/** * * \section COPYRIGHT * * Copyright 2013-2015 Software Radio Systems Limited * * \section LICENSE * * This file is part of the srsUE library. * * srsUE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsUE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "srslte/upper/rlc_am.h" #include #include #define MOD 1024 #define RX_MOD_BASE(x) (x-vr_r)%1024 #define TX_MOD_BASE(x) (x-vt_a)%1024 namespace srslte { rlc_am::rlc_am() : tx_sdu_queue(16) { tx_sdu = NULL; rx_sdu = NULL; pool = byte_buffer_pool::get_instance(); pthread_mutex_init(&mutex, NULL); vt_a = 0; vt_ms = RLC_AM_WINDOW_SIZE; vt_s = 0; poll_sn = 0; vr_r = 0; vr_mr = RLC_AM_WINDOW_SIZE; vr_x = 0; vr_ms = 0; vr_h = 0; pdu_without_poll = 0; byte_without_poll = 0; poll_received = false; do_status = false; } void rlc_am::init(srslte::log *log_, uint32_t lcid_, srsue::pdcp_interface_rlc *pdcp_, srsue::rrc_interface_rlc *rrc_, srslte::mac_interface_timers *mac_timers) { log = log_; lcid = lcid_; pdcp = pdcp_; rrc = rrc_; } void rlc_am::configure(srslte_rlc_config_t cfg_) { cfg = cfg_.am; log->info("%s configured: t_poll_retx=%d, poll_pdu=%d, poll_byte=%d, max_retx_thresh=%d, " "t_reordering=%d, t_status_prohibit=%d\n", rrc->get_rb_name(lcid).c_str(), cfg.t_poll_retx, cfg.poll_pdu, cfg.poll_byte, cfg.max_retx_thresh, cfg.t_reordering, cfg.t_status_prohibit); } void rlc_am::empty_queue() { // Drop all messages in TX SDU queue byte_buffer_t *buf; while(tx_sdu_queue.size() > 0) { tx_sdu_queue.read(&buf); pool->deallocate(buf); } } void rlc_am::reset() { // Empty tx_sdu_queue before locking the mutex empty_queue(); pthread_mutex_lock(&mutex); reordering_timeout.reset(); if(tx_sdu) tx_sdu->reset(); if(rx_sdu) rx_sdu->reset(); vt_a = 0; vt_ms = RLC_AM_WINDOW_SIZE; vt_s = 0; poll_sn = 0; vr_r = 0; vr_mr = RLC_AM_WINDOW_SIZE; vr_x = 0; vr_ms = 0; vr_h = 0; pdu_without_poll = 0; byte_without_poll = 0; poll_received = false; do_status = false; // Drop all messages in RX segments std::map::iterator rxsegsit; std::list::iterator segit; for(rxsegsit = rx_segments.begin(); rxsegsit != rx_segments.end(); rxsegsit++) { std::list l = rxsegsit->second.segments; for(segit = l.begin(); segit != l.end(); segit++) { pool->deallocate(segit->buf); } l.clear(); } rx_segments.clear(); // Drop all messages in RX window std::map::iterator rxit; for(rxit = rx_window.begin(); rxit != rx_window.end(); rxit++) { pool->deallocate(rxit->second.buf); } rx_window.clear(); // Drop all messages in TX window std::map::iterator txit; for(txit = tx_window.begin(); txit != tx_window.end(); txit++) { pool->deallocate(txit->second.buf); } tx_window.clear(); // Drop all messages in RETX queue retx_queue.clear(); pthread_mutex_unlock(&mutex); } rlc_mode_t rlc_am::get_mode() { return RLC_MODE_AM; } uint32_t rlc_am::get_bearer() { return lcid; } /**************************************************************************** * PDCP interface ***************************************************************************/ void rlc_am::write_sdu(byte_buffer_t *sdu) { log->info_hex(sdu->msg, sdu->N_bytes, "%s Tx SDU", rrc->get_rb_name(lcid).c_str()); tx_sdu_queue.write(sdu); } /**************************************************************************** * MAC interface ***************************************************************************/ uint32_t rlc_am::get_total_buffer_state() { pthread_mutex_lock(&mutex); uint32_t n_bytes = 0; uint32_t n_sdus = 0; // Bytes needed for status report check_reordering_timeout(); if(do_status && !status_prohibited()) { n_bytes += prepare_status(); log->debug("Buffer state - status report: %d bytes\n", n_bytes); } // Bytes needed for retx if(retx_queue.size() > 0) { rlc_amd_retx_t retx = retx_queue.front(); log->debug("Buffer state - retx - SN: %d, Segment: %s, %d:%d\n", retx.sn, retx.is_segment ? "true" : "false", retx.so_start, retx.so_end); if(tx_window.end() != tx_window.find(retx.sn)) { n_bytes += required_buffer_size(retx); log->debug("Buffer state - retx: %d bytes\n", n_bytes); } } // Bytes needed for tx SDUs if(tx_window.size() < 1024) { n_sdus = tx_sdu_queue.size(); n_bytes += tx_sdu_queue.size_bytes(); if(tx_sdu) { n_sdus++; n_bytes += tx_sdu->N_bytes; } } // Room needed for header extensions? (integer rounding) if(n_sdus > 1) n_bytes += ((n_sdus-1)*1.5)+0.5; // Room needed for fixed header? if(n_bytes > 0) { n_bytes += 2; log->debug("Buffer state - tx SDUs: %d bytes\n", n_bytes); } pthread_mutex_unlock(&mutex); return n_bytes; } uint32_t rlc_am::get_buffer_state() { pthread_mutex_lock(&mutex); uint32_t n_bytes = 0; uint32_t n_sdus = 0; // Bytes needed for status report check_reordering_timeout(); if(do_status && !status_prohibited()) { n_bytes = prepare_status(); log->debug("Buffer state - status report: %d bytes\n", n_bytes); goto unlock_and_return; } // Bytes needed for retx if(retx_queue.size() > 0) { rlc_amd_retx_t retx = retx_queue.front(); log->debug("Buffer state - retx - SN: %d, Segment: %s, %d:%d\n", retx.sn, retx.is_segment ? "true" : "false", retx.so_start, retx.so_end); if(tx_window.end() != tx_window.find(retx.sn)) { n_bytes = required_buffer_size(retx); log->debug("Buffer state - retx: %d bytes\n", n_bytes); goto unlock_and_return; } } // Bytes needed for tx SDUs if(tx_window.size() < 1024) { n_sdus = tx_sdu_queue.size(); n_bytes = tx_sdu_queue.size_bytes(); if(tx_sdu) { n_sdus++; n_bytes += tx_sdu->N_bytes; } } // Room needed for header extensions? (integer rounding) if(n_sdus > 1) n_bytes += ((n_sdus-1)*1.5)+0.5; // Room needed for fixed header? if(n_bytes > 0) { n_bytes += 2; log->debug("Buffer state - tx SDUs: %d bytes\n", n_bytes); } unlock_and_return: pthread_mutex_unlock(&mutex); return n_bytes; } int rlc_am::read_pdu(uint8_t *payload, uint32_t nof_bytes) { pthread_mutex_lock(&mutex); log->debug("MAC opportunity - %d bytes\n", nof_bytes); log->debug("tx_window size - %d PDUs\n", tx_window.size()); // Tx STATUS if requested if(do_status && !status_prohibited()) { pthread_mutex_unlock(&mutex); return build_status_pdu(payload, nof_bytes); } // RETX if required if(retx_queue.size() > 0) { pthread_mutex_unlock(&mutex); return build_retx_pdu(payload, nof_bytes); } // Build a PDU from SDUs int ret = build_data_pdu(payload, nof_bytes); pthread_mutex_unlock(&mutex); return ret; } void rlc_am::write_pdu(uint8_t *payload, uint32_t nof_bytes) { if(nof_bytes < 1) return; pthread_mutex_lock(&mutex); if(rlc_am_is_control_pdu(payload)) { handle_control_pdu(payload, nof_bytes); } else { rlc_amd_pdu_header_t header; rlc_am_read_data_pdu_header(&payload, &nof_bytes, &header); if(header.rf) { handle_data_pdu_segment(payload, nof_bytes, header); }else{ handle_data_pdu(payload, nof_bytes, header); } } pthread_mutex_unlock(&mutex); } /**************************************************************************** * Timer checks ***************************************************************************/ bool rlc_am::status_prohibited() { return (status_prohibit_timeout.is_running() && !status_prohibit_timeout.expired()); } bool rlc_am::poll_retx() { return (poll_retx_timeout.is_running() && poll_retx_timeout.expired()); } void rlc_am::check_reordering_timeout() { if(reordering_timeout.is_running() && reordering_timeout.expired()) { reordering_timeout.reset(); log->debug("%s reordering timeout expiry - updating vr_ms\n", rrc->get_rb_name(lcid).c_str()); // 36.322 v10 Section 5.1.3.2.4 vr_ms = vr_x; std::map::iterator it = rx_window.find(vr_ms); while(rx_window.end() != it) { vr_ms = (vr_ms + 1)%MOD; it = rx_window.find(vr_ms); } if(poll_received) do_status = true; if(RX_MOD_BASE(vr_h) > RX_MOD_BASE(vr_ms)) { reordering_timeout.start(cfg.t_reordering); vr_x = vr_h; } debug_state(); } } /**************************************************************************** * Helpers ***************************************************************************/ bool rlc_am::poll_required() { if(cfg.poll_pdu > 0 && pdu_without_poll > (uint32_t)cfg.poll_pdu) return true; if(cfg.poll_byte > 0 && byte_without_poll > (uint32_t)cfg.poll_byte) return true; if(poll_retx()) return true; return false; } int rlc_am::prepare_status() { status.N_nack = 0; status.ack_sn = vr_ms; // We don't use segment NACKs - just NACK the full PDU uint32_t i = vr_r; while(RX_MOD_BASE(i) < RX_MOD_BASE(vr_ms)) { if(rx_window.find(i) == rx_window.end()) status.nacks[status.N_nack++].nack_sn = i; i = (i + 1)%MOD; } return rlc_am_packed_length(&status); } int rlc_am::build_status_pdu(uint8_t *payload, uint32_t nof_bytes) { int pdu_len = rlc_am_packed_length(&status); if(pdu_len > 0 && nof_bytes >= (uint32_t)pdu_len) { log->info("%s Tx status PDU - %s\n", rrc->get_rb_name(lcid).c_str(), rlc_am_to_string(&status).c_str()); do_status = false; poll_received = false; if(cfg.t_status_prohibit > 0) status_prohibit_timeout.start(cfg.t_status_prohibit); debug_state(); return rlc_am_write_status_pdu(&status, payload); }else{ log->warning("%s Cannot tx status PDU - %d bytes available, %d bytes required\n", rrc->get_rb_name(lcid).c_str(), nof_bytes, pdu_len); return 0; } } int rlc_am::build_retx_pdu(uint8_t *payload, uint32_t nof_bytes) { rlc_amd_retx_t retx = retx_queue.front(); // Sanity check - drop any retx SNs not present in tx_window while(tx_window.end() == tx_window.find(retx.sn)) { retx_queue.pop_front(); retx = retx_queue.front(); } // Is resegmentation needed? if(retx.is_segment || required_buffer_size(retx) > (int)nof_bytes) { log->debug("%s build_retx_pdu - resegmentation required\n", rrc->get_rb_name(lcid).c_str()); return build_segment(payload, nof_bytes, retx); } // Update & write header rlc_amd_pdu_header_t new_header = tx_window[retx.sn].header; new_header.p = 0; if(poll_required()) { new_header.p = 1; poll_sn = vt_s; pdu_without_poll = 0; byte_without_poll = 0; poll_retx_timeout.start(cfg.t_poll_retx); } uint8_t *ptr = payload; rlc_am_write_data_pdu_header(&new_header, &ptr); memcpy(ptr, tx_window[retx.sn].buf->msg, tx_window[retx.sn].buf->N_bytes); retx_queue.pop_front(); tx_window[retx.sn].retx_count++; if(tx_window[retx.sn].retx_count >= cfg.max_retx_thresh) rrc->max_retx_attempted(); log->info("%s Retx PDU scheduled for tx. SN: %d, retx count: %d\n", rrc->get_rb_name(lcid).c_str(), retx.sn, tx_window[retx.sn].retx_count); debug_state(); return (ptr-payload) + tx_window[retx.sn].buf->N_bytes; } int rlc_am::build_segment(uint8_t *payload, uint32_t nof_bytes, rlc_amd_retx_t retx) { if(!retx.is_segment){ retx.so_start = 0; retx.so_end = tx_window[retx.sn].buf->N_bytes; } // Construct new header rlc_amd_pdu_header_t new_header; rlc_amd_pdu_header_t old_header = tx_window[retx.sn].header; new_header.dc = RLC_DC_FIELD_DATA_PDU; new_header.rf = 1; new_header.p = 0; new_header.fi = RLC_FI_FIELD_NOT_START_OR_END_ALIGNED; new_header.sn = old_header.sn; new_header.lsf = 0; new_header.so = retx.so_start; new_header.N_li = 0; uint32_t head_len = 0; uint32_t pdu_space = 0; head_len = rlc_am_packed_length(&new_header); if(nof_bytes <= head_len) { log->warning("%s Cannot build a PDU segment - %d bytes available, %d bytes required for header\n", rrc->get_rb_name(lcid).c_str(), nof_bytes, head_len); return 0; } pdu_space = nof_bytes-head_len; if(pdu_space < (retx.so_end-retx.so_start)) retx.so_end = retx.so_start+pdu_space; // Need to rebuild the li table & update fi based on so_start and so_end if(retx.so_start == 0 && rlc_am_start_aligned(old_header.fi)) new_header.fi &= RLC_FI_FIELD_NOT_END_ALIGNED; // segment is start aligned uint32_t lower = 0; uint32_t upper = 0; uint32_t li = 0; for(uint32_t i=0; i= retx.so_end) break; upper += old_header.li[i]; head_len = rlc_am_packed_length(&new_header); pdu_space = nof_bytes-head_len; if(pdu_space < (retx.so_end-retx.so_start)) retx.so_end = retx.so_start+pdu_space; if(upper > retx.so_start && lower < retx.so_end) { // Current SDU is needed li = upper - lower; if(upper > retx.so_end) li -= upper - retx.so_end; if(lower < retx.so_start) li -= retx.so_start - lower; if(lower > 0 && lower == retx.so_start) new_header.fi &= RLC_FI_FIELD_NOT_END_ALIGNED; // segment start is aligned with this SDU if(upper == retx.so_end) { new_header.fi &= RLC_FI_FIELD_NOT_START_ALIGNED; // segment end is aligned with this SDU } new_header.li[new_header.N_li++] = li; } lower += old_header.li[i]; } // Update retx_queue if(tx_window[retx.sn].buf->N_bytes == retx.so_end) { retx_queue.pop_front(); new_header.lsf = 1; if(rlc_am_end_aligned(old_header.fi)) new_header.fi &= RLC_FI_FIELD_NOT_START_ALIGNED; // segment is end aligned } else if(retx_queue.front().so_end == retx.so_end) { retx_queue.pop_front(); } else { retx_queue.front().is_segment = true; retx_queue.front().so_start = retx.so_end; if(new_header.N_li > 0) new_header.N_li--; } // Write header and pdu uint8_t *ptr = payload; rlc_am_write_data_pdu_header(&new_header, &ptr); uint8_t* data = &tx_window[retx.sn].buf->msg[retx.so_start]; uint32_t len = retx.so_end - retx.so_start; memcpy(ptr, data, len); log->info("%s Retx PDU segment scheduled for tx. SN: %d, SO: %d\n", rrc->get_rb_name(lcid).c_str(), retx.sn, retx.so_start); debug_state(); int pdu_len = (ptr-payload) + len; if(pdu_len > (int)nof_bytes) { log->error("%s Retx PDU segment length error. Available: %d, Used: %d\n", rrc->get_rb_name(lcid).c_str(), nof_bytes, pdu_len); log->debug("%s Retx PDU segment length error. Header len: %d, Payload len: %d, N_li: %d\n", rrc->get_rb_name(lcid).c_str(), (ptr-payload), len, new_header.N_li); } return pdu_len; } int rlc_am::build_data_pdu(uint8_t *payload, uint32_t nof_bytes) { if(!tx_sdu && tx_sdu_queue.size() == 0) { log->info("No data available to be sent\n"); return 0; } byte_buffer_t *pdu = pool_allocate; if (!pdu) { log->console("Fatal Error: Could not allocate PDU in build_data_pdu()\n"); log->console("tx_window size: %d PDUs\n", tx_window.size()); log->console("vt_a = %d, vt_ms = %d, vt_s = %d, poll_sn = %d " "vr_r = %d, vr_mr = %d, vr_x = %d, vr_ms = %d, vr_h = %d\n", vt_a, vt_ms, vt_s, poll_sn, vr_r, vr_mr, vr_x, vr_ms, vr_h); log->console("retx_queue size: %d PDUs\n", retx_queue.size()); std::map::iterator txit; for(txit = tx_window.begin(); txit != tx_window.end(); txit++) { log->console("tx_window - SN: %d\n", txit->first); } exit(-1); } rlc_amd_pdu_header_t header; header.dc = RLC_DC_FIELD_DATA_PDU; header.rf = 0; header.p = 0; header.fi = RLC_FI_FIELD_START_AND_END_ALIGNED; header.sn = vt_s; header.lsf = 0; header.so = 0; header.N_li = 0; uint32_t head_len = rlc_am_packed_length(&header); uint32_t to_move = 0; uint32_t last_li = 0; uint32_t pdu_space = nof_bytes; uint8_t *pdu_ptr = pdu->msg; if(pdu_space <= head_len) { log->warning("%s Cannot build a PDU - %d bytes available, %d bytes required for header\n", rrc->get_rb_name(lcid).c_str(), nof_bytes, head_len); pool->deallocate(pdu); return 0; } log->debug("%s Building PDU - pdu_space: %d, head_len: %d \n", rrc->get_rb_name(lcid).c_str(), pdu_space, head_len); // Check for SDU segment if(tx_sdu) { to_move = ((pdu_space-head_len) >= tx_sdu->N_bytes) ? tx_sdu->N_bytes : pdu_space-head_len; memcpy(pdu_ptr, tx_sdu->msg, to_move); last_li = to_move; pdu_ptr += to_move; pdu->N_bytes += to_move; tx_sdu->N_bytes -= to_move; tx_sdu->msg += to_move; if(tx_sdu->N_bytes == 0) { log->info("%s Complete SDU scheduled for tx. Stack latency: %ld us\n", rrc->get_rb_name(lcid).c_str(), tx_sdu->get_latency_us()); pool->deallocate(tx_sdu); tx_sdu = NULL; } if(pdu_space > to_move) pdu_space -= to_move; else pdu_space = 0; header.fi |= RLC_FI_FIELD_NOT_START_ALIGNED; // First byte does not correspond to first byte of SDU log->debug("%s Building PDU - added SDU segment (len:%d) - pdu_space: %d, head_len: %d \n", rrc->get_rb_name(lcid).c_str(), to_move, pdu_space, head_len); } // Pull SDUs from queue while(pdu_space > head_len && tx_sdu_queue.size() > 0) { if(last_li > 0) header.li[header.N_li++] = last_li; head_len = rlc_am_packed_length(&header); if(head_len >= pdu_space) { header.N_li--; break; } tx_sdu_queue.read(&tx_sdu); to_move = ((pdu_space-head_len) >= tx_sdu->N_bytes) ? tx_sdu->N_bytes : pdu_space-head_len; memcpy(pdu_ptr, tx_sdu->msg, to_move); last_li = to_move; pdu_ptr += to_move; pdu->N_bytes += to_move; tx_sdu->N_bytes -= to_move; tx_sdu->msg += to_move; if(tx_sdu->N_bytes == 0) { log->info("%s Complete SDU scheduled for tx. Stack latency: %ld us\n", rrc->get_rb_name(lcid).c_str(), tx_sdu->get_latency_us()); pool->deallocate(tx_sdu); tx_sdu = NULL; } if(pdu_space > to_move) pdu_space -= to_move; else pdu_space = 0; log->debug("%s Building PDU - added SDU segment (len:%d) - pdu_space: %d, head_len: %d \n", rrc->get_rb_name(lcid).c_str(), to_move, pdu_space, head_len); } if(tx_sdu) header.fi |= RLC_FI_FIELD_NOT_END_ALIGNED; // Last byte does not correspond to last byte of SDU // Set Poll bit pdu_without_poll++; byte_without_poll += (pdu->N_bytes + head_len); log->debug("%s pdu_without_poll: %d\n", rrc->get_rb_name(lcid).c_str(), pdu_without_poll); log->debug("%s byte_without_poll: %d\n", rrc->get_rb_name(lcid).c_str(), byte_without_poll); if(poll_required()) { log->debug("%s setting poll bit to request status\n", rrc->get_rb_name(lcid).c_str()); header.p = 1; poll_sn = vt_s; pdu_without_poll = 0; byte_without_poll = 0; poll_retx_timeout.start(cfg.t_poll_retx); } // Set SN header.sn = vt_s; vt_s = (vt_s + 1)%MOD; log->info("%s PDU scheduled for tx. SN: %d\n", rrc->get_rb_name(lcid).c_str(), header.sn); // Place PDU in tx_window, write header and TX tx_window[header.sn].buf = pdu; tx_window[header.sn].header = header; tx_window[header.sn].is_acked = false; tx_window[header.sn].retx_count = 0; uint8_t *ptr = payload; rlc_am_write_data_pdu_header(&header, &ptr); memcpy(ptr, pdu->msg, pdu->N_bytes); debug_state(); return (ptr-payload) + pdu->N_bytes; } void rlc_am::handle_data_pdu(uint8_t *payload, uint32_t nof_bytes, rlc_amd_pdu_header_t header) { std::map::iterator it; log->info_hex(payload, nof_bytes, "%s Rx data PDU SN: %d", rrc->get_rb_name(lcid).c_str(), header.sn); if(!inside_rx_window(header.sn)) { if(header.p) { log->info("%s Status packet requested through polling bit\n", rrc->get_rb_name(lcid).c_str()); do_status = true; } log->info("%s SN: %d outside rx window [%d:%d] - discarding\n", rrc->get_rb_name(lcid).c_str(), header.sn, vr_r, vr_mr); return; } it = rx_window.find(header.sn); if(rx_window.end() != it) { if(header.p) { log->info("%s Status packet requested through polling bit\n", rrc->get_rb_name(lcid).c_str()); do_status = true; } log->info("%s Discarding duplicate SN: %d\n", rrc->get_rb_name(lcid).c_str(), header.sn); return; } // Write to rx window rlc_amd_rx_pdu_t pdu; pdu.buf = pool_allocate; if (!pdu.buf) { log->console("Fatal Error: Could not allocate PDU in handle_data_pdu()\n"); exit(-1); } memcpy(pdu.buf->msg, payload, nof_bytes); pdu.buf->N_bytes = nof_bytes; pdu.header = header; rx_window[header.sn] = pdu; // Update vr_h if(RX_MOD_BASE(header.sn) >= RX_MOD_BASE(vr_h)) vr_h = (header.sn + 1)%MOD; // Update vr_ms it = rx_window.find(vr_ms); while(rx_window.end() != it) { vr_ms = (vr_ms + 1)%MOD; it = rx_window.find(vr_ms); } // Check poll bit if(header.p) { log->info("%s Status packet requested through polling bit\n", rrc->get_rb_name(lcid).c_str()); poll_received = true; // 36.322 v10 Section 5.2.3 if(RX_MOD_BASE(header.sn) < RX_MOD_BASE(vr_ms) || RX_MOD_BASE(header.sn) >= RX_MOD_BASE(vr_mr)) { do_status = true; } // else delay for reordering timer } // Reassemble and deliver SDUs reassemble_rx_sdus(); // Update reordering variables and timers (36.322 v10.0.0 Section 5.1.3.2.3) if(reordering_timeout.is_running()) { if( vr_x == vr_r || (RX_MOD_BASE(vr_x) < RX_MOD_BASE(vr_r) || (RX_MOD_BASE(vr_x) > RX_MOD_BASE(vr_mr) && vr_x != vr_mr)) ) { reordering_timeout.reset(); } } if(!reordering_timeout.is_running()) { if(RX_MOD_BASE(vr_h) > RX_MOD_BASE(vr_r)) { reordering_timeout.start(cfg.t_reordering); vr_x = vr_h; } } debug_state(); } void rlc_am::handle_data_pdu_segment(uint8_t *payload, uint32_t nof_bytes, rlc_amd_pdu_header_t header) { std::map::iterator it; log->info_hex(payload, nof_bytes, "%s Rx data PDU segment. SN: %d, SO: %d", rrc->get_rb_name(lcid).c_str(), header.sn, header.so); // Check inside rx window if(!inside_rx_window(header.sn)) { if(header.p) { log->info("%s Status packet requested through polling bit\n", rrc->get_rb_name(lcid).c_str()); do_status = true; } log->info("%s SN: %d outside rx window [%d:%d] - discarding\n", rrc->get_rb_name(lcid).c_str(), header.sn, vr_r, vr_mr); return; } rlc_amd_rx_pdu_t segment; segment.buf = pool_allocate; if (!segment.buf) { log->console("Fatal Error: Could not allocate PDU in handle_data_pdu_segment()\n"); exit(-1); } memcpy(segment.buf->msg, payload, nof_bytes); segment.buf->N_bytes = nof_bytes; segment.header = header; // Check if we already have a segment from the same PDU it = rx_segments.find(header.sn); if(rx_segments.end() != it) { if(header.p) { log->info("%s Status packet requested through polling bit\n", rrc->get_rb_name(lcid).c_str()); do_status = true; } // Add segment to PDU list and check for complete if(add_segment_and_check(&it->second, &segment)) { std::list::iterator segit; std::list seglist = it->second.segments; for(segit = seglist.begin(); segit != seglist.end(); segit++) { pool->deallocate(segit->buf); } seglist.clear(); rx_segments.erase(it); } } else { // Create new PDU segment list and write to rx_segments rlc_amd_rx_pdu_segments_t pdu; pdu.segments.push_back(segment); rx_segments[header.sn] = pdu; // Update vr_h if(RX_MOD_BASE(header.sn) >= RX_MOD_BASE(vr_h)) vr_h = (header.sn + 1)%MOD; // Check poll bit if(header.p) { log->info("%s Status packet requested through polling bit\n", rrc->get_rb_name(lcid).c_str()); poll_received = true; // 36.322 v10 Section 5.2.3 if(RX_MOD_BASE(header.sn) < RX_MOD_BASE(vr_ms) || RX_MOD_BASE(header.sn) >= RX_MOD_BASE(vr_mr)) { do_status = true; } // else delay for reordering timer } } debug_state(); } void rlc_am::handle_control_pdu(uint8_t *payload, uint32_t nof_bytes) { log->info_hex(payload, nof_bytes, "%s Rx control PDU", rrc->get_rb_name(lcid).c_str()); rlc_status_pdu_t status; rlc_am_read_status_pdu(payload, nof_bytes, &status); log->info("%s Rx Status PDU: %s\n", rrc->get_rb_name(lcid).c_str(), rlc_am_to_string(&status).c_str()); poll_retx_timeout.reset(); // Handle ACKs and NACKs std::map::iterator it; bool update_vt_a = true; uint32_t i = vt_a; while(TX_MOD_BASE(i) < TX_MOD_BASE(status.ack_sn) && TX_MOD_BASE(i) < TX_MOD_BASE(vt_s)) { bool nack = false; for(uint32_t j=0;jsecond.buf->N_bytes; if(status.nacks[j].has_so) { if(status.nacks[j].so_start < it->second.buf->N_bytes && status.nacks[j].so_end <= it->second.buf->N_bytes) { retx.is_segment = true; retx.so_start = status.nacks[j].so_start; if(status.nacks[j].so_end == 0x7FFF) { retx.so_end = it->second.buf->N_bytes; }else{ retx.so_end = status.nacks[j].so_end + 1; } } else { log->warning("%s invalid segment NACK received for SN %d. so_start: %d, so_end: %d, N_bytes: %d\n", rrc->get_rb_name(lcid).c_str(), i, status.nacks[j].so_start, status.nacks[j].so_end, it->second.buf->N_bytes); } } retx.sn = i; retx_queue.push_back(retx); } } } } if(!nack) { //ACKed SNs get marked and removed from tx_window if possible if(tx_window.count(i) > 0) { it = tx_window.find(i); it->second.is_acked = true; if(it->second.buf) { pool->deallocate(it->second.buf); it->second.buf = 0; } if(update_vt_a) { tx_window.erase(it); vt_a = (vt_a + 1)%MOD; vt_ms = (vt_ms + 1)%MOD; } } } i = (i+1)%MOD; } debug_state(); } void rlc_am::reassemble_rx_sdus() { if(!rx_sdu) { rx_sdu = pool_allocate; if (!rx_sdu) { log->console("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (1)\n"); exit(-1); } } // Iterate through rx_window, assembling and delivering SDUs while(rx_window.end() != rx_window.find(vr_r)) { // Handle any SDU segments for(uint32_t i=0; imsg[rx_sdu->N_bytes], rx_window[vr_r].buf->msg, len); rx_sdu->N_bytes += len; rx_window[vr_r].buf->msg += len; rx_window[vr_r].buf->N_bytes -= len; log->info_hex(rx_sdu->msg, rx_sdu->N_bytes, "%s Rx SDU", rrc->get_rb_name(lcid).c_str()); rx_sdu->set_timestamp(); pdcp->write_pdu(lcid, rx_sdu); rx_sdu = pool_allocate; if (!rx_sdu) { log->console("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (2)\n"); exit(-1); } } // Handle last segment memcpy(&rx_sdu->msg[rx_sdu->N_bytes], rx_window[vr_r].buf->msg, rx_window[vr_r].buf->N_bytes); rx_sdu->N_bytes += rx_window[vr_r].buf->N_bytes; if(rlc_am_end_aligned(rx_window[vr_r].header.fi)) { log->info_hex(rx_sdu->msg, rx_sdu->N_bytes, "%s Rx SDU", rrc->get_rb_name(lcid).c_str()); rx_sdu->set_timestamp(); pdcp->write_pdu(lcid, rx_sdu); rx_sdu = pool_allocate; if (!rx_sdu) { log->console("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (3)\n"); exit(-1); } } // Move the rx_window pool->deallocate(rx_window[vr_r].buf); rx_window.erase(vr_r); vr_r = (vr_r + 1)%MOD; vr_mr = (vr_mr + 1)%MOD; } } bool rlc_am::inside_tx_window(uint16_t sn) { if(RX_MOD_BASE(sn) >= RX_MOD_BASE(vt_a) && RX_MOD_BASE(sn) < RX_MOD_BASE(vt_ms)) { return true; }else{ return false; } } bool rlc_am::inside_rx_window(uint16_t sn) { if(RX_MOD_BASE(sn) >= RX_MOD_BASE(vr_r) && RX_MOD_BASE(sn) < RX_MOD_BASE(vr_mr)) { return true; }else{ return false; } } void rlc_am::debug_state() { log->debug("%s vt_a = %d, vt_ms = %d, vt_s = %d, poll_sn = %d " "vr_r = %d, vr_mr = %d, vr_x = %d, vr_ms = %d, vr_h = %d\n", rrc->get_rb_name(lcid).c_str(), vt_a, vt_ms, vt_s, poll_sn, vr_r, vr_mr, vr_x, vr_ms, vr_h); } bool rlc_am::add_segment_and_check(rlc_amd_rx_pdu_segments_t *pdu, rlc_amd_rx_pdu_t *segment) { // Ordered insert std::list::iterator tmpit; std::list::iterator it = pdu->segments.begin(); while(it != pdu->segments.end() && it->header.so < segment->header.so) it++; pdu->segments.insert(it, *segment); // Check for complete uint32_t so = 0; for(it = pdu->segments.begin(); it != pdu->segments.end(); it++) { if(so != it->header.so) return false; so += it->buf->N_bytes; } if(!pdu->segments.back().header.lsf) return false; // We have all segments of the PDU - reconstruct and handle rlc_amd_pdu_header_t header; header.dc = RLC_DC_FIELD_DATA_PDU; header.rf = 0; header.p = 0; header.fi = RLC_FI_FIELD_START_AND_END_ALIGNED; header.sn = pdu->segments.front().header.sn; header.lsf = 0; header.so = 0; header.N_li = 0; // Reconstruct fi field header.fi |= (pdu->segments.front().header.fi & RLC_FI_FIELD_NOT_START_ALIGNED); header.fi |= (pdu->segments.back().header.fi & RLC_FI_FIELD_NOT_END_ALIGNED); // Reconstruct li fields uint16_t count = 0; uint16_t carryover = 0; for(it = pdu->segments.begin(); it != pdu->segments.end(); it++) { if(it->header.N_li > 0) { header.li[header.N_li++] = it->header.li[0] + carryover; count += it->header.li[0]; for(uint32_t i=1; iheader.N_li; i++) { header.li[header.N_li++] = it->header.li[i]; count += it->header.li[i]; } } carryover = it->buf->N_bytes - count; tmpit = it; if(rlc_am_end_aligned(it->header.fi) && ++tmpit != pdu->segments.end()) { header.li[header.N_li++] = carryover; carryover = 0; } count = 0; } // Copy data byte_buffer_t *full_pdu = pool_allocate; if (!full_pdu) { log->console("Fatal Error: Could not allocate PDU in add_segment_and_check()\n"); exit(-1); } for(it = pdu->segments.begin(); it != pdu->segments.end(); it++) { memcpy(&full_pdu->msg[full_pdu->N_bytes], it->buf->msg, it->buf->N_bytes); full_pdu->N_bytes += it->buf->N_bytes; } handle_data_pdu(full_pdu->msg, full_pdu->N_bytes, header); return true; } int rlc_am::required_buffer_size(rlc_amd_retx_t retx) { if(!retx.is_segment){ return rlc_am_packed_length(&tx_window[retx.sn].header) + tx_window[retx.sn].buf->N_bytes; } // Construct new header rlc_amd_pdu_header_t new_header; rlc_amd_pdu_header_t old_header = tx_window[retx.sn].header; new_header.dc = RLC_DC_FIELD_DATA_PDU; new_header.rf = 1; new_header.p = 0; new_header.fi = RLC_FI_FIELD_NOT_START_OR_END_ALIGNED; new_header.sn = old_header.sn; new_header.lsf = 0; new_header.so = retx.so_start; new_header.N_li = 0; uint32_t head_len = 0; // Need to rebuild the li table & update fi based on so_start and so_end if(retx.so_start != 0 && rlc_am_start_aligned(old_header.fi)) new_header.fi &= RLC_FI_FIELD_NOT_END_ALIGNED; // segment is start aligned uint32_t lower = 0; uint32_t upper = 0; uint32_t li = 0; for(uint32_t i=0; i= retx.so_end) break; upper += old_header.li[i]; head_len = rlc_am_packed_length(&new_header); if(upper > retx.so_start && lower < retx.so_end) { // Current SDU is needed li = upper - lower; if(upper > retx.so_end) li -= upper - retx.so_end; if(lower < retx.so_start) li -= retx.so_start - lower; if(lower > 0 && lower == retx.so_start) new_header.fi &= RLC_FI_FIELD_NOT_END_ALIGNED; // segment start is aligned with this SDU if(upper == retx.so_end) { new_header.fi &= RLC_FI_FIELD_NOT_START_ALIGNED; // segment end is aligned with this SDU } new_header.li[new_header.N_li++] = li; } lower += old_header.li[i]; } // if(tx_window[retx.sn].buf->N_bytes != retx.so_end) { // if(new_header.N_li > 0) // new_header.N_li--; // No li for last segment // } return rlc_am_packed_length(&new_header) + (retx.so_end-retx.so_start); } bool rlc_am::retx_queue_has_sn(uint32_t sn) { std::deque::iterator q_it; for(q_it = retx_queue.begin(); q_it != retx_queue.end(); q_it++) { if(q_it->sn == sn) return true; } return false; } /**************************************************************************** * Header pack/unpack helper functions * Ref: 3GPP TS 36.322 v10.0.0 Section 6.2.1 ***************************************************************************/ // Read header from pdu struct, don't strip header void rlc_am_read_data_pdu_header(byte_buffer_t *pdu, rlc_amd_pdu_header_t *header) { uint8_t *ptr = pdu->msg; uint32_t n = 0; rlc_am_read_data_pdu_header(&ptr, &n, header); } // Read header from raw pointer, strip header void rlc_am_read_data_pdu_header(uint8_t **payload, uint32_t *nof_bytes, rlc_amd_pdu_header_t *header) { uint8_t ext; uint8_t *ptr = *payload; header->dc = (rlc_dc_field_t)((*ptr >> 7) & 0x01); if(RLC_DC_FIELD_DATA_PDU == header->dc) { // Fixed part header->rf = ((*ptr >> 6) & 0x01); header->p = ((*ptr >> 5) & 0x01); header->fi = (rlc_fi_field_t)((*ptr >> 3) & 0x03); ext = ((*ptr >> 2) & 0x01); header->sn = (*ptr & 0x03) << 8; // 2 bits SN ptr++; header->sn |= (*ptr & 0xFF); // 8 bits SN ptr++; if(header->rf) { header->lsf = ((*ptr >> 7) & 0x01); header->so = (*ptr & 0x7F) << 8; // 7 bits of SO ptr++; header->so |= (*ptr & 0xFF); // 8 bits of SO ptr++; } // Extension part header->N_li = 0; while(ext) { if(header->N_li%2 == 0) { ext = ((*ptr >> 7) & 0x01); header->li[header->N_li] = (*ptr & 0x7F) << 4; // 7 bits of LI ptr++; header->li[header->N_li] |= (*ptr & 0xF0) >> 4; // 4 bits of LI header->N_li++; } else { ext = (*ptr >> 3) & 0x01; header->li[header->N_li] = (*ptr & 0x07) << 8; // 3 bits of LI ptr++; header->li[header->N_li] |= (*ptr & 0xFF); // 8 bits of LI header->N_li++; ptr++; } } // Account for padding if N_li is odd if(header->N_li%2 == 1) ptr++; *nof_bytes -= ptr-*payload; *payload = ptr; } } // Write header to pdu struct void rlc_am_write_data_pdu_header(rlc_amd_pdu_header_t *header, byte_buffer_t *pdu) { uint8_t *ptr = pdu->msg; rlc_am_write_data_pdu_header(header, &ptr); pdu->N_bytes += ptr - pdu->msg; } // Write header to pointer & move pointer void rlc_am_write_data_pdu_header(rlc_amd_pdu_header_t *header, uint8_t **payload) { uint32_t i; uint8_t ext = (header->N_li > 0) ? 1 : 0; uint8_t *ptr = *payload; // Fixed part *ptr = (header->dc & 0x01) << 7; *ptr |= (header->rf & 0x01) << 6; *ptr |= (header->p & 0x01) << 5; *ptr |= (header->fi & 0x03) << 3; *ptr |= (ext & 0x01) << 2; *ptr |= (header->sn & 0x300) >> 8; // 2 bits SN ptr++; *ptr = (header->sn & 0xFF); // 8 bits SN ptr++; // Segment part if(header->rf) { *ptr = (header->lsf & 0x01) << 7; *ptr |= (header->so & 0x7F00) >> 8; // 7 bits of SO ptr++; *ptr = (header->so & 0x00FF); // 8 bits of SO ptr++; } // Extension part i = 0; while(i < header->N_li) { ext = ((i+1) == header->N_li) ? 0 : 1; *ptr = (ext & 0x01) << 7; // 1 bit header *ptr |= (header->li[i] & 0x7F0) >> 4; // 7 bits of LI ptr++; *ptr = (header->li[i] & 0x00F) << 4; // 4 bits of LI i++; if(i < header->N_li) { ext = ((i+1) == header->N_li) ? 0 : 1; *ptr |= (ext & 0x01) << 3; // 1 bit header *ptr |= (header->li[i] & 0x700) >> 8; // 3 bits of LI ptr++; *ptr = (header->li[i] & 0x0FF); // 8 bits of LI ptr++; i++; } } // Pad if N_li is odd if(header->N_li%2 == 1) ptr++; *payload = ptr; } void rlc_am_read_status_pdu(byte_buffer_t *pdu, rlc_status_pdu_t *status) { rlc_am_read_status_pdu(pdu->msg, pdu->N_bytes, status); } void rlc_am_read_status_pdu(uint8_t *payload, uint32_t nof_bytes, rlc_status_pdu_t *status) { uint32_t i; uint8_t ext1, ext2; bit_buffer_t tmp; uint8_t *ptr = tmp.msg; srslte_bit_unpack_vector(payload, tmp.msg, nof_bytes*8); tmp.N_bits = nof_bytes*8; rlc_dc_field_t dc = (rlc_dc_field_t)srslte_bit_pack(&ptr, 1); if(RLC_DC_FIELD_CONTROL_PDU == dc) { uint8_t cpt = srslte_bit_pack(&ptr, 3); // 3-bit Control PDU Type (0 == status) if(0 == cpt) { status->ack_sn = srslte_bit_pack(&ptr, 10); // 10 bits ACK_SN ext1 = srslte_bit_pack(&ptr, 1); // 1 bits E1 status->N_nack = 0; while(ext1) { status->nacks[status->N_nack].nack_sn = srslte_bit_pack(&ptr, 10); ext1 = srslte_bit_pack(&ptr, 1); // 1 bits E1 ext2 = srslte_bit_pack(&ptr, 1); // 1 bits E2 if(ext2) { status->nacks[status->N_nack].has_so = true; status->nacks[status->N_nack].so_start = srslte_bit_pack(&ptr, 15); status->nacks[status->N_nack].so_end = srslte_bit_pack(&ptr, 15); } status->N_nack++; } } } } void rlc_am_write_status_pdu(rlc_status_pdu_t *status, byte_buffer_t *pdu ) { pdu->N_bytes = rlc_am_write_status_pdu(status, pdu->msg); } int rlc_am_write_status_pdu(rlc_status_pdu_t *status, uint8_t *payload) { uint32_t i; uint8_t ext1; bit_buffer_t tmp; uint8_t *ptr = tmp.msg; srslte_bit_unpack(RLC_DC_FIELD_CONTROL_PDU, &ptr, 1); // D/C srslte_bit_unpack(0, &ptr, 3); // CPT (0 == STATUS) srslte_bit_unpack(status->ack_sn, &ptr, 10); // 10 bit ACK_SN ext1 = (status->N_nack == 0) ? 0 : 1; srslte_bit_unpack(ext1, &ptr, 1); // E1 for(i=0;iN_nack;i++) { srslte_bit_unpack(status->nacks[i].nack_sn, &ptr, 10); // 10 bit NACK_SN ext1 = ((status->N_nack-1) == i) ? 0 : 1; srslte_bit_unpack(ext1, &ptr, 1); // E1 if(status->nacks[i].has_so) { srslte_bit_unpack(1 , &ptr, 1); // E2 srslte_bit_unpack(status->nacks[i].so_start , &ptr, 15); srslte_bit_unpack(status->nacks[i].so_end , &ptr, 15); }else{ srslte_bit_unpack(0 , &ptr, 1); // E2 } } // Pad tmp.N_bits = ptr - tmp.msg; uint8_t n_pad = 8 - (tmp.N_bits%8); srslte_bit_unpack(0, &ptr, n_pad); tmp.N_bits = ptr - tmp.msg; // Pack bits srslte_bit_pack_vector(tmp.msg, payload, tmp.N_bits); return tmp.N_bits/8; } uint32_t rlc_am_packed_length(rlc_amd_pdu_header_t *header) { uint32_t len = 2; // Fixed part is 2 bytes if(header->rf) len += 2; // Segment header is 2 bytes len += header->N_li * 1.5 + 0.5; // Extension part - integer rounding up return len; } uint32_t rlc_am_packed_length(rlc_status_pdu_t *status) { uint32_t i; uint32_t len_bits = 15; // Fixed part is 15 bits for(i=0;iN_nack;i++) { if(status->nacks[i].has_so) { len_bits += 42; // 10 bits SN, 2 bits ext, 15 bits so_start, 15 bits so_end }else{ len_bits += 12; // 10 bits SN, 2 bits ext } } return (len_bits+7)/8; // Convert to bytes - integer rounding up } bool rlc_am_is_control_pdu(byte_buffer_t *pdu) { return rlc_am_is_control_pdu(pdu->msg); } bool rlc_am_is_control_pdu(uint8_t *payload) { return ((*(payload) >> 7) & 0x01) == RLC_DC_FIELD_CONTROL_PDU; } bool rlc_am_is_pdu_segment(uint8_t *payload) { return ((*(payload) >> 6) & 0x01) == 1; } std::string rlc_am_to_string(rlc_status_pdu_t *status) { std::stringstream ss; ss << "ACK_SN = " << status->ack_sn; ss << ", N_nack = " << status->N_nack; if(status->N_nack > 0) { ss << ", NACK_SN = "; for(uint32_t i=0; iN_nack; i++) { if(status->nacks[i].has_so) { ss << "[" << status->nacks[i].nack_sn << " " << status->nacks[i].so_start \ << ":" << status->nacks[i].so_end << "]"; }else{ ss << "[" << status->nacks[i].nack_sn << "]"; } } } return ss.str(); } bool rlc_am_start_aligned(uint8_t fi) { return (fi == RLC_FI_FIELD_START_AND_END_ALIGNED || fi == RLC_FI_FIELD_NOT_END_ALIGNED); } bool rlc_am_end_aligned(uint8_t fi) { return (fi == RLC_FI_FIELD_START_AND_END_ALIGNED || fi == RLC_FI_FIELD_NOT_START_ALIGNED); } } // namespace srsue