::PDCP_SN_LEN_18, // n_packets, // std::move(pdu_exp_count0_len18), // pool, // log) == 0); ///* // * TX Test 5: PDCP Entity with SN LEN = 18 // * TX_NEXT = 131072. // * Input: {0x18, 0xE2} // * Output: PDCP Header {0x82, 0x00, 0x00}, Ciphered Text {0x15, 0x01}, MAC-I {0xf4, 0xb0, 0xfc, 0xc5} // */ //n_packets = 131073; //srslte::unique_byte_buffer_t pdu_exp_sn131072_len18 = allocate_unique_buffer(*pool); //pdu_exp_sn131072_len18->append_bytes(pdu1_count131072_snlen18, sizeof(pdu1_count131072_snlen18)); //TESTASSERT(test_tx(n_packets, // normal_init_state, // srslte::PDCP_SN_LEN_18, // n_packets, // std::move(pdu_exp_sn131072_len18), // pool, // log) == 0); ///* // * TX Test 6: PDCP Entity with SN LEN = 18 // * TX_NEXT = 262144. // * Input: {0x18, 0xE2} // * Output: PDCP Header {0x80, 0x00, 0x00}, Ciphered Text {0xc2, 0x47}, MAC-I {0xa8, 0xdd, 0xc0, 0x73} // */ //n_packets = 262145; //srslte::unique_byte_buffer_t pdu_exp_count262144_len18 = allocate_unique_buffer(*pool); //pdu_exp_count262144_len18->append_bytes(pdu1_count262144_snlen18, sizeof(pdu1_count262144_snlen18)); //TESTASSERT(test_tx(n_packets, // normal_init_state, // srslte::PDCP_SN_LEN_18, // n_packets, // std::move(pdu_exp_count262144_len18), // pool, // log) == 0); ///* // * TX Test 7: PDCP Entity with SN LEN = 12 // * Test TX at COUNT wraparound. // * Should print a warning and drop all packets after wraparound. // */ //n_packets = 5; //srslte::unique_byte_buffer_t pdu_exp_count4294967295_len12 = allocate_unique_buffer(*pool); //pdu_exp_count4294967295_len12->append_bytes(pdu1_count4294967295_snlen12, sizeof(pdu1_count4294967295_snlen12)); //TESTASSERT(test_tx(n_packets, // near_wraparound_init_state, // srslte::PDCP_SN_LEN_12, // 1, // std::move(pdu_exp_count4294967295_len12), // pool, // log) == 0); ///* // * TX Test 8: PDCP Entity with SN LEN = 18 // * Test TX at COUNT wraparound. // * Should print a warning and drop all packets after wraparound. // */ //n_packets = 5; //srslte::unique_byte_buffer_t pdu_exp_count4294967295_len18 = allocate_unique_buffer(*pool); //pdu_exp_count4294967295_len18->append_bytes(pdu1_count4294967295_snlen18, sizeof(pdu1_count4294967295_snlen18)); //TESTASSERT(test_tx(n_packets, // near_wraparound_init_state, // srslte::PDCP_SN_LEN_18, // 1, // std::move(pdu_exp_count4294967295_len18), // pool, // log) == 0); /* * TX Test 9: PDCP Entity with SN LEN = 12 * Test TX PDU discard. */ TESTASSERT(test_tx_sdu_discard(normal_init_state, srslte::pdcp_discard_timer_t::ms50, false, pool, log) == 0); return 0; } /* * RX Test: PDCP Entity with SN LEN = 12 and 18. * PDCP entity configured with EIA2 and EEA2 */ int test_rx_all(srslte::byte_buffer_pool* pool, srslte::log* log) { // Test SDUs srslte::unique_byte_buffer_t tst_sdu1 = allocate_unique_buffer(*pool); // SDU 1 tst_sdu1->append_bytes(sdu1, sizeof(sdu1)); srslte::unique_byte_buffer_t tst_sdu2 = allocate_unique_buffer(*pool); // SDU 2 tst_sdu2->append_bytes(sdu2, sizeof(sdu2)); /* * RX Test 1: PDCP Entity with SN LEN = 12 * Test in-sequence reception of 4097 packets. * This tests correct handling of HFN in the case of SN wraparound (SN LEN 12) */ { std::vector test1_counts(2); // Test two packets std::iota(test1_counts.begin(), test1_counts.end(), 4095); // Starting at COUNT 4095 std::vector test1_pdus = gen_expected_pdus_vector(tst_sdu1, test1_counts, srslte::PDCP_SN_LEN_12, sec_cfg, pool, log); pdcp_initial_state test1_init_state = {.tx_next = 4095, .rx_next = 4095, .rx_deliv = 4095, .rx_reord = 0}; TESTASSERT(test_rx(std::move(test1_pdus), test1_init_state, srslte::PDCP_SN_LEN_12, 2, tst_sdu1, pool, log) == 0); } /* * RX Test 2: PDCP Entity with SN LEN = 12 * Test in-sequence reception of 4294967297 packets. * This tests correct handling of COUNT in the case of [HFN|SN] wraparound * Packet that wraparound should be dropped, so only one packet should be received at the GW. */ { std::vector test2_counts(2); // Test two packets std::iota(test2_counts.begin(), test2_counts.end(), 4294967295); // Starting at COUNT 4294967295 std::vector test2_pdus = gen_expected_pdus_vector(tst_sdu1, test2_counts, srslte::PDCP_SN_LEN_12, sec_cfg, pool, log); pdcp_initial_state test2_init_state = { .tx_next = 4294967295, .rx_next = 4294967295, .rx_deliv = 4294967295, .rx_reord = 0}; TESTASSERT(test_rx(std::move(test2_pdus), test2_init_state, srslte::PDCP_SN_LEN_12, 1, tst_sdu1, pool, log) == 0); } /* * RX Test 3: PDCP Entity with SN LEN = 18 * Test In-sequence reception of 262145 packets. * This tests correct handling of HFN in the case of SN wraparound (SN LEN 18) */ { std::vector test3_counts(2); // Test two packets std::iota(test3_counts.begin(), test3_counts.end(), 262144); // Starting at COUNT 262144 std::vector test3_pdus = gen_expected_pdus_vector(tst_sdu1, test3_counts, srslte::PDCP_SN_LEN_18, sec_cfg, pool, log); pdcp_initial_state test3_init_state = {.tx_next = 262144, .rx_next = 262144, .rx_deliv = 262144, .rx_reord = 0}; TESTASSERT(test_rx(std::move(test3_pdus), test3_init_state, srslte::PDCP_SN_LEN_18, 2, tst_sdu1, pool, log) == 0); } /* * RX Test 4: PDCP Entity with SN LEN = 18 * Test in-sequence reception of 4294967297 packets. * This tests correct handling of COUNT in the case of [HFN|SN] wraparound */ { std::vector test4_counts(2); // Test two packets std::iota(test4_counts.begin(), test4_counts.end(), 4294967295); // Starting at COUNT 4294967295 std::vector test4_pdus = gen_expected_pdus_vector(tst_sdu1, test4_counts, srslte::PDCP_SN_LEN_18, sec_cfg, pool, log); pdcp_initial_state test4_init_state = { .tx_next = 4294967295, .rx_next = 4294967295, .rx_deliv = 4294967295, .rx_reord = 0}; TESTASSERT(test_rx(std::move(test4_pdus), test4_init_state, srslte::PDCP_SN_LEN_18, 1, tst_sdu1, pool, log) == 0); } /* * RX Test 5: PDCP Entity with SN LEN = 12 * Test reception of two out-of-order packets, starting at COUNT 0. */ { std::vector test5_pdus; pdcp_initial_state test5_init_state = {}; // First PDU pdcp_test_event_t event_pdu1; event_pdu1.pkt = srslte::allocate_unique_buffer(*pool); event_pdu1.pkt->append_bytes(pdu1_count0_snlen12, sizeof(pdu1_count0_snlen12)); // Second PDU pdcp_test_event_t event_pdu2; event_pdu2.pkt = srslte::allocate_unique_buffer(*pool); event_pdu2.pkt->append_bytes(pdu2_count1_snlen12, sizeof(pdu2_count1_snlen12)); // Write PDUs out of order (first the pdu with COUNT 1 and COUNT 0 after) test5_pdus.push_back(std::move(event_pdu2)); test5_pdus.push_back(std::move(event_pdu1)); TESTASSERT(test_rx(std::move(test5_pdus), test5_init_state, srslte::PDCP_SN_LEN_12, 2, tst_sdu2, pool, log) == 0); } /* * RX Test 6: PDCP Entity with SN LEN = 18 * Test reception of two out-of-order packets, starting at COUNT 0. */ { std::vector test6_pdus; pdcp_initial_state test6_init_state = {}; // First PDU pdcp_test_event_t event_pdu1; event_pdu1.pkt = srslte::allocate_unique_buffer(*pool); event_pdu1.pkt->append_bytes(pdu1_count0_snlen18, sizeof(pdu1_count0_snlen18)); // Second PDU pdcp_test_event_t event_pdu2; event_pdu2.pkt = srslte::allocate_unique_buffer(*pool); event_pdu2.pkt->append_bytes(pdu2_count1_snlen18, sizeof(pdu2_count1_snlen18)); // Write PDUs out of order (first the pdu with COUNT 1 and COUNT 0 after) test6_pdus.push_back(std::move(event_pdu2)); test6_pdus.push_back(std::move(event_pdu1)); TESTASSERT(test_rx(std::move(test6_pdus), test6_init_state, srslte::PDCP_SN_LEN_18, 2, tst_sdu2, pool, log) == 0); } /* * RX Test 7: PDCP Entity with SN LEN = 12 * Test Reception of one out-of-order packet. */ { std::vector test7_pdus; pdcp_initial_state test7_init_state = {}; // First PDU pdcp_test_event_t event_pdu1; event_pdu1.pkt = srslte::allocate_unique_buffer(*pool); event_pdu1.pkt->append_bytes(pdu2_count1_snlen12, sizeof(pdu2_count1_snlen12)); event_pdu1.ticks = 500; // Write PDUs out of order (first the pdu with COUNT 1 and COUNT 0 after) test7_pdus.push_back(std::move(event_pdu1)); TESTASSERT(test_rx(std::move(test7_pdus), test7_init_state, srslte::PDCP_SN_LEN_12, 1, tst_sdu2, pool, log) == 0); } /* * RX Test 8: PDCP Entity with SN LEN = 12 * Test reception of two duplicate PDUs, with COUNT 0. */ { std::vector test8_pdus; pdcp_initial_state test8_init_state = {}; // First PDU pdcp_test_event_t event_pdu1; event_pdu1.pkt = srslte::allocate_unique_buffer(*pool); event_pdu1.pkt->append_bytes(pdu1_count0_snlen12, sizeof(pdu1_count0_snlen12)); // Second PDU pdcp_test_event_t event_pdu2; event_pdu2.pkt = srslte::allocate_unique_buffer(*pool); event_pdu2.pkt->append_bytes(pdu1_count0_snlen12, sizeof(pdu1_count0_snlen12)); // Write PDUs out of order (first the pdu with COUNT 1 and COUNT 0 after) test8_pdus.push_back(std::move(event_pdu1)); test8_pdus.push_back(std::move(event_pdu2)); TESTASSERT(test_rx(std::move(test8_pdus), test8_init_state, srslte::PDCP_SN_LEN_12, 1, tst_sdu1, pool, log) == 0); } return 0; } // Setup all tests int run_all_tests(srslte::byte_buffer_pool* pool) { // Setup log srslte::log_filter log("PDCP NR Test"); log.set_level(srslte::LOG_LEVEL_DEBUG); log.set_hex_limit(128); TESTASSERT(test_tx_all(pool, &log) == 0); //TESTASSERT(test_rx_all(pool, &log) == 0); return 0; } int main() { if (run_all_tests(srslte::byte_buffer_pool::get_instance()) != SRSLTE_SUCCESS) { fprintf(stderr, "pdcp_nr_tests() failed\n"); return SRSLTE_ERROR; } srslte::byte_buffer_pool::cleanup(); return SRSLTE_SUCCESS; }