/* * Copyright 2013-2020 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #ifndef SRSUE_PHCH_COMMON_H #define SRSUE_PHCH_COMMON_H #include "phy_metrics.h" #include "srslte/adt/circular_array.h" #include "srslte/common/gen_mch_tables.h" #include "srslte/common/log.h" #include "srslte/common/tti_sempahore.h" #include "srslte/interfaces/radio_interfaces.h" #include "srslte/interfaces/ue_interfaces.h" #include "srslte/radio/radio.h" #include "srslte/srslte.h" #include "ta_control.h" #include #include #include #include namespace srsue { class rsrp_insync_itf { public: virtual void in_sync() = 0; virtual void out_of_sync() = 0; virtual void set_cfo(float cfo) = 0; }; /* Subclass that manages variables common to all workers */ class phy_common { public: /* Common variables used by all phy workers */ phy_args_t* args = nullptr; stack_interface_phy_lte* stack = nullptr; srslte::phy_cfg_mbsfn_t mbsfn_config = {}; // SCell EARFCN, PCI, configured and enabled list typedef struct { uint32_t earfcn = 0; uint32_t pci = 0; bool configured = false; bool enabled = false; } scell_cfg_t; scell_cfg_t scell_cfg[SRSLTE_MAX_CARRIERS]; // Save last TBS for uplink (mcs >= 28) srslte_ra_tb_t last_ul_tb[SRSLTE_MAX_HARQ_PROC][SRSLTE_MAX_CARRIERS] = {}; // Save last TBS for DL (Format1C) int last_dl_tbs[SRSLTE_MAX_HARQ_PROC][SRSLTE_MAX_CARRIERS][SRSLTE_MAX_CODEWORDS] = {}; srslte::tti_semaphore semaphore; // Time Aligment Controller, internal thread safe ta_control ta; phy_common(); ~phy_common(); void init(phy_args_t* args, srslte::log* _log, srslte::radio_interface_phy* _radio, stack_interface_phy_lte* _stack, rsrp_insync_itf* rsrp_insync); uint32_t ul_pidof(uint32_t tti, srslte_tdd_config_t* tdd_config); // Set configurations for lib objects void set_ue_dl_cfg(srslte_ue_dl_cfg_t* ue_dl_cfg); void set_ue_ul_cfg(srslte_ue_ul_cfg_t* ue_ul_cfg); void set_pdsch_cfg(srslte_pdsch_cfg_t* pdsch_cfg); void set_rar_grant(uint8_t grant_payload[SRSLTE_RAR_GRANT_LEN], uint16_t rnti, srslte_tdd_config_t tdd_config); void set_dl_pending_grant(uint32_t tti, uint32_t cc_idx, uint32_t grant_cc_idx, const srslte_dci_dl_t* dl_dci); bool get_dl_pending_grant(uint32_t tti, uint32_t cc_idx, uint32_t* grant_cc_idx, srslte_dci_dl_t* dl_dci); void set_ul_pending_ack(srslte_ul_sf_cfg_t* sf, uint32_t cc_idx, srslte_phich_grant_t phich_grant, srslte_dci_ul_t* dci_ul); bool get_ul_pending_ack(srslte_dl_sf_cfg_t* sf, uint32_t cc_idx, srslte_phich_grant_t* phich_grant, srslte_dci_ul_t* dci_ul); bool is_any_ul_pending_ack(); bool get_ul_received_ack(srslte_ul_sf_cfg_t* sf, uint32_t cc_idx, bool* ack_value, srslte_dci_ul_t* dci_ul); void set_ul_received_ack(srslte_dl_sf_cfg_t* sf, uint32_t cc_idx, bool ack_value, uint32_t I_phich, srslte_dci_ul_t* dci_ul); void set_ul_pending_grant(srslte_dl_sf_cfg_t* sf, uint32_t cc_idx, srslte_dci_ul_t* dci); bool get_ul_pending_grant(srslte_ul_sf_cfg_t* sf, uint32_t cc_idx, uint32_t* pid, srslte_dci_ul_t* dci); /** * If there is a UL Grant it returns the lowest index component carrier that has a grant, otherwise it returns 0. * * @param tti_tx TTI in which the transmission is happening * @return The number of carrier if a grant is available, otherwise 0 */ uint32_t get_ul_uci_cc(uint32_t tti_tx) const; void set_rar_grant_tti(uint32_t tti); void set_dl_pending_ack(srslte_dl_sf_cfg_t* sf, uint32_t cc_idx, uint8_t value[SRSLTE_MAX_CODEWORDS], srslte_pdsch_ack_resource_t resource); bool get_dl_pending_ack(srslte_ul_sf_cfg_t* sf, uint32_t cc_idx, srslte_pdsch_ack_cc_t* ack); void worker_end(void* h, bool tx_enable, srslte::rf_buffer_t& buffer, srslte::rf_timestamp_t& tx_time); void set_cell(const srslte_cell_t& c); void set_nof_workers(uint32_t nof_workers); bool sr_enabled = false; int sr_last_tx_tti = -1; srslte::radio_interface_phy* get_radio(); void set_dl_metrics(uint32_t cc_idx, const dl_metrics_t& m); void get_dl_metrics(dl_metrics_t m[SRSLTE_MAX_CARRIERS]); void set_ch_metrics(uint32_t cc_idx, const ch_metrics_t& m); void get_ch_metrics(ch_metrics_t m[SRSLTE_MAX_CARRIERS]); void set_ul_metrics(uint32_t cc_idx, const ul_metrics_t& m); void get_ul_metrics(ul_metrics_t m[SRSLTE_MAX_CARRIERS]); void set_sync_metrics(const uint32_t& cc_idx, const sync_metrics_t& m); void get_sync_metrics(sync_metrics_t m[SRSLTE_MAX_CARRIERS]); void reset(); void reset_radio(); /* SCell Management */ void enable_scell(uint32_t cc_idx, bool enable); void build_mch_table(); void build_mcch_table(); void set_mcch(); bool is_mbsfn_sf(srslte_mbsfn_cfg_t* cfg, uint32_t tti); void set_mch_period_stop(uint32_t stop); /** * Deduces the UL EARFCN from a DL EARFCN. If the UL-EARFCN was defined in the UE PHY arguments it will use the * corresponding UL-EARFCN to the DL-EARFCN. Otherwise, it will use default. * * @param dl_earfcn * @return the deduced UL EARFCN */ uint32_t get_ul_earfcn(uint32_t dl_earfcn); void update_measurements(uint32_t cc_idx, srslte_chest_dl_res_t chest_res, srslte_dl_sf_cfg_t sf_cfg_dl, float tx_crs_power, std::vector& serving_cells, cf_t* rssi_power_buffer = nullptr); void update_cfo_measurement(uint32_t cc_idx, float cfo_hz); float get_sinr_db(uint32_t cc_idx) { std::unique_lock lock(meas_mutex); return avg_sinr_db[cc_idx]; } float get_pusch_power() { std::unique_lock lock(meas_mutex); return cur_pusch_power; } float get_pathloss() { std::unique_lock lock(meas_mutex); return cur_pathloss; } float get_rx_gain_offset() { std::unique_lock lock(meas_mutex); return rx_gain_offset; } void neighbour_cells_reset(uint32_t cc_idx) { avg_rsrp_neigh[cc_idx] = NAN; } void set_neighbour_cells(uint32_t cc_idx, const std::vector& meas) { // Add RSRP in the linear domain and average float total_rsrp = 0; for (auto& m : meas) { total_rsrp += srslte_convert_dB_to_power(m.rsrp); } if (std::isnormal(total_rsrp)) { if (std::isnormal(avg_rsrp_neigh[cc_idx])) { avg_rsrp_neigh[cc_idx] = SRSLTE_VEC_EMA(total_rsrp, avg_rsrp_neigh[cc_idx], 0.9); } else { avg_rsrp_neigh[cc_idx] = total_rsrp; } } } void reset_neighbour_cells() { for (uint32_t i = 0; i < SRSLTE_MAX_CARRIERS; i++) { avg_rsrp_neigh[i] = NAN; } } private: std::mutex meas_mutex; float pathloss[SRSLTE_MAX_CARRIERS] = {}; float cur_pathloss = 0.0f; float cur_pusch_power = 0.0f; float avg_rsrp[SRSLTE_MAX_CARRIERS] = {}; float avg_rsrp_dbm[SRSLTE_MAX_CARRIERS] = {}; float avg_rsrq_db[SRSLTE_MAX_CARRIERS] = {}; float avg_rssi_dbm[SRSLTE_MAX_CARRIERS] = {}; float avg_cfo_hz[SRSLTE_MAX_CARRIERS] = {}; float rx_gain_offset = 0.0f; float avg_sinr_db[SRSLTE_MAX_CARRIERS] = {}; float avg_snr_db[SRSLTE_MAX_CARRIERS] = {}; float avg_noise[SRSLTE_MAX_CARRIERS] = {}; float avg_rsrp_neigh[SRSLTE_MAX_CARRIERS] = {}; uint32_t pcell_report_period = 0; uint32_t rssi_read_cnt = 0; rsrp_insync_itf* insync_itf = nullptr; bool have_mtch_stop = false; std::mutex mtch_mutex; std::condition_variable mtch_cvar; uint32_t nof_workers = 0; bool is_pending_tx_end = false; srslte::radio_interface_phy* radio_h = nullptr; srslte::log* log_h = nullptr; srslte::channel_ptr ul_channel = nullptr; int rar_grant_tti = -1; typedef struct { bool enable; srslte_phich_grant_t phich_grant; srslte_dci_ul_t dci_ul; } pending_ul_ack_t; srslte::circular_array pending_ul_ack[SRSLTE_MAX_CARRIERS][2] = {}; std::mutex pending_ul_ack_mutex; typedef struct { bool hi_value; bool hi_present; srslte_dci_ul_t dci_ul; } received_ul_ack_t; srslte::circular_array received_ul_ack[SRSLTE_MAX_CARRIERS] = {}; std::mutex received_ul_ack_mutex; typedef struct { bool enable; uint32_t pid; srslte_dci_ul_t dci; } pending_ul_grant_t; srslte::circular_array pending_ul_grant[SRSLTE_MAX_CARRIERS] = {}; mutable std::mutex pending_ul_grant_mutex; typedef struct { bool enable; uint8_t value[SRSLTE_MAX_CODEWORDS]; // 0/1 or 2 for DTX srslte_pdsch_ack_resource_t resource; } received_ack_t; srslte::circular_array pending_dl_ack[SRSLTE_MAX_CARRIERS] = {}; srslte::circular_array pending_dl_dai[SRSLTE_MAX_CARRIERS] = {}; std::mutex pending_dl_ack_mutex; std::mutex pending_dl_grant_mutex; // Cross-carried grants scheduled from PCell typedef struct { bool enable; uint32_t grant_cc_idx; srslte_dci_dl_t dl_dci; } pending_dl_grant_t; pending_dl_grant_t pending_dl_grant[FDD_HARQ_DELAY_UL_MS][SRSLTE_MAX_CARRIERS] = {}; srslte_cell_t cell = {}; std::mutex metrics_mutex; ch_metrics_t ch_metrics[SRSLTE_MAX_CARRIERS] = {}; uint32_t ch_metrics_count[SRSLTE_MAX_CARRIERS] = {}; dl_metrics_t dl_metrics[SRSLTE_MAX_CARRIERS] = {}; uint32_t dl_metrics_count[SRSLTE_MAX_CARRIERS] = {}; ul_metrics_t ul_metrics[SRSLTE_MAX_CARRIERS] = {}; uint32_t ul_metrics_count[SRSLTE_MAX_CARRIERS] = {}; sync_metrics_t sync_metrics[SRSLTE_MAX_CARRIERS] = {}; uint32_t sync_metrics_count[SRSLTE_MAX_CARRIERS] = {}; // MBSFN bool sib13_configured = false; bool mcch_configured = false; uint32_t mch_period_stop = 0; uint8_t mch_table[40] = {}; uint8_t mcch_table[10] = {}; bool is_mch_subframe(srslte_mbsfn_cfg_t* cfg, uint32_t phy_tti); bool is_mcch_subframe(srslte_mbsfn_cfg_t* cfg, uint32_t phy_tti); }; } // namespace srsue #endif // SRSUE_PDCH_COMMON_H