srsLTE/lib/examples/synch_file.c

272 lines
7.8 KiB
C

/**
* Copyright 2013-2022 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <sys/time.h>
#include <unistd.h>
#include "srsran/srsran.h"
char* input_file_name;
char* output_file_name = "abs_corr.txt";
int nof_frames = 100, frame_length = 9600, symbol_sz = 128;
float corr_peak_threshold = 25.0;
int out_N_id_2 = 0, force_N_id_2 = -1;
#define CFO_AUTO -9999.0
float force_cfo = CFO_AUTO;
void usage(char* prog)
{
printf("Usage: %s [olntsNfcv] -i input_file\n", prog);
printf("\t-o output_file [Default %s]\n", output_file_name);
printf("\t-l frame_length [Default %d]\n", frame_length);
printf("\t-n number of frames [Default %d]\n", nof_frames);
printf("\t-t correlation threshold [Default %g]\n", corr_peak_threshold);
printf("\t-s symbol_sz [Default %d]\n", symbol_sz);
printf("\t-N out_N_id_2 [Default %d]\n", out_N_id_2);
printf("\t-f force_N_id_2 [Default %d]\n", force_N_id_2);
printf("\t-c force_cfo [Default disabled]\n");
printf("\t-v srsran_verbose\n");
}
void parse_args(int argc, char** argv)
{
int opt;
while ((opt = getopt(argc, argv, "ionltsNfcv")) != -1) {
switch (opt) {
case 'i':
input_file_name = argv[optind];
break;
case 'o':
output_file_name = argv[optind];
break;
case 'n':
nof_frames = (int)strtol(argv[optind], NULL, 10);
break;
case 'l':
frame_length = (int)strtol(argv[optind], NULL, 10);
break;
case 't':
corr_peak_threshold = strtof(argv[optind], NULL);
break;
case 's':
symbol_sz = (int)strtol(argv[optind], NULL, 10);
break;
case 'N':
out_N_id_2 = (int)strtol(argv[optind], NULL, 10);
break;
case 'f':
force_N_id_2 = (int)strtol(argv[optind], NULL, 10);
break;
case 'c':
force_cfo = strtof(argv[optind], NULL);
break;
case 'v':
increase_srsran_verbose_level();
break;
default:
usage(argv[0]);
exit(-1);
}
}
if (!input_file_name) {
usage(argv[0]);
exit(-1);
}
}
int main(int argc, char** argv)
{
srsran_filesource_t fsrc;
srsran_filesink_t fsink;
srsran_pss_t pss[3]; // One for each N_id_2
srsran_sss_t sss[3]; // One for each N_id_2
srsran_cfo_t cfocorr;
int peak_pos[3];
float* cfo;
float peak_value[3];
int frame_cnt;
cf_t* input;
uint32_t m0, m1;
float m0_value, m1_value;
uint32_t N_id_2;
int sss_idx;
struct timeval tdata[3];
int* exec_time;
if (argc < 3) {
usage(argv[0]);
exit(-1);
}
parse_args(argc, argv);
gettimeofday(&tdata[1], NULL);
printf("Initializing...");
fflush(stdout);
if (srsran_filesource_init(&fsrc, input_file_name, SRSRAN_COMPLEX_FLOAT_BIN)) {
ERROR("Error opening file %s", input_file_name);
exit(-1);
}
if (srsran_filesink_init(&fsink, output_file_name, SRSRAN_COMPLEX_FLOAT_BIN)) {
ERROR("Error opening file %s", output_file_name);
exit(-1);
}
input = srsran_vec_cf_malloc(frame_length);
if (!input) {
perror("malloc");
exit(-1);
}
cfo = srsran_vec_f_malloc(nof_frames);
if (!cfo) {
perror("malloc");
exit(-1);
}
exec_time = srsran_vec_i32_malloc(nof_frames);
if (!exec_time) {
perror("malloc");
exit(-1);
}
if (srsran_cfo_init(&cfocorr, frame_length)) {
ERROR("Error initiating CFO");
return -1;
}
/* We have 2 options here:
* a) We create 3 pss objects, each initialized with a different N_id_2
* b) We create 1 pss object which scans for each N_id_2 one after another.
* a) requries more memory but has less latency and is paralellizable.
*/
for (N_id_2 = 0; N_id_2 < 3; N_id_2++) {
if (srsran_pss_init_fft(&pss[N_id_2], frame_length, symbol_sz)) {
ERROR("Error initializing PSS object");
exit(-1);
}
if (srsran_pss_set_N_id_2(&pss[N_id_2], N_id_2)) {
ERROR("Error initializing N_id_2");
exit(-1);
}
if (srsran_sss_init(&sss[N_id_2], symbol_sz)) {
ERROR("Error initializing SSS object");
exit(-1);
}
if (srsran_sss_set_N_id_2(&sss[N_id_2], N_id_2)) {
ERROR("Error initializing N_id_2");
exit(-1);
}
}
gettimeofday(&tdata[2], NULL);
get_time_interval(tdata);
printf("done in %ld s %ld ms\n", tdata[0].tv_sec, tdata[0].tv_usec / 1000);
printf("\n\tFr.Cnt\tN_id_2\tN_id_1\tSubf\tPSS Peak/Avg\tIdx\tm0\tm1\tCFO\n");
printf("\t===============================================================================\n");
/* read all file or nof_frames */
frame_cnt = 0;
while (frame_length == srsran_filesource_read(&fsrc, input, frame_length) && frame_cnt < nof_frames) {
gettimeofday(&tdata[1], NULL);
if (force_cfo != CFO_AUTO) {
srsran_cfo_correct(&cfocorr, input, input, force_cfo / 128);
}
if (force_N_id_2 != -1) {
N_id_2 = force_N_id_2;
peak_pos[N_id_2] = srsran_pss_find_pss(&pss[N_id_2], input, &peak_value[N_id_2]);
} else {
for (N_id_2 = 0; N_id_2 < 3; N_id_2++) {
peak_pos[N_id_2] = srsran_pss_find_pss(&pss[N_id_2], input, &peak_value[N_id_2]);
}
float max_value = -99999;
N_id_2 = -1;
int i;
for (i = 0; i < 3; i++) {
if (peak_value[i] > max_value) {
max_value = peak_value[i];
N_id_2 = i;
}
}
}
/* If peak detected */
if (peak_value[N_id_2] > corr_peak_threshold) {
sss_idx = peak_pos[N_id_2] - 2 * (symbol_sz + SRSRAN_CP_LEN(symbol_sz, SRSRAN_CP_NORM_LEN));
if (sss_idx >= 0) {
srsran_sss_m0m1_diff(&sss[N_id_2], &input[sss_idx], &m0, &m0_value, &m1, &m1_value);
cfo[frame_cnt] = srsran_pss_cfo_compute(&pss[N_id_2], &input[peak_pos[N_id_2] - 128]);
printf("\t%d\t%d\t%d\t%d\t%.3f\t\t%3d\t%d\t%d\t%.3f\n",
frame_cnt,
N_id_2,
srsran_sss_N_id_1(&sss[N_id_2], m0, m1, m1_value + m0_value),
srsran_sss_subframe(m0, m1),
peak_value[N_id_2],
peak_pos[N_id_2],
m0,
m1,
cfo[frame_cnt]);
}
}
gettimeofday(&tdata[2], NULL);
get_time_interval(tdata);
exec_time[frame_cnt] = tdata[0].tv_usec;
frame_cnt++;
}
int i;
float avg_time = 0;
for (i = 0; i < frame_cnt; i++) {
avg_time += (float)exec_time[i];
}
avg_time /= frame_cnt;
printf("\n");
printf("Average exec time: %.3f ms / frame. %.3f Msamp/s (%.3f\%% CPU)\n",
avg_time / 1000,
frame_length / avg_time,
100 * avg_time / 5000 * (9600 / (float)frame_length));
float cfo_mean = 0;
for (i = 0; i < frame_cnt; i++) {
cfo_mean += cfo[i] / frame_cnt * (9600 / frame_length);
}
printf("Average CFO: %.3f\n", cfo_mean);
for (N_id_2 = 0; N_id_2 < 3; N_id_2++) {
srsran_pss_free(&pss[N_id_2]);
srsran_sss_free(&sss[N_id_2]);
}
srsran_filesource_free(&fsrc);
srsran_filesink_free(&fsink);
free(input);
free(cfo);
printf("Done\n");
exit(0);
}