/** * * \section COPYRIGHT * * Copyright 2013-2021 Software Radio Systems Limited * * By using this file, you agree to the terms and conditions set * forth in the LICENSE file which can be found at the top level of * the distribution. * */ #ifndef SRSRAN_BAND_HELPER_H #define SRSRAN_BAND_HELPER_H #include "srsran/phy/common/phy_common_nr.h" #include #include #include namespace srsran { // Helper class to handle frequency bands and ARFCNs // For NR: NR-ARFCN and channel raster as per TS 38.104 class srsran_band_helper { public: srsran_band_helper() = default; ~srsran_band_helper() = default; // Return frequency of given NR-ARFCN in Hz double nr_arfcn_to_freq(uint32_t nr_arfcn); // Frequency in Hz to NR-ARFCN uint32_t freq_to_nr_arfcn(double freq); // Possible values of delta f_raster in Table 5.4.2.3-1 and Table 5.4.2.3-2 enum delta_f_raster_t { DEFAULT = 0, // for bands with 2 possible values for delta_f_raster (e.g. 15 and 30 kHz), the lower is chosen KHZ_15, KHZ_30, KHZ_60, KHZ_100, KHZ_120 }; // Return vector of bands that ARFCN is valid for // For bands with 2 possible raster offsets, delta_f_raster needs to be specified std::vector get_bands_nr(uint32_t nr_arfcn, delta_f_raster_t delta_f_raster = DEFAULT); /** * @brief Get the lowest band that includes a given Downlink frequency in Hz * @param dl_freq_Hz Given frequency in Hz * @return The band number if the frequency is bounded in a band, UINT16_MAX otherwise */ uint16_t get_band_from_dl_freq_Hz(double dl_freq_Hz) const; /** * @brief Get the lowest band that includes a given Downlink ARFCN * @param arfcn Given ARFCN * @return The band number if the ARFCN is bounded in a band, UINT16_MAX otherwise */ uint16_t get_band_from_dl_arfcn(uint32_t arfcn) const; /** * @brief Get the respective UL ARFCN of a DL ARFCN * * For paired spectrum (FDD) the function returns the respective ARFCN in the same band. * For unparied spectrum (TDD) the function returns the same ARFCN. * * @param dl_arfcn The DL ARFCN * @return uint32_t the UL ARFCN */ uint32_t get_ul_arfcn_from_dl_arfcn(uint32_t dl_arfcn) const; /** * @brief Selects the SSB pattern case according to the band number and subcarrier spacing * @remark Described by TS 38.101-1 Table 5.4.3.3-1: Applicable SS raster entries per operating band * @param band NR Band number * @param scs SSB Subcarrier spacing * @return The SSB pattern case if band and subcarrier spacing match, SRSRAN_SSB_PATTERN_INVALID otherwise */ static srsran_ssb_patern_t get_ssb_pattern(uint16_t band, srsran_subcarrier_spacing_t scs); /** * @brief Select the lower SSB subcarrier spacing valid for this band * @param band NR band number * @return The SSB subcarrier spacing */ srsran_subcarrier_spacing_t get_ssb_scs(uint16_t band) const; /** * @brief gets the NR band duplex mode * @param band Given band * @return A valid SRSRAN_DUPLEX_MODE if the band is valid, SRSRAN_DUPLEX_MODE_INVALID otherwise */ srsran_duplex_mode_t get_duplex_mode(uint16_t band) const; /** * @brief Compute the center frequency for a NR carrier from its bandwidth and the absolute pointA * * @param nof_prb Carrier bandwidth in number of RB * @param freq_point_a_arfcn Absolute Point A frequency ARFCN * @return double Frequency in Hz */ double get_center_freq_from_abs_freq_point_a(uint32_t nof_prb, uint32_t freq_point_a_arfcn); /** * @brief Compute the absolute pointA for a NR carrier from its bandwidth and the center frequency * * @param nof_prb Carrier bandwidth in number of RB * @param center_freq double Frequency in Hz * @return Absolute Point A frequency in Hz */ double get_abs_freq_point_a_from_center_freq(uint32_t nof_prb, double center_freq); /** * @brief Compute the absolute frequency point A for a arfcn * * @param band nr frequency band. * @param nof_prb Number of PRBs. * @param arfcn Given ARFCN. * @return frequency point A in arfcn notation. */ uint32_t get_abs_freq_point_a_arfcn(uint32_t nof_prb, uint32_t arfcn); /** * @brief Compute the absolute frequency of the SSB for a DL ARFCN and a band. This selects an SSB center frequency * following the band SS/PBCH frequency raster provided by TS38.104 table 5.4.3.1-1, which is the upper bound * of the provided center frequency * * @param scs ssb subcarrier spacing. * @param min_center_freq_hz center frequency above which the SSB absolute frequency must be. * @return absolute frequency of the SSB in arfcn notation. */ uint32_t find_lower_bound_abs_freq_ssb(uint16_t band, srsran_subcarrier_spacing_t scs, uint32_t min_center_freq_hz); /** * @brief Compute the absolute frequency of the SSB for a DL ARFCN and a band. This finds an SSB center frequency * following the band SS/PBCH frequency raster provided by TS38.104 table 5.4.3.1-1 as close as possible to PointA * without letting any SS/PBCH subcarrier and CORESET#0 subcarrier (if RB offset is defined) below PointA * * @param scs ssb subcarrier spacing. * @param freq_point_a_arfcn frequency point a in arfcn notation. * @param coreset0_offset_rb CORESET#0 RB offset. See TS 38.213, Table 13-1,2,3 * @return absolute frequency of the SSB in arfcn notation. */ uint32_t get_abs_freq_ssb_arfcn(uint16_t band, srsran_subcarrier_spacing_t scs, uint32_t freq_point_a_arfcn, uint32_t coreset0_offset_rb = 0); /** * @brief Compute SSB center frequency for NR carrier * @param carrier Const Reference to a carrier struct including PRB, abs. frequency point A and carrier offset. * @return double Frequency in Hz */ double get_ssb_center_freq(const srsran_carrier_nr_t& carrier); class sync_raster_t { protected: sync_raster_t(uint32_t gscn_f, uint32_t gscn_s, uint32_t gscn_l) : gscn_first(gscn_f), gscn_step(gscn_s), gscn_last(gscn_l), gscn(gscn_f) { // see TS38.104 Table 5.4.3.1-1 if (gscn_last <= 7498) { N_first = 1; N_last = 2499; } else if (7499 <= gscn_last and gscn_last <= 22255) { N_last = 14756; } else if (22256 <= gscn_last and gscn_last <= 26639) { N_last = 4383; } N = N_first; } uint32_t gscn; uint32_t N; uint32_t M[3] = {1, 3, 5}; uint32_t M_idx = 0; private: uint32_t gscn_first; uint32_t gscn_step; uint32_t gscn_last; uint32_t N_first = 0; uint32_t N_last = 0; public: bool valid() const { return gscn_step != 0; } void next() { if (gscn_last <= 7498 and M_idx < 3) { M_idx += 1; if (M_idx == 3 and N <= N_last) { M_idx = 0; N += 1; } } else if (N <= N_last) { N += 1; } } bool end() const { return (N > N_last or gscn_step == 0); } void reset() { N = N_first; M_idx = 0; } void gscn_next() { if (gscn <= gscn_last) { gscn += gscn_step; } } bool gscn_end() const { return (gscn > gscn_last or gscn_step == 0); } void gscn_reset() { gscn = gscn_first; } double get_frequency() const; uint32_t get_gscn() const; }; sync_raster_t get_sync_raster(uint16_t band, srsran_subcarrier_spacing_t scs) const; private: // internal helper // Elements of TS 38.101-1 Table 5.2-1: NR operating bands in FR1 struct nr_operating_band { uint16_t band; uint32_t F_UL_low; // in MHz uint32_t F_UL_high; // in MHz uint32_t F_DL_low; // in MHz uint32_t F_DL_high; // in MHz srsran_duplex_mode_t duplex_mode; }; static const uint32_t nof_nr_operating_band_fr1 = 32; static constexpr std::array nr_operating_bands_fr1 = {{ // clang-format off {1, 1920, 1080, 2110, 2170, SRSRAN_DUPLEX_MODE_FDD}, {2, 1850, 1810, 1930, 1990, SRSRAN_DUPLEX_MODE_FDD}, {3, 1710, 1785, 1805, 1880, SRSRAN_DUPLEX_MODE_FDD}, {5, 824, 849, 869, 894, SRSRAN_DUPLEX_MODE_FDD}, {7, 2500, 2570, 2620, 2690, SRSRAN_DUPLEX_MODE_FDD}, {8, 880, 915, 925, 960, SRSRAN_DUPLEX_MODE_FDD}, {12, 699, 716, 729, 746, SRSRAN_DUPLEX_MODE_FDD}, {20, 832, 862, 791, 821, SRSRAN_DUPLEX_MODE_FDD}, {25, 1850, 1915, 1930, 1995, SRSRAN_DUPLEX_MODE_FDD}, {28, 703, 748, 758, 803, SRSRAN_DUPLEX_MODE_FDD}, {34, 2010, 2025, 2010, 2025, SRSRAN_DUPLEX_MODE_TDD}, {38, 2570, 2620, 2570, 2620, SRSRAN_DUPLEX_MODE_TDD}, {39, 1880, 1920, 1880, 1920, SRSRAN_DUPLEX_MODE_TDD}, {40, 2300, 2400, 2300, 2400, SRSRAN_DUPLEX_MODE_TDD}, {41, 2496, 2690, 2496, 2690, SRSRAN_DUPLEX_MODE_TDD}, {50, 1432, 1517, 1432, 1517, SRSRAN_DUPLEX_MODE_TDD}, {51, 1427, 1432, 1427, 1432, SRSRAN_DUPLEX_MODE_TDD}, {66, 1710, 1780, 2110, 2200, SRSRAN_DUPLEX_MODE_FDD}, {70, 1695, 1710, 1995, 2020, SRSRAN_DUPLEX_MODE_FDD}, {71, 663, 698, 617, 652, SRSRAN_DUPLEX_MODE_FDD}, {74, 1427, 1470, 1475, 1518, SRSRAN_DUPLEX_MODE_FDD}, {75, 0, 0, 1432, 1517, SRSRAN_DUPLEX_MODE_SDL}, {76, 0, 0, 1427, 1432, SRSRAN_DUPLEX_MODE_SDL}, {77, 3300, 4200, 3300, 4200, SRSRAN_DUPLEX_MODE_TDD}, {78, 3300, 3800, 3300, 3800, SRSRAN_DUPLEX_MODE_TDD}, {79, 4400, 5000, 4400, 5000, SRSRAN_DUPLEX_MODE_TDD}, {80, 1710, 1785, 0, 0, SRSRAN_DUPLEX_MODE_SUL}, {81, 880, 915, 0, 0, SRSRAN_DUPLEX_MODE_SUL}, {82, 832, 862, 0, 0, SRSRAN_DUPLEX_MODE_SUL}, {83, 703, 748, 0, 0, SRSRAN_DUPLEX_MODE_SUL}, {84, 1920, 1980, 0, 0, SRSRAN_DUPLEX_MODE_SUL}, {86, 1710, 1780, 0, 0, SRSRAN_DUPLEX_MODE_SUL} // clang-format on }}; struct nr_raster_params { double freq_range_start; double freq_range_end; double delta_F_global_kHz; double F_REF_Offs_MHz; uint32_t N_REF_Offs; uint32_t N_REF_min; uint32_t N_REF_max; bool operator==(const nr_raster_params& rhs) const { return freq_range_start == rhs.freq_range_start && freq_range_end == rhs.freq_range_end && delta_F_global_kHz == rhs.delta_F_global_kHz && F_REF_Offs_MHz == rhs.F_REF_Offs_MHz && N_REF_Offs == rhs.N_REF_Offs && N_REF_min == rhs.N_REF_min && N_REF_max == rhs.N_REF_max; } }; // Helper to calculate F_REF according to Table 5.4.2.1-1 nr_raster_params get_raster_params(uint32_t nr_arfcn); nr_raster_params get_raster_params(double freq); bool is_valid_raster_param(const nr_raster_params& raster); static const uint32_t max_nr_arfcn = 3279165; static constexpr std::array nr_fr_params = {{ // clang-format off // Frequency range 0 - 3000 MHz {0, 3000, 5, 0.0, 0, 0, 599999}, // Frequency range 3000 - 24250 MHz {3000, 24250, 15, 3000.0, 600000, 600000, 2016666}, // Frequency range 24250 - 100000 MHz {24250, 100000, 60, 24250.08, 2016667, 2016667, max_nr_arfcn} // clang-format on }}; // Elements of Table 5.4.2.3-1 in TS 38.104 struct nr_band { uint16_t band; delta_f_raster_t delta_f_raster; uint32_t ul_nref_first; uint32_t ul_nref_step; uint32_t ul_nref_last; uint32_t dl_nref_first; uint32_t dl_nref_step; uint32_t dl_nref_last; }; // List of NR bands for FR1 (Table 5.4.2.3-1) // bands with more than one raster offset have multiple entries static const uint32_t nof_nr_bands_fr1 = 36; static constexpr std::array nr_band_table_fr1 = {{ // clang-format off {1, KHZ_100, 384000, 20, 396000, 422000, 20, 434000}, {2, KHZ_100, 370000, 20, 382000, 386000, 20, 398000}, {3, KHZ_100, 342000, 20, 357000, 361000, 20, 376000}, {5, KHZ_100, 164800, 20, 169800, 173800, 20, 178800}, {7, KHZ_100, 500000, 20, 514000, 524000, 20, 538000}, {8, KHZ_100, 176000, 20, 183000, 185000, 20, 192000}, {12, KHZ_100, 139800, 20, 143200, 145800, 20, 149200}, {20, KHZ_100, 166400, 20, 172400, 158200, 20, 164200}, {25, KHZ_100, 370000, 20, 383000, 386000, 20, 399000}, {28, KHZ_100, 140600, 20, 149600, 151600, 20, 160600}, {34, KHZ_100, 402000, 20, 405000, 402000, 20, 405000}, {38, KHZ_100, 514000, 20, 524000, 514000, 20, 524000}, {39, KHZ_100, 376000, 20, 384000, 376000, 20, 384000}, {40, KHZ_100, 460000, 20, 480000, 460000, 20, 480000}, {41, KHZ_15, 499200, 3, 537999, 499200, 3, 537999}, {41, KHZ_30, 499200, 6, 537996, 499200, 6, 537996}, {50, KHZ_100, 286400, 20, 303400, 286400, 20, 303400}, {51, KHZ_100, 285400, 20, 286400, 285400, 20, 286400}, {66, KHZ_100, 342000, 20, 356000, 422000, 20, 440000}, {70, KHZ_100, 339000, 20, 342000, 399000, 20, 404000}, {71, KHZ_100, 132600, 20, 139600, 123400, 20, 130400}, {74, KHZ_100, 285400, 20, 294000, 295000, 20, 303600}, {75, KHZ_100, 0, 0, 0, 286400, 20, 303400}, {76, KHZ_100, 0, 0, 0, 285400, 20, 286400}, {77, KHZ_15, 620000, 1, 680000, 620000, 1, 680000}, {77, KHZ_30, 620000, 2, 680000, 620000, 2, 680000}, {78, KHZ_15, 620000, 1, 653333, 620000, 1, 653333}, {78, KHZ_30, 620000, 2, 653332, 620000, 2, 653332}, {79, KHZ_15, 693334, 2, 733333, 693334, 2, 733333}, {79, KHZ_30, 693334, 2, 733332, 693334, 2, 733332}, {80, KHZ_100, 342000, 20, 357000, 0, 0, 0}, {81, KHZ_100, 176000, 20, 183000, 0, 0, 0}, {82, KHZ_100, 166400, 20, 172400, 0, 0, 0}, {83, KHZ_100, 140600, 20, 149600, 0, 0, 0}, {84, KHZ_100, 384000, 20, 396000, 0, 0, 0}, {86, KHZ_100, 342000, 20, 356000, 0, 0, 0} // clang-format on }}; static const uint32_t nof_nr_bands_fr2 = 8; static constexpr std::array nr_band_table_fr2 = { {{257, KHZ_60, 2054166, 1, 2104165, 2054166, 1, 2104165}, {257, KHZ_120, 2054167, 2, 2104165, 2054167, 20, 2104165}, {258, KHZ_60, 2016667, 1, 2070832, 2016667, 1, 2070832}, {258, KHZ_120, 2016667, 2, 2070831, 2016667, 2, 2070832}, {260, KHZ_60, 2229166, 1, 2279165, 2229166, 1, 2279165}, {260, KHZ_120, 2229167, 2, 2279165, 2229167, 2, 2279165}, {261, KHZ_60, 2070833, 1, 2084999, 2070833, 1, 2084999}, {261, KHZ_120, 2070833, 2, 2084999, 2070833, 2, 2084999}}}; // Elements of TS 38.101-1 Table 5.4.3.3-1 : Applicable SS raster entries per operating band struct nr_band_ss_raster { uint16_t band; srsran_subcarrier_spacing_t scs; srsran_ssb_patern_t pattern; uint32_t gscn_first; uint32_t gscn_step; uint32_t gscn_last; }; static const uint32_t nof_nr_band_ss_raster = 29; static constexpr std::array nr_band_ss_raster_table = {{ {1, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 5279, 1, 5419}, {2, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 4829, 1, 4969}, {3, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 4517, 1, 4693}, {5, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 2177, 1, 2230}, {5, srsran_subcarrier_spacing_30kHz, SRSRAN_SSB_PATTERN_B, 2183, 1, 2224}, {7, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 6554, 1, 6718}, {8, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 2318, 1, 2395}, {12, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 1828, 1, 1858}, {20, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 1982, 1, 2047}, {25, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 4829, 1, 4981}, {28, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 1901, 1, 2002}, {34, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 5030, 1, 5056}, {38, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 6431, 1, 6544}, {39, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 4706, 1, 4795}, {40, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 5756, 1, 5995}, {41, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 6246, 3, 6717}, {41, srsran_subcarrier_spacing_30kHz, SRSRAN_SSB_PATTERN_C, 6252, 3, 6714}, {50, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 3584, 1, 3787}, {51, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 3572, 1, 3574}, {66, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 5279, 1, 5494}, {66, srsran_subcarrier_spacing_30kHz, SRSRAN_SSB_PATTERN_B, 5285, 1, 5488}, {70, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 4993, 1, 5044}, {71, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 1547, 1, 1624}, {74, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 3692, 1, 3790}, {75, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 3584, 1, 3787}, {76, srsran_subcarrier_spacing_15kHz, SRSRAN_SSB_PATTERN_A, 3572, 1, 3574}, {77, srsran_subcarrier_spacing_30kHz, SRSRAN_SSB_PATTERN_C, 7711, 1, 8329}, {78, srsran_subcarrier_spacing_30kHz, SRSRAN_SSB_PATTERN_C, 7711, 1, 8051}, {79, srsran_subcarrier_spacing_30kHz, SRSRAN_SSB_PATTERN_C, 8480, 16, 8880}, }}; }; } // namespace srsran #endif // SRSRAN_BAND_HELPER_H