/* * Copyright 2013-2019 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "rlc_test_common.h" #include "srslte/common/log_filter.h" #include "srslte/config.h" #include "srslte/upper/rlc.h" #include "srslte/upper/rlc_um.h" #include #include #include #include #define TESTASSERT(cond) \ { \ if (!(cond)) { \ std::cout << "[" << __FUNCTION__ << "][Line " << __LINE__ << "]: FAIL at " << (#cond) << std::endl; \ return -1; \ } \ } #define PCAP 0 #define PCAP_CRNTI (0x1001) #define PCAP_TTI (666) using namespace srslte; #if PCAP #include "srslte/common/mac_nr_pcap.h" #include "srslte/common/mac_nr_pdu.h" static std::unique_ptr pcap_handle = nullptr; #endif int write_pdu_to_pcap(const uint32_t lcid, const uint8_t* payload, const uint32_t len) { #if PCAP if (pcap_handle) { byte_buffer_t tx_buffer; srslte::nr_mac_pdu tx_pdu; tx_pdu.init_tx(&tx_buffer, len + 10); tx_pdu.add_sdu(lcid, payload, len); tx_pdu.pack(); pcap_handle->write_dl_crnti(tx_buffer.msg, tx_buffer.N_bytes, PCAP_CRNTI, true, PCAP_TTI); return SRSLTE_SUCCESS; } #endif return SRSLTE_ERROR; } template srslte::byte_buffer_t make_pdu_and_log(const std::array& tv) { srslte::byte_buffer_t pdu; memcpy(pdu.msg, tv.data(), tv.size()); pdu.N_bytes = tv.size(); write_pdu_to_pcap(4, tv.data(), tv.size()); return pdu; } // Basic test to write UM PDU with 6 bit SN int rlc_um_nr_test1() { srslte::log_filter log1("RLC_UM_1"); srslte::log_filter log2("RLC_UM_2"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); log2.set_hex_limit(-1); rlc_um_tester tester; srslte::timer_handler timers(16); const uint32_t num_sdus = 5; int len = 0; rlc_um rlc1(&log1, 3, &tester, &tester, &timers); rlc_um rlc2(&log2, 3, &tester, &tester, &timers); rlc_config_t cnfg = rlc_config_t::default_rlc_um_nr_config(6); TESTASSERT(rlc1.configure(cnfg) == true); TESTASSERT(rlc2.configure(cnfg) == true); tester.set_expected_sdu_len(1); // Push 5 SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[num_sdus]; for (uint32_t i = 0; i < num_sdus; i++) { sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true); *sdu_bufs[i]->msg = i; // Write the index into the buffer sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte rlc1.write_sdu(std::move(sdu_bufs[i])); } TESTASSERT(14 == rlc1.get_buffer_state()); // Read 5 PDUs from RLC1 (1 byte each) unique_byte_buffer_t pdu_bufs[num_sdus]; for (uint32_t i = 0; i < num_sdus; i++) { pdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true); len = rlc1.read_pdu(pdu_bufs[i]->msg, 4); // 3 bytes for header + payload pdu_bufs[i]->N_bytes = len; // write PCAP write_pdu_to_pcap(4, pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes); } TESTASSERT(0 == rlc1.get_buffer_state()); // TODO: add receive test return SRSLTE_SUCCESS; } // Basic test for SDU segmentation int rlc_um_nr_test2() { srslte::log_filter log1("RLC_UM_1"); srslte::log_filter log2("RLC_UM_2"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); log2.set_hex_limit(-1); rlc_um_tester tester; srslte::timer_handler timers(16); const uint32_t num_sdus = 1; const uint32_t sdu_size = 100; int len = 0; rlc_um rlc1(&log1, 3, &tester, &tester, &timers); rlc_um rlc2(&log2, 3, &tester, &tester, &timers); rlc_config_t cnfg = rlc_config_t::default_rlc_um_nr_config(6); TESTASSERT(rlc1.configure(cnfg) == true); TESTASSERT(rlc2.configure(cnfg) == true); tester.set_expected_sdu_len(1); // Push SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[num_sdus]; for (uint32_t i = 0; i < num_sdus; i++) { sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true); // Write the index into the buffer for (uint32_t k = 0; k < sdu_size; ++k) { sdu_bufs[i]->msg[k] = i; } sdu_bufs[i]->N_bytes = sdu_size; rlc1.write_sdu(std::move(sdu_bufs[i])); } // FIXME: check buffer state calculation TESTASSERT(103 == rlc1.get_buffer_state()); // Read PDUs from RLC1 with grant of 25 Bytes each const uint32_t max_num_pdus = 10; unique_byte_buffer_t pdu_bufs[max_num_pdus]; for (uint32_t i = 0; i < max_num_pdus; i++) { pdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true); len = rlc1.read_pdu(pdu_bufs[i]->msg, 25); // 3 bytes for header + payload pdu_bufs[i]->N_bytes = len; // write PCAP write_pdu_to_pcap(4, pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes); } TESTASSERT(0 == rlc1.get_buffer_state()); // TODO: add receive test return SRSLTE_SUCCESS; } int main(int argc, char** argv) { #if PCAP pcap_handle = std::unique_ptr(new srslte::mac_nr_pcap()); pcap_handle->open("rlc_um_nr_test.pcap"); #endif if (rlc_um_nr_test1()) { fprintf(stderr, "rlc_um_nr_test1() failed.\n"); return SRSLTE_ERROR; } if (rlc_um_nr_test2()) { fprintf(stderr, "rlc_um_nr_test2() failed.\n"); return SRSLTE_ERROR; } return SRSLTE_SUCCESS; }