/** * * \section COPYRIGHT * * Copyright 2013-2021 Software Radio Systems Limited * * By using this file, you agree to the terms and conditions set * forth in the LICENSE file which can be found at the top level of * the distribution. * */ #ifndef SRSRAN_TEST_BENCH_H #define SRSRAN_TEST_BENCH_H #include "dummy_phy_common.h" #include "srsenb/hdr/phy/nr/worker_pool.h" #include "srsran/radio/radio_dummy.h" #include "srsue/hdr/phy/nr/worker_pool.h" #include "srsue/hdr/phy/phy_nr_sa.h" class test_bench { private: const std::string UE_PHY_COM_LOG_NAME = "UE /PHY/COM"; const std::string GNB_PHY_COM_LOG_NAME = "GNB/PHY/COM"; const std::string CHANNEL_LOG_NAME = "CHANNEL"; uint32_t slot_idx = 0; uint64_t slot_count = 0; uint64_t duration_slots = 0; gnb_dummy_stack gnb_stack; srsenb::nr::worker_pool gnb_phy; phy_common gnb_phy_com; ue_dummy_stack ue_stack; srsue::phy_nr_sa ue_phy; srsran::radio_dummy ue_radio; srsran::rf_timestamp_t gnb_rx_time = {}; bool initialised = false; uint32_t sf_sz = 0; srsran::rf_buffer_t rf_buffer; // Channel simulator srsran::channel dl_channel; srsran::channel ul_channel; public: struct args_t { double srate_hz = (double)(768 * SRSRAN_SUBC_SPACING_NR(0)); uint32_t nof_channels = 1; uint32_t buffer_sz_ms = 10; bool valid = false; srsran::phy_cfg_nr_t phy_cfg = {}; srsenb::phy_cell_cfg_list_nr_t cell_list = {}; srsenb::nr::worker_pool::args_t gnb_phy; gnb_dummy_stack::args_t gnb_stack; srsue::phy_args_nr_t ue_phy; ue_dummy_stack::args_t ue_stack; std::string gnb_phy_com_log_level = "info"; std::string ue_radio_log_level = "info"; std::string phy_lib_log_level = "none"; uint64_t durations_slots = 100; // channel simulator args srsran::channel::args_t dl_channel; srsran::channel::args_t ul_channel; args_t(int argc, char** argv); }; struct metrics_t { gnb_dummy_stack::metrics_t gnb_stack = {}; ue_dummy_stack::metrics_t ue_stack = {}; srsue::phy_metrics_t ue_phy = {}; }; test_bench(const args_t& args) : gnb_stack(args.gnb_stack), gnb_phy(gnb_phy_com, gnb_stack, srslog::get_default_sink(), args.gnb_phy.nof_phy_threads), ue_stack(args.ue_stack, ue_phy), ue_phy("PHY"), ue_radio(), gnb_phy_com(phy_common::args_t(args.srate_hz, args.buffer_sz_ms, args.nof_channels), srslog::fetch_basic_logger(GNB_PHY_COM_LOG_NAME, srslog::get_default_sink(), false)), sf_sz((uint32_t)std::round(args.srate_hz * 1e-3)), duration_slots(args.durations_slots), dl_channel(args.dl_channel, 1, srslog::fetch_basic_logger(CHANNEL_LOG_NAME, srslog::get_default_sink(), false)), ul_channel(args.ul_channel, 1, srslog::fetch_basic_logger(CHANNEL_LOG_NAME, srslog::get_default_sink(), false)), rf_buffer(1) { srslog::fetch_basic_logger(UE_PHY_COM_LOG_NAME).set_level(srslog::str_to_basic_level(args.gnb_phy_com_log_level)); srslog::fetch_basic_logger(GNB_PHY_COM_LOG_NAME).set_level(srslog::str_to_basic_level(args.gnb_phy_com_log_level)); srslog::fetch_basic_logger(CHANNEL_LOG_NAME).set_level(srslog::basic_levels::error); if (not gnb_phy.init(args.gnb_phy, args.cell_list)) { return; } srsenb::phy_interface_rrc_nr::common_cfg_t common_cfg = {}; common_cfg.carrier = args.phy_cfg.carrier; common_cfg.pdcch = args.phy_cfg.pdcch; common_cfg.prach = args.phy_cfg.prach; common_cfg.duplex_mode = args.phy_cfg.duplex.mode; common_cfg.ssb = args.phy_cfg.get_ssb_cfg(); if (gnb_phy.set_common_cfg(common_cfg) < SRSRAN_SUCCESS) { return; } // Initialise radio srsran::rf_args_t rf_args = {}; rf_args.nof_antennas = 1; rf_args.nof_carriers = 1; rf_args.srate_hz = args.srate_hz; rf_args.log_level = args.ue_radio_log_level; if (ue_radio.init(rf_args, &ue_phy) != SRSRAN_SUCCESS) { return; } // Initialise UE PHY if (ue_phy.init(args.ue_phy, &ue_stack, &ue_radio) != SRSRAN_SUCCESS) { return; } // Wait for PHY to initialise ue_phy.wait_initialize(); // Set UE configuration if (not ue_phy.set_config(args.phy_cfg)) { return; } // Wait for UE to notify stack that the configuration is completed ue_stack.wait_phy_config_complete(); // Make sure PHY log is not set by UE or gNb PHY set_handler_enabled(false); if (args.phy_lib_log_level == "info") { set_srsran_verbose_level(SRSRAN_VERBOSE_INFO); } else if (args.phy_lib_log_level == "debug") { set_srsran_verbose_level(SRSRAN_VERBOSE_DEBUG); } else { set_srsran_verbose_level(SRSRAN_VERBOSE_NONE); } // Configure channel dl_channel.set_srate((uint32_t)args.srate_hz); ul_channel.set_srate((uint32_t)args.srate_hz); initialised = true; } srsue::rrc_interface_phy_nr::cell_select_result_t run_cell_select(const srsran_carrier_nr_t& carrier, const srsran_ssb_cfg_t& ssb_cfg) { // Prepare return value srsue::rrc_interface_phy_nr::cell_select_result_t ret = {}; // Prepare cell selection arguments srsue::phy_interface_rrc_nr::cell_select_args_t cs_args = {}; cs_args.carrier = carrier; cs_args.ssb_cfg = ssb_cfg; // Start cell selection procedure if (not ue_phy.start_cell_select(cs_args)) { // Return unsuccessful cell select result return {}; } // Run test bench until the cell selection is completed while (not ue_stack.get_cell_select_finished()) { run_tti(); } // It is now the right time to start scheduling gnb_stack.start_scheduling(); // Reset slot counting slot_count = 0; return ue_stack.get_cell_select_result(); } void stop() { ue_stack.stop(); ue_radio.stop(); gnb_phy_com.stop(); gnb_phy.stop(); ue_phy.stop(); gnb_stack.stop(); } ~test_bench() = default; bool is_initialised() { return ue_stack.is_valid() and ue_radio.is_init() and ue_phy.is_initialized() and gnb_stack.is_valid() and initialised; } bool run_tti() { // Get gNb worker srsenb::nr::slot_worker* gnb_worker = gnb_phy.wait_worker(slot_idx); if (gnb_worker == nullptr) { return false; } // Feed gNb the UE transmitted signal std::vector gnb_rx_buffers(1); gnb_rx_buffers[0] = gnb_worker->get_buffer_rx(0); ue_radio.read_tx(gnb_rx_buffers.data(), sf_sz); // Run the UL channel simulator ul_channel.run(gnb_rx_buffers.data(), gnb_rx_buffers.data(), (uint32_t)sf_sz, gnb_rx_time.get(0)); // Set gNb TX time srsran::rf_timestamp_t gnb_time = gnb_rx_time; gnb_time.add(TX_ENB_DELAY * 1e-3); // Advance gNb Rx time gnb_rx_time.add(1e-3); // Set gNb context srsran::phy_common_interface::worker_context_t gnb_context; gnb_context.sf_idx = slot_idx; gnb_context.worker_ptr = gnb_worker; gnb_context.last = true; // Set last if standalone gnb_context.tx_time.copy(gnb_time); gnb_worker->set_context(gnb_context); // Start gNb work gnb_phy_com.push_semaphore(gnb_worker); gnb_phy.start_worker(gnb_worker); // Feed UE the gNb transmitted signal srsran::rf_timestamp_t ue_time = {}; std::vector ue_rx_buffers(1); ue_rx_buffers[0] = rf_buffer.get(0); gnb_phy_com.read(ue_rx_buffers, sf_sz, ue_time); // Run the DL channel simulator dl_channel.run(ue_rx_buffers.data(), ue_rx_buffers.data(), (uint32_t)sf_sz, ue_time.get(0)); // Write signal in UE radio buffer, this triggers UE to work ue_radio.write_rx(ue_rx_buffers.data(), sf_sz); // Throttle UE PHY by running stack tick ue_stack.tick(); // Increment slot index, the slot index shall be continuous slot_idx = (slot_idx + 1) % (1024 * SRSRAN_NSLOTS_PER_FRAME_NR(srsran_subcarrier_spacing_15kHz)); // Increment slot counter and determine end of execution slot_count++; return slot_count <= duration_slots; } metrics_t get_metrics() { metrics_t metrics = {}; metrics.gnb_stack = gnb_stack.get_metrics(); metrics.ue_stack = ue_stack.get_metrics(); ue_phy.get_metrics(srsran::srsran_rat_t::nr, &metrics.ue_phy); // get the metrics from the ue_phy return metrics; } }; #endif // SRSRAN_TEST_BENCH_H