/** * * \section COPYRIGHT * * Copyright 2013-2015 Software Radio Systems Limited * * \section LICENSE * * This file is part of the srsLTE library. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #include #include #include #include "srslte/srslte.h" #include "srslte/rf/rf.h" #ifndef DISABLE_GRAPHICS void init_plots(); void do_plots_pss(float *corr, float energy, uint32_t size); void do_plots_sss(float *corr_m0, float *corr_m1); #endif bool disable_plots = false; int cell_id = -1; char *rf_args=""; float rf_gain=40.0, rf_freq=-1.0; int nof_frames = -1; uint32_t fft_size=64; float threshold = 0.4; int N_id_2_sync = -1; srslte_cp_t cp=SRSLTE_CP_NORM; void usage(char *prog) { printf("Usage: %s [aedgtvnp] -f rx_frequency_hz -i cell_id\n", prog); printf("\t-a RF args [Default %s]\n", rf_args); printf("\t-g RF Gain [Default %.2f dB]\n", rf_gain); printf("\t-n nof_frames [Default %d]\n", nof_frames); printf("\t-l N_id_2 to sync [Default use cell_id]\n"); printf("\t-e Extended CP [Default Normal]\n", fft_size); printf("\t-s symbol_sz [Default %d]\n", fft_size); printf("\t-t threshold [Default %.2f]\n", threshold); #ifndef DISABLE_GRAPHICS printf("\t-d disable plots [Default enabled]\n"); #else printf("\t plots are disabled. Graphics library not available\n"); #endif printf("\t-v srslte_verbose\n"); } void parse_args(int argc, char **argv) { int opt; while ((opt = getopt(argc, argv, "adgetvsfil")) != -1) { switch (opt) { case 'a': rf_args = argv[optind]; break; case 'g': rf_gain = atof(argv[optind]); break; case 'f': rf_freq = atof(argv[optind]); break; case 't': threshold = atof(argv[optind]); break; case 'e': cp = SRSLTE_CP_EXT; break; case 'i': cell_id = atoi(argv[optind]); break; case 'l': N_id_2_sync = atoi(argv[optind]); break; case 's': fft_size = atoi(argv[optind]); break; case 'n': nof_frames = atoi(argv[optind]); break; case 'd': disable_plots = true; break; case 'v': srslte_verbose++; break; default: usage(argv[0]); exit(-1); } } if (cell_id < 0 || rf_freq < 0) { usage(argv[0]); exit(-1); } } float m0_value, m1_value; int main(int argc, char **argv) { cf_t *buffer; int frame_cnt, n; srslte_rf_t rf; srslte_pss_synch_t pss; srslte_cfo_t cfocorr, cfocorr64; srslte_sss_synch_t sss; int32_t flen; int peak_idx, last_peak; float peak_value; float mean_peak; uint32_t nof_det, nof_nodet, nof_nopeak, nof_nopeakdet; cf_t ce[SRSLTE_PSS_LEN]; float sfo = 0; parse_args(argc, argv); if (N_id_2_sync == -1) { N_id_2_sync = cell_id%3; } uint32_t N_id_2 = cell_id%3; uint32_t N_id_1 = cell_id/3; #ifndef DISABLE_GRAPHICS if (!disable_plots) init_plots(); #endif float srate = 15000.0*fft_size; flen = srate*5/1000; printf("Opening RF device...\n"); if (srslte_rf_open(&rf, rf_args)) { fprintf(stderr, "Error opening rf\n"); exit(-1); } if (srate < 10e6) { srslte_rf_set_master_clock_rate(&rf, 4*srate); } else { srslte_rf_set_master_clock_rate(&rf, srate); } printf("Set RX rate: %.2f MHz\n", srslte_rf_set_rx_srate(&rf, srate) / 1000000); printf("Set RX gain: %.1f dB\n", srslte_rf_set_rx_gain(&rf, rf_gain)); printf("Set RX freq: %.2f MHz\n", srslte_rf_set_rx_freq(&rf, rf_freq) / 1000000); srslte_rf_rx_wait_lo_locked(&rf); buffer = malloc(sizeof(cf_t) * flen * 2); if (!buffer) { perror("malloc"); exit(-1); } if (srslte_pss_synch_init_fft(&pss, flen, fft_size)) { fprintf(stderr, "Error initiating PSS\n"); exit(-1); } if (srslte_pss_synch_set_N_id_2(&pss, N_id_2_sync)) { fprintf(stderr, "Error setting N_id_2=%d\n",N_id_2_sync); exit(-1); } srslte_cfo_init(&cfocorr, flen); srslte_cfo_init(&cfocorr64, flen); if (srslte_sss_synch_init(&sss, fft_size)) { fprintf(stderr, "Error initializing SSS object\n"); exit(-1); } srslte_sss_synch_set_N_id_2(&sss, N_id_2); printf("N_id_2: %d\n", N_id_2); srslte_rf_start_rx_stream(&rf); printf("Frame length %d samples\n", flen); printf("PSS detection threshold: %.2f\n", threshold); nof_det = nof_nodet = nof_nopeak = nof_nopeakdet = 0; frame_cnt = 0; last_peak = 0; mean_peak = 0; int peak_offset = 0; float cfo; float mean_cfo = 0; uint32_t m0, m1; uint32_t sss_error1 = 0, sss_error2 = 0, sss_error3 = 0; uint32_t cp_is_norm = 0; srslte_sync_t ssync; bzero(&ssync, sizeof(srslte_sync_t)); ssync.fft_size = fft_size; uint32_t max_peak = 0; uint32_t max_peak_ = 0; uint32_t min_peak = fft_size; uint32_t min_peak_ = fft_size; while(frame_cnt < nof_frames || nof_frames == -1) { n = srslte_rf_recv(&rf, buffer, flen - peak_offset, 1); if (n < 0) { fprintf(stderr, "Error receiving samples\n"); exit(-1); } peak_idx = srslte_pss_synch_find_pss(&pss, buffer, &peak_value); if (peak_idx < 0) { fprintf(stderr, "Error finding PSS peak\n"); exit(-1); } mean_peak = SRSLTE_VEC_CMA(peak_value, mean_peak, frame_cnt); if (peak_value >= threshold) { nof_det++; if (peak_idx >= fft_size) { // Estimate CFO cfo = srslte_pss_synch_cfo_compute(&pss, &buffer[peak_idx-fft_size]); mean_cfo = SRSLTE_VEC_CMA(cfo, mean_cfo, frame_cnt); // Correct CFO srslte_cfo_correct(&cfocorr, buffer, buffer, -mean_cfo / fft_size); // Estimate channel if (srslte_pss_synch_chest(&pss, &buffer[peak_idx-fft_size], ce)) { fprintf(stderr, "Error computing channel estimation\n"); exit(-1); } // Find SSS int sss_idx = peak_idx-2*fft_size-(SRSLTE_CP_ISNORM(cp)?SRSLTE_CP_LEN(fft_size, SRSLTE_CP_NORM_LEN):SRSLTE_CP_LEN(fft_size, SRSLTE_CP_EXT_LEN)); if (sss_idx >= 0 && sss_idx < flen-fft_size) { INFO("Full N_id_1: %d\n", srslte_sss_synch_N_id_1(&sss, m0, m1)); srslte_sss_synch_m0m1_partial(&sss, &buffer[sss_idx], 1, ce, &m0, &m0_value, &m1, &m1_value); if (srslte_sss_synch_N_id_1(&sss, m0, m1) != N_id_1) { sss_error2++; } INFO("Partial N_id_1: %d\n", srslte_sss_synch_N_id_1(&sss, m0, m1)); srslte_sss_synch_m0m1_diff_coh(&sss, &buffer[sss_idx], ce, &m0, &m0_value, &m1, &m1_value); if (srslte_sss_synch_N_id_1(&sss, m0, m1) != N_id_1) { sss_error3++; } INFO("Diff N_id_1: %d\n", srslte_sss_synch_N_id_1(&sss, m0, m1)); } srslte_sss_synch_m0m1_partial(&sss, &buffer[sss_idx], 1, NULL, &m0, &m0_value, &m1, &m1_value); if (srslte_sss_synch_N_id_1(&sss, m0, m1) != N_id_1) { sss_error1++; } // Estimate CP if (peak_idx > 2*(fft_size + SRSLTE_CP_LEN_EXT(fft_size))) { srslte_cp_t cp = srslte_sync_detect_cp(&ssync, buffer, peak_idx); if (SRSLTE_CP_ISNORM(cp)) { cp_is_norm++; } } } else { INFO("No space for CFO computation. Frame starts at \n",peak_idx); } if(srslte_sss_synch_subframe(m0,m1) == 0) { #ifndef DISABLE_GRAPHICS if (!disable_plots) do_plots_sss(sss.corr_output_m0, sss.corr_output_m1); #endif } } else { nof_nodet++; } printf("[%5d]: Pos: %5d (%d-%d), PSR: %4.1f (~%4.1f) Pdet: %4.2f, " "FA: %4.2f, CFO: %+4.1f kHz, SFO: %+.2f Hz SSSmiss: %4.2f/%4.2f/%4.2f CPNorm: %.0f%%\r", frame_cnt, peak_idx, min_peak_, max_peak_, peak_value, mean_peak, (float) nof_det/frame_cnt, (float) nof_nopeakdet/frame_cnt, mean_cfo*15, sfo, (float) sss_error1/nof_det,(float) sss_error2/nof_det,(float) sss_error3/nof_det, (float) cp_is_norm/nof_det * 100); if (frame_cnt > 100) { if (abs(last_peak-peak_idx) > 4) { if (peak_value >= threshold) { nof_nopeakdet++; } nof_nopeak++; } sfo = SRSLTE_VEC_CMA((peak_idx - last_peak)/5e-3, sfo, frame_cnt); int frame_idx = frame_cnt % 200; uint32_t peak_offset_symbol = peak_idx%fft_size; if (peak_offset_symbol > max_peak) { max_peak = peak_offset_symbol; } if (peak_offset_symbol < min_peak) { min_peak = peak_offset_symbol; } if (!frame_idx) { max_peak_ = max_peak; min_peak_ = min_peak; max_peak = 0; min_peak = fft_size; } } frame_cnt++; if (SRSLTE_VERBOSE_ISINFO()) { printf("\n"); } #ifndef DISABLE_GRAPHICS if (!disable_plots) { do_plots_pss(pss.conv_output_avg, pss.conv_output_avg[peak_idx], pss.fft_size+pss.frame_size-1); } #endif last_peak = peak_idx; } srslte_sss_synch_free(&sss); srslte_pss_synch_free(&pss); free(buffer); srslte_rf_close(&rf); printf("Ok\n"); exit(0); } extern cf_t *tmp2; /********************************************************************** * Plotting Functions ***********************************************************************/ #ifndef DISABLE_GRAPHICS #include "srsgui/srsgui.h" plot_real_t pssout; //plot_complex_t pce; plot_real_t psss1; float tmp[1000000]; cf_t tmpce[SRSLTE_PSS_LEN]; void init_plots() { sdrgui_init(); plot_real_init(&pssout); plot_real_setTitle(&pssout, "PSS xCorr"); plot_real_setLabels(&pssout, "Index", "Absolute value"); plot_real_setYAxisScale(&pssout, 0, 1); /* plot_complex_init(&pce); plot_complex_setTitle(&pce, "Channel Estimates"); plot_complex_setYAxisScale(&pce, Ip, -2, 2); plot_complex_setYAxisScale(&pce, Q, -2, 2); plot_complex_setYAxisScale(&pce, Magnitude, 0, 2); plot_complex_setYAxisScale(&pce, Phase, -M_PI, M_PI); */ plot_real_init(&psss1); plot_real_setTitle(&psss1, "SSS xCorr m0"); plot_real_setLabels(&psss1, "Index", "Absolute value"); plot_real_setYAxisScale(&psss1, 0, 1); } void do_plots_pss(float *corr, float peak, uint32_t size) { srslte_vec_sc_prod_fff(corr,1./peak,tmp, size); plot_real_setNewData(&pssout, tmp, size); } void do_plots_sss(float *corr_m0, float *corr_m1) { if (m0_value > 0) srslte_vec_sc_prod_fff(corr_m0,1./m0_value,corr_m0, SRSLTE_SSS_N); plot_real_setNewData(&psss1, corr_m0, SRSLTE_SSS_N); } #endif