srsLTE/lib/src/rlc/rlc_am_lte.cc

1945 lines
61 KiB
C++

/**
* Copyright 2013-2022 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srsran/rlc/rlc_am_lte.h"
#include "srsran/interfaces/ue_pdcp_interfaces.h"
#include "srsran/interfaces/ue_rrc_interfaces.h"
#include "srsran/rlc/rlc_am_lte_packing.h"
#include "srsran/srslog/event_trace.h"
#include <iostream>
#define RX_MOD_BASE(x) (((x)-vr_r) % 1024)
#define TX_MOD_BASE(x) (((x)-vt_a) % 1024)
#define LCID (parent->lcid)
#define MAX_SDUS_PER_PDU (128)
namespace srsran {
using pdcp_pdu_info_lte = pdcp_pdu_info<rlc_amd_pdu_header_t>;
using rlc_amd_tx_pdu_lte = rlc_amd_tx_pdu<rlc_amd_pdu_header_t>;
using rlc_am_pdu_segment = rlc_am_pdu_segment_pool<rlc_amd_pdu_header_t>::segment_resource;
/****************************************************************************
* Tx subclass implementation
***************************************************************************/
rlc_am_lte_tx::rlc_am_lte_tx(rlc_am* parent_) :
parent(parent_),
pool(byte_buffer_pool::get_instance()),
poll_retx_timer(parent_->timers->get_unique_timer()),
status_prohibit_timer(parent_->timers->get_unique_timer()),
rlc_am_base_tx(parent_->logger)
{
rx = dynamic_cast<rlc_am_lte_rx*>(parent->rx_base.get());
}
bool rlc_am_lte_tx::configure(const rlc_config_t& cfg_)
{
std::lock_guard<std::mutex> lock(mutex);
rb_name = parent->rb_name;
if (cfg_.tx_queue_length > MAX_SDUS_PER_RLC_PDU) {
RlcError("Configuring Tx queue length of %d PDUs too big. Maximum value is %d.",
cfg_.tx_queue_length,
MAX_SDUS_PER_RLC_PDU);
return false;
}
// TODO: add more config checks
cfg = cfg_.am;
// check timers
if (not poll_retx_timer.is_valid() or not status_prohibit_timer.is_valid()) {
RlcError("Configuring RLC AM TX: timers not configured");
return false;
}
// configure timers
if (cfg.t_status_prohibit > 0) {
status_prohibit_timer.set(static_cast<uint32_t>(cfg.t_status_prohibit),
[this](uint32_t timerid) { timer_expired(timerid); });
}
if (cfg.t_poll_retx > 0) {
poll_retx_timer.set(static_cast<uint32_t>(cfg.t_poll_retx), [this](uint32_t timerid) { timer_expired(timerid); });
}
// make sure Tx queue is empty before attempting to resize
empty_queue_nolock();
tx_sdu_queue.resize(cfg_.tx_queue_length);
tx_enabled = true;
return true;
}
void rlc_am_lte_tx::stop()
{
std::lock_guard<std::mutex> lock(mutex);
stop_nolock();
}
void rlc_am_lte_tx::stop_nolock()
{
empty_queue_nolock();
tx_enabled = false;
if (parent->timers != nullptr && poll_retx_timer.is_valid()) {
poll_retx_timer.stop();
}
if (parent->timers != nullptr && status_prohibit_timer.is_valid()) {
status_prohibit_timer.stop();
}
vt_a = 0;
vt_ms = RLC_AM_WINDOW_SIZE;
vt_s = 0;
poll_sn = 0;
pdu_without_poll = 0;
byte_without_poll = 0;
// Drop all messages in TX window
tx_window.clear();
// Drop all messages in RETX queue
retx_queue.clear();
// Drop all SDU info in queue
undelivered_sdu_info_queue.clear();
}
void rlc_am_lte_tx::empty_queue()
{
std::lock_guard<std::mutex> lock(mutex);
empty_queue_nolock();
}
void rlc_am_lte_tx::empty_queue_nolock()
{
// deallocate all SDUs in transmit queue
while (tx_sdu_queue.size() > 0) {
unique_byte_buffer_t buf = tx_sdu_queue.read();
}
// deallocate SDU that is currently processed
if (tx_sdu != nullptr) {
undelivered_sdu_info_queue.clear_pdcp_sdu(tx_sdu->md.pdcp_sn);
}
tx_sdu.reset();
}
void rlc_am_lte_tx::reestablish()
{
std::lock_guard<std::mutex> lock(mutex);
stop_nolock();
tx_enabled = true;
}
bool rlc_am_lte_tx::do_status()
{
return rx->get_do_status();
}
// Function is supposed to return as fast as possible
bool rlc_am_lte_tx::has_data()
{
return (((do_status() && not status_prohibit_timer.is_running())) || // if we have a status PDU to transmit
(not retx_queue.empty()) || // if we have a retransmission
(tx_sdu != nullptr) || // if we are currently transmitting a SDU
(tx_sdu_queue.get_n_sdus() != 0)); // or if there is a SDU queued up for transmission
}
/**
* Helper to check if a SN has reached the max reTx threshold
*
* Caller _must_ hold the mutex when calling the function.
* If the retx has been reached for a SN the upper layers (i.e. RRC/PDCP) will be informed.
* The SN is _not_ removed from the Tx window, so retransmissions of that SN can still occur.
*
* @param sn The SN of the PDU to check
*/
void rlc_am_lte_tx::check_sn_reached_max_retx(uint32_t sn)
{
if (tx_window[sn].retx_count == cfg.max_retx_thresh) {
RlcWarning("Signaling max number of reTx=%d for SN=%d", tx_window[sn].retx_count, sn);
parent->rrc->max_retx_attempted();
srsran::pdcp_sn_vector_t pdcp_sns;
for (const rlc_am_pdu_segment& segment : tx_window[sn]) {
pdcp_sns.push_back(segment.pdcp_sn());
}
parent->pdcp->notify_failure(parent->lcid, pdcp_sns);
std::lock_guard<std::mutex> lock(parent->metrics_mutex);
parent->metrics.num_lost_pdus++;
}
}
uint32_t rlc_am_lte_tx::get_buffer_state()
{
uint32_t new_tx_queue = 0, prio_tx_queue = 0;
get_buffer_state(new_tx_queue, prio_tx_queue);
return new_tx_queue + prio_tx_queue;
}
void rlc_am_lte_tx::get_buffer_state(uint32_t& n_bytes_newtx, uint32_t& n_bytes_prio)
{
std::lock_guard<std::mutex> lock(mutex);
get_buffer_state_nolock(n_bytes_newtx, n_bytes_prio);
}
void rlc_am_lte_tx::get_buffer_state_nolock(uint32_t& n_bytes_newtx, uint32_t& n_bytes_prio)
{
n_bytes_newtx = 0;
n_bytes_prio = 0;
uint32_t n_sdus = 0;
if (not tx_enabled) {
return;
}
RlcDebug("Buffer state - do_status=%s, status_prohibit_running=%s (%d/%d)",
do_status() ? "yes" : "no",
status_prohibit_timer.is_running() ? "yes" : "no",
status_prohibit_timer.time_elapsed(),
status_prohibit_timer.duration());
// Bytes needed for status report
if (do_status() && not status_prohibit_timer.is_running()) {
n_bytes_prio += rx->get_status_pdu_length();
RlcDebug("Buffer state - total status report: %d bytes", n_bytes_prio);
}
// Bytes needed for retx
if (not retx_queue.empty()) {
rlc_amd_retx_lte_t& retx = retx_queue.front();
RlcDebug("Buffer state - retx - SN=%d, Segment: %s, %d:%d",
retx.sn,
retx.is_segment ? "true" : "false",
retx.so_start,
retx.so_end);
if (tx_window.has_sn(retx.sn)) {
int req_bytes = required_buffer_size(retx);
if (req_bytes < 0) {
RlcError("In get_buffer_state(): Removing retx.sn=%d from queue", retx.sn);
retx_queue.pop();
} else {
n_bytes_prio += req_bytes;
RlcDebug("Buffer state - retx: %d bytes", n_bytes_prio);
}
}
}
// Bytes needed for tx SDUs
if (not window_full()) {
n_sdus = tx_sdu_queue.get_n_sdus();
n_bytes_newtx += tx_sdu_queue.size_bytes();
if (tx_sdu != NULL) {
n_sdus++;
n_bytes_newtx += tx_sdu->N_bytes;
}
}
// Room needed for header extensions? (integer rounding)
if (n_sdus > 1) {
n_bytes_newtx += ((n_sdus - 1) * 1.5) + 0.5;
}
// Room needed for fixed header of data PDUs
if (n_bytes_newtx > 0 && n_sdus > 0) {
n_bytes_newtx += 2; // Two bytes for fixed header with SN length = 10
RlcDebug("Total buffer state - %d SDUs (%d B)", n_sdus, n_bytes_newtx);
}
if (bsr_callback) {
RlcDebug("Calling BSR callback - %d new_tx, %d prio bytes", n_bytes_newtx, n_bytes_prio);
bsr_callback(parent->lcid, n_bytes_newtx, n_bytes_prio);
}
}
uint32_t rlc_am_lte_tx::read_pdu(uint8_t* payload, uint32_t nof_bytes)
{
std::lock_guard<std::mutex> lock(mutex);
if (not tx_enabled) {
return 0;
}
RlcDebug("MAC opportunity - %d bytes", nof_bytes);
RlcDebug("tx_window size - %zu PDUs", tx_window.size());
if (not tx_enabled) {
RlcDebug("RLC entity not active. Not generating PDU.");
return 0;
}
// Tx STATUS if requested
if (do_status() && not status_prohibit_timer.is_running()) {
return build_status_pdu(payload, nof_bytes);
}
// Section 5.2.2.3 in TS 36.311, if tx_window is full and retx_queue empty, retransmit PDU
if (window_full() && retx_queue.empty()) {
retransmit_pdu(vt_a);
}
// RETX if required
if (not retx_queue.empty()) {
int32_t pdu_size = build_retx_pdu(payload, nof_bytes);
if (pdu_size > 0) {
return pdu_size;
}
}
// Build a PDU from SDUs
return build_data_pdu(payload, nof_bytes);
}
void rlc_am_lte_tx::timer_expired(uint32_t timeout_id)
{
std::unique_lock<std::mutex> lock(mutex);
if (poll_retx_timer.is_valid() && poll_retx_timer.id() == timeout_id) {
RlcDebug("Poll retx timer expired after %dms", poll_retx_timer.duration());
// Section 5.2.2.3 in TS 36.322, schedule PDU for retransmission if
// (a) both tx and retx buffer are empty (excluding tx'ed PDU waiting for ack), or
// (b) no new data PDU can be transmitted (tx window is full)
if ((retx_queue.empty() && tx_sdu_queue.size() == 0) || window_full()) {
retransmit_pdu(vt_a); // TODO: TS says to send vt_s - 1 here
}
} else if (status_prohibit_timer.is_valid() && status_prohibit_timer.id() == timeout_id) {
RlcDebug("Status prohibit timer expired after %dms", status_prohibit_timer.duration());
}
if (bsr_callback) {
uint32_t new_tx_queue = 0, prio_tx_queue = 0;
get_buffer_state_nolock(new_tx_queue, prio_tx_queue);
}
}
void rlc_am_lte_tx::retransmit_pdu(uint32_t sn)
{
if (tx_window.empty()) {
RlcWarning("No PDU to retransmit");
return;
}
if (not tx_window.has_sn(sn)) {
RlcWarning("Can't retransmit unexisting SN=%d", sn);
return;
}
// select first PDU in tx window for retransmission
rlc_amd_tx_pdu_lte& pdu = tx_window[sn];
// increment retx counter and inform upper layers
pdu.retx_count++;
check_sn_reached_max_retx(sn);
RlcInfo("Schedule SN=%d for retx", pdu.rlc_sn);
rlc_amd_retx_lte_t& retx = retx_queue.push();
retx.is_segment = false;
retx.so_start = 0;
retx.so_end = pdu.buf->N_bytes;
retx.sn = pdu.rlc_sn;
}
/****************************************************************************
* Helper functions
***************************************************************************/
bool rlc_am_lte_tx::window_full()
{
return TX_MOD_BASE(vt_s) >= RLC_AM_WINDOW_SIZE;
};
/**
* Called when building a RLC PDU for checking whether the poll bit needs
* to be set.
*
* Note that this is called from a PHY worker thread.
*
* @return True if a status PDU needs to be requested, false otherwise.
*/
bool rlc_am_lte_tx::poll_required()
{
if (cfg.poll_pdu > 0 && pdu_without_poll > static_cast<uint32_t>(cfg.poll_pdu)) {
RlcDebug("Poll required. Cause: PDU_WITHOUT_POLL > pollPdu.");
return true;
}
if (cfg.poll_byte > 0 && byte_without_poll > static_cast<uint32_t>(cfg.poll_byte)) {
RlcDebug("Poll required. Cause: BYTE_WITHOUT_POLL > pollByte.");
return true;
}
if (poll_retx_timer.is_valid() && poll_retx_timer.is_expired()) {
// re-arming of timer is handled by caller
RlcDebug("Poll required. Cause: t-PollRetransmission expired.");
return true;
}
if (window_full()) {
RlcDebug("Poll required. Cause: TX window full.");
return true;
}
if (tx_sdu_queue.size() == 0 && retx_queue.empty()) {
RlcDebug("Poll required. Cause: Empty TX and ReTX queues.");
return true;
}
/* According to 5.2.2.1 in 36.322 v13.3.0 a poll should be requested if
* the entire AM window is unacknowledged, i.e. no new PDU can be transmitted.
* However, it seems more appropriate to request more often if polling
* is disabled otherwise, e.g. every N PDUs.
*/
if (cfg.poll_pdu == 0 && cfg.poll_byte == 0 && vt_s % rlc_am::poll_periodicity == 0) {
return true;
}
return false;
}
int rlc_am_lte_tx::build_status_pdu(uint8_t* payload, uint32_t nof_bytes)
{
RlcDebug("Generating status PDU. Nof bytes %d", nof_bytes);
int pdu_len = rx->get_status_pdu(&tx_status, nof_bytes);
if (pdu_len == SRSRAN_ERROR) {
RlcDebug("Deferred Status PDU. Cause: Failed to acquire Rx lock");
pdu_len = 0;
} else if (pdu_len > 0 && nof_bytes >= static_cast<uint32_t>(pdu_len)) {
log_rlc_am_status_pdu_to_string(logger.info, rb_name, "Tx status PDU - %s", &tx_status);
if (cfg.t_status_prohibit > 0 && status_prohibit_timer.is_valid()) {
// re-arm timer
status_prohibit_timer.run();
}
debug_state();
pdu_len = rlc_am_write_status_pdu(&tx_status, payload);
} else {
RlcInfo("Cannot tx status PDU - %d bytes available, %d bytes required", nof_bytes, pdu_len);
pdu_len = 0;
}
return pdu_len;
}
int rlc_am_lte_tx::build_retx_pdu(uint8_t* payload, uint32_t nof_bytes)
{
// Check there is at least 1 element before calling front()
if (retx_queue.empty()) {
RlcError("In build_retx_pdu(): retx_queue is empty");
return -1;
}
rlc_amd_retx_lte_t retx = retx_queue.front();
// Sanity check - drop any retx SNs not present in tx_window
while (not tx_window.has_sn(retx.sn)) {
retx_queue.pop();
if (!retx_queue.empty()) {
retx = retx_queue.front();
} else {
RlcInfo("SN=%d not in Tx window. Ignoring retx.", retx.sn);
if (tx_window.has_sn(vt_a)) {
// schedule next SN for retx
retransmit_pdu(vt_a);
retx = retx_queue.front();
} else {
// empty tx window, can't provide retx PDU
return 0;
}
}
}
// Is resegmentation needed?
int req_size = required_buffer_size(retx);
if (req_size < 0) {
RlcError("In build_retx_pdu(): Removing retx.sn=%d from queue", retx.sn);
retx_queue.pop();
return -1;
}
if (retx.is_segment || req_size > static_cast<int>(nof_bytes)) {
RlcDebug("build_retx_pdu - resegmentation required");
return build_segment(payload, nof_bytes, retx);
}
// Update & write header
rlc_amd_pdu_header_t new_header = tx_window[retx.sn].header;
new_header.p = 0;
// Set poll bit
pdu_without_poll++;
byte_without_poll += (tx_window[retx.sn].buf->N_bytes + rlc_am_packed_length(&new_header));
RlcInfo("pdu_without_poll: %d", pdu_without_poll);
RlcInfo("byte_without_poll: %d", byte_without_poll);
if (poll_required()) {
new_header.p = 1;
// vt_s won't change for reTx, so don't update poll_sn
pdu_without_poll = 0;
byte_without_poll = 0;
if (poll_retx_timer.is_valid()) {
// re-arm timer (will be stopped when status PDU is received)
RlcDebug("re-arming retx timer");
poll_retx_timer.run();
}
}
uint8_t* ptr = payload;
rlc_am_write_data_pdu_header(&new_header, &ptr);
memcpy(ptr, tx_window[retx.sn].buf->msg, tx_window[retx.sn].buf->N_bytes);
retx_queue.pop();
RlcHexInfo(payload,
tx_window[retx.sn].buf->N_bytes,
"Tx PDU SN=%d (%d B) (attempt %d/%d)",
retx.sn,
tx_window[retx.sn].buf->N_bytes,
tx_window[retx.sn].retx_count + 1,
cfg.max_retx_thresh);
log_rlc_amd_pdu_header_to_string(logger.debug, rb_name, "Tx PDU - %s", new_header);
debug_state();
return (ptr - payload) + tx_window[retx.sn].buf->N_bytes;
}
int rlc_am_lte_tx::build_segment(uint8_t* payload, uint32_t nof_bytes, rlc_amd_retx_lte_t retx)
{
if (tx_window[retx.sn].buf == NULL) {
RlcError("In build_segment: retx.sn=%d has null buffer", retx.sn);
return 0;
}
if (!retx.is_segment) {
retx.so_start = 0;
retx.so_end = tx_window[retx.sn].buf->N_bytes;
}
// Construct new header
rlc_amd_pdu_header_t new_header;
rlc_amd_pdu_header_t old_header = tx_window[retx.sn].header;
pdu_without_poll++;
byte_without_poll += (tx_window[retx.sn].buf->N_bytes + rlc_am_packed_length(&new_header));
RlcInfo("pdu_without_poll: %d, byte_without_poll: %d", pdu_without_poll, byte_without_poll);
new_header.dc = RLC_DC_FIELD_DATA_PDU;
new_header.rf = 1;
new_header.fi = RLC_FI_FIELD_NOT_START_OR_END_ALIGNED;
new_header.sn = old_header.sn;
new_header.lsf = 0;
new_header.so = retx.so_start;
new_header.N_li = 0;
new_header.p = 0; // Poll Requirements are done later after updating RETX queue
uint32_t head_len = 0;
uint32_t pdu_space = 0;
head_len = rlc_am_packed_length(&new_header);
if (old_header.N_li > 0) {
// Make sure we can fit at least one N_li element if old header contained at least one
head_len += 2;
}
if (nof_bytes <= head_len) {
RlcInfo("Cannot build a PDU segment - %d bytes available, %d bytes required for header", nof_bytes, head_len);
return 0;
}
pdu_space = nof_bytes - head_len;
if (pdu_space < (retx.so_end - retx.so_start)) {
retx.so_end = retx.so_start + pdu_space;
}
// Need to rebuild the li table & update fi based on so_start and so_end
if (retx.so_start == 0 && rlc_am_start_aligned(old_header.fi)) {
new_header.fi &= RLC_FI_FIELD_NOT_END_ALIGNED; // segment is start aligned
}
uint32_t lower = 0;
uint32_t upper = 0;
uint32_t li = 0;
for (uint32_t i = 0; i < old_header.N_li; i++) {
if (lower >= retx.so_end) {
break;
}
upper += old_header.li[i];
head_len = rlc_am_packed_length(&new_header);
pdu_space = nof_bytes - head_len;
if (pdu_space < (retx.so_end - retx.so_start)) {
retx.so_end = retx.so_start + pdu_space;
}
if (upper > retx.so_start && lower < retx.so_end) { // Current SDU is needed
li = upper - lower;
if (upper > retx.so_end) {
li -= upper - retx.so_end;
}
if (lower < retx.so_start) {
li -= retx.so_start - lower;
}
if (lower > 0 && lower == retx.so_start) {
new_header.fi &= RLC_FI_FIELD_NOT_END_ALIGNED; // segment start is aligned with this SDU
}
if (upper == retx.so_end) {
new_header.fi &= RLC_FI_FIELD_NOT_START_ALIGNED; // segment end is aligned with this SDU
}
new_header.li[new_header.N_li] = li;
// only increment N_li if more SDU (segments) are/can being added
if (retx.so_end > upper) {
// Calculate header space for possible segment addition
rlc_amd_pdu_header_t tmp_header = new_header;
tmp_header.N_li++;
uint32_t tmp_header_len = rlc_am_packed_length(&tmp_header);
uint32_t tmp_data_len = retx.so_end - retx.so_start;
if (tmp_header_len + tmp_data_len <= nof_bytes) {
// Space is sufficiant to fit at least 1 B of yet another segment
new_header.N_li++;
} else {
// can't add new SDU, calculate total data length
uint32_t data_len = 0;
for (uint32_t k = 0; k <= new_header.N_li; ++k) {
data_len += new_header.li[k];
}
retx.so_end = retx.so_start + data_len;
new_header.fi &= RLC_FI_FIELD_NOT_START_ALIGNED; // segment end is aligned with this SDU
}
}
}
lower += old_header.li[i];
}
// Santity check we don't pack beyond the provided buffer
srsran_expect(head_len + (retx.so_end - retx.so_start) <= nof_bytes, "The provided buffer was overflown.");
// Update retx_queue
if (tx_window[retx.sn].buf->N_bytes == retx.so_end) {
retx_queue.pop();
new_header.lsf = 1;
if (rlc_am_end_aligned(old_header.fi)) {
new_header.fi &= RLC_FI_FIELD_NOT_START_ALIGNED; // segment is end aligned
}
} else if (retx_queue.front().so_end == retx.so_end) {
retx_queue.pop();
} else {
retx_queue.front().is_segment = true;
retx_queue.front().so_start = retx.so_end;
}
// Check POLL requeriments for segment
if (poll_required()) {
RlcDebug("setting poll bit to request status");
new_header.p = 1;
// vt_s won't change for reTx, so don't update poll_sn
pdu_without_poll = 0;
byte_without_poll = 0;
if (poll_retx_timer.is_valid()) {
poll_retx_timer.run();
}
}
// Write header and pdu
uint8_t* ptr = payload;
rlc_am_write_data_pdu_header(&new_header, &ptr);
uint8_t* data = &tx_window[retx.sn].buf->msg[retx.so_start];
uint32_t len = retx.so_end - retx.so_start;
memcpy(ptr, data, len);
debug_state();
int pdu_len = (ptr - payload) + len;
if (pdu_len > static_cast<int>(nof_bytes)) {
RlcError("Retx PDU segment length error. Available: %d, Used: %d", nof_bytes, pdu_len);
int header_len = (ptr - payload);
RlcDebug("Retx PDU segment length error. Actual header len: %d, Payload len: %d, N_li: %d",
header_len,
len,
new_header.N_li);
}
RlcHexInfo(payload,
pdu_len,
"retx PDU segment SN=%d [so=%d] (%d B) (attempt %d/%d)",
retx.sn,
retx.so_start,
pdu_len,
tx_window[retx.sn].retx_count + 1,
cfg.max_retx_thresh);
return pdu_len;
}
int rlc_am_lte_tx::build_data_pdu(uint8_t* payload, uint32_t nof_bytes)
{
if (tx_sdu == NULL && tx_sdu_queue.is_empty()) {
RlcInfo("No data available to be sent");
return 0;
}
// do not build any more PDU if window is already full
if (window_full()) {
RlcInfo("Cannot build data PDU - Tx window full.");
return 0;
}
if (nof_bytes < RLC_AM_MIN_DATA_PDU_SIZE) {
RlcInfo("Cannot build data PDU - %d bytes available but at least %d bytes are required ",
nof_bytes,
RLC_AM_MIN_DATA_PDU_SIZE);
return 0;
}
unique_byte_buffer_t pdu = srsran::make_byte_buffer();
if (pdu == NULL) {
#ifdef RLC_AM_BUFFER_DEBUG
srsran::console("Fatal Error: Could not allocate PDU in build_data_pdu()\n");
srsran::console("tx_window size: %zd PDUs\n", tx_window.size());
srsran::console("vt_a = %d, vt_ms = %d, vt_s = %d, poll_sn = %d\n", vt_a, vt_ms, vt_s, poll_sn);
srsran::console("retx_queue size: %zd PDUs\n", retx_queue.size());
std::map<uint32_t, rlc_amd_tx_pdu>::iterator txit;
for (txit = tx_window.begin(); txit != tx_window.end(); txit++) {
srsran::console("tx_window - SN=%d\n", txit->first);
}
exit(-1);
#else
RlcError("Fatal Error: Couldn't allocate PDU in build_data_pdu().");
return 0;
#endif
}
rlc_amd_pdu_header_t header = {};
header.dc = RLC_DC_FIELD_DATA_PDU;
header.fi = RLC_FI_FIELD_START_AND_END_ALIGNED;
header.sn = vt_s;
if (not segment_pool.has_segments()) {
RlcInfo("Can't build a PDU - No segments available");
return 0;
}
// insert newly assigned SN into window and use reference for in-place operations
// NOTE: from now on, we can't return from this function anymore before increasing vt_s
rlc_amd_tx_pdu_lte& tx_pdu = tx_window.add_pdu(header.sn);
uint32_t head_len = rlc_am_packed_length(&header);
uint32_t to_move = 0;
uint32_t last_li = 0;
uint32_t pdu_space = SRSRAN_MIN(nof_bytes, pdu->get_tailroom());
uint8_t* pdu_ptr = pdu->msg;
RlcDebug("Building PDU - pdu_space: %d, head_len: %d ", pdu_space, head_len);
// Check for SDU segment
if (tx_sdu != nullptr) {
to_move = ((pdu_space - head_len) >= tx_sdu->N_bytes) ? tx_sdu->N_bytes : pdu_space - head_len;
memcpy(pdu_ptr, tx_sdu->msg, to_move);
last_li = to_move;
pdu_ptr += to_move;
pdu->N_bytes += to_move;
tx_sdu->N_bytes -= to_move;
tx_sdu->msg += to_move;
if (undelivered_sdu_info_queue.has_pdcp_sn(tx_sdu->md.pdcp_sn)) {
pdcp_pdu_info_lte& pdcp_pdu = undelivered_sdu_info_queue[tx_sdu->md.pdcp_sn];
segment_pool.make_segment(tx_pdu, pdcp_pdu);
if (tx_sdu->N_bytes == 0) {
pdcp_pdu.fully_txed = true;
}
} else {
// PDCP SNs for the RLC SDU has been removed from the queue
RlcWarning("Couldn't find PDCP_SN=%d in SDU info queue (segment)", tx_sdu->md.pdcp_sn);
}
if (tx_sdu->N_bytes == 0) {
RlcDebug("Complete SDU scheduled for tx.");
tx_sdu.reset();
}
if (pdu_space > to_move) {
pdu_space -= SRSRAN_MIN(to_move, pdu->get_tailroom());
} else {
pdu_space = 0;
}
header.fi |= RLC_FI_FIELD_NOT_START_ALIGNED; // First byte does not correspond to first byte of SDU
RlcDebug("Building PDU - added SDU segment from previous PDU (len:%d) - pdu_space: %d, head_len: %d header_sn=%d",
to_move,
pdu_space,
head_len,
header.sn);
}
// Pull SDUs from queue
while (pdu_space > head_len && tx_sdu_queue.get_n_sdus() > 0 && header.N_li < MAX_SDUS_PER_PDU) {
if (not segment_pool.has_segments()) {
RlcInfo("Can't build a PDU segment - No segment resources available");
if (pdu_ptr != pdu->msg) {
break; // continue with the segments created up to this point
}
tx_window.remove_pdu(tx_pdu.rlc_sn);
return 0;
}
if (last_li > 0) {
header.li[header.N_li] = last_li;
header.N_li++;
}
head_len = rlc_am_packed_length(&header);
if (head_len >= pdu_space) {
if (header.N_li > 0) {
header.N_li--;
}
break;
}
do {
tx_sdu = tx_sdu_queue.read();
} while (tx_sdu == nullptr && tx_sdu_queue.size() != 0);
if (tx_sdu == nullptr) {
if (header.N_li > 0) {
header.N_li--;
}
break;
}
// store sdu info
if (undelivered_sdu_info_queue.has_pdcp_sn(tx_sdu->md.pdcp_sn)) {
RlcWarning("PDCP_SN=%d already marked as undelivered", tx_sdu->md.pdcp_sn);
} else {
RlcDebug("marking pdcp_sn=%d as undelivered (queue_len=%ld)",
tx_sdu->md.pdcp_sn,
undelivered_sdu_info_queue.nof_sdus());
undelivered_sdu_info_queue.add_pdcp_sdu(tx_sdu->md.pdcp_sn);
}
pdcp_pdu_info_lte& pdcp_pdu = undelivered_sdu_info_queue[tx_sdu->md.pdcp_sn];
to_move = ((pdu_space - head_len) >= tx_sdu->N_bytes) ? tx_sdu->N_bytes : pdu_space - head_len;
memcpy(pdu_ptr, tx_sdu->msg, to_move);
last_li = to_move;
pdu_ptr += to_move;
pdu->N_bytes += to_move;
tx_sdu->N_bytes -= to_move;
tx_sdu->msg += to_move;
segment_pool.make_segment(tx_pdu, pdcp_pdu);
if (tx_sdu->N_bytes == 0) {
pdcp_pdu.fully_txed = true;
}
if (tx_sdu->N_bytes == 0) {
RlcDebug("Complete SDU scheduled for tx. PDCP SN=%d", tx_sdu->md.pdcp_sn);
tx_sdu.reset();
}
if (pdu_space > to_move) {
pdu_space -= to_move;
} else {
pdu_space = 0;
}
RlcDebug("Building PDU - added SDU segment (len:%d) - pdu_space: %d, head_len: %d ", to_move, pdu_space, head_len);
}
// Make sure, at least one SDU (segment) has been added until this point
if (pdu->N_bytes == 0) {
RlcError("Generated empty RLC PDU.");
}
if (tx_sdu != NULL) {
header.fi |= RLC_FI_FIELD_NOT_END_ALIGNED; // Last byte does not correspond to last byte of SDU
}
// Set Poll bit
pdu_without_poll++;
byte_without_poll += (pdu->N_bytes + head_len);
RlcDebug("pdu_without_poll: %d", pdu_without_poll);
RlcDebug("byte_without_poll: %d", byte_without_poll);
if (poll_required()) {
RlcDebug("setting poll bit to request status");
header.p = 1;
poll_sn = vt_s;
pdu_without_poll = 0;
byte_without_poll = 0;
if (poll_retx_timer.is_valid()) {
poll_retx_timer.run();
}
}
// Update Tx window
vt_s = (vt_s + 1) % MOD;
// Write final header and TX
tx_pdu.buf = std::move(pdu);
tx_pdu.header = header;
const byte_buffer_t* buffer_ptr = tx_pdu.buf.get();
uint8_t* ptr = payload;
rlc_am_write_data_pdu_header(&header, &ptr);
memcpy(ptr, buffer_ptr->msg, buffer_ptr->N_bytes);
int total_len = (ptr - payload) + buffer_ptr->N_bytes;
RlcHexInfo(payload, total_len, "Tx PDU SN=%d (%d B)", header.sn, total_len);
log_rlc_amd_pdu_header_to_string(logger.debug, rb_name, "%s", header);
debug_state();
return total_len;
}
void rlc_am_lte_tx::handle_control_pdu(uint8_t* payload, uint32_t nof_bytes)
{
if (not tx_enabled) {
return;
}
// Local variables for handling Status PDU will be updated with lock
rlc_status_pdu_t status = {};
uint32_t i = 0;
uint32_t vt_s_local = 0;
{
std::lock_guard<std::mutex> lock(mutex);
RlcHexDebug(payload, nof_bytes, "Rx control PDU");
rlc_am_read_status_pdu(payload, nof_bytes, &status);
log_rlc_am_status_pdu_to_string(logger.info, rb_name, "Rx Status PDU %s", &status);
// make sure ACK_SN is within our Tx window
if (((MOD + status.ack_sn - vt_a) % MOD > RLC_AM_WINDOW_SIZE) ||
((MOD + vt_s - status.ack_sn) % MOD > RLC_AM_WINDOW_SIZE)) {
RlcWarning("Received invalid status PDU (ack_sn=%d, vt_a=%d, vt_s=%d). Dropping PDU.", status.ack_sn, vt_a, vt_s);
return;
}
// Sec 5.2.2.2, stop poll reTx timer if status PDU comprises a positive _or_ negative acknowledgement
// for the RLC data PDU with sequence number poll_sn
if (poll_retx_timer.is_valid() && (TX_MOD_BASE(poll_sn) < TX_MOD_BASE(status.ack_sn))) {
RlcDebug("Stopping pollRetx timer");
poll_retx_timer.stop();
}
// flush retx queue to avoid unordered SNs, we expect the Rx to request lost PDUs again
if (status.N_nack > 0) {
retx_queue.clear();
}
i = vt_a;
vt_s_local = vt_s;
}
bool update_vt_a = true;
while (TX_MOD_BASE(i) < TX_MOD_BASE(status.ack_sn) && TX_MOD_BASE(i) < TX_MOD_BASE(vt_s_local)) {
bool nack = false;
for (uint32_t j = 0; j < status.N_nack; j++) {
if (status.nacks[j].nack_sn == i) {
nack = true;
update_vt_a = false;
std::lock_guard<std::mutex> lock(mutex);
if (tx_window.has_sn(i)) {
auto& pdu = tx_window[i];
// add to retx queue if it's not already there
if (not retx_queue.has_sn(i)) {
// increment Retx counter and inform upper layers if needed
pdu.retx_count++;
check_sn_reached_max_retx(i);
rlc_amd_retx_lte_t& retx = retx_queue.push();
srsran_expect(tx_window[i].rlc_sn == i, "Incorrect RLC SN=%d!=%d being accessed", tx_window[i].rlc_sn, i);
retx.sn = i;
retx.is_segment = false;
retx.so_start = 0;
retx.so_end = pdu.buf->N_bytes;
if (status.nacks[j].has_so) {
// sanity check
if (status.nacks[j].so_start >= pdu.buf->N_bytes) {
// print error but try to send original PDU again
RlcInfo("SO_start is larger than original PDU (%d >= %d)", status.nacks[j].so_start, pdu.buf->N_bytes);
status.nacks[j].so_start = 0;
}
// check for special SO_end value
if (status.nacks[j].so_end == 0x7FFF) {
status.nacks[j].so_end = pdu.buf->N_bytes;
} else {
retx.so_end = status.nacks[j].so_end + 1;
}
if (status.nacks[j].so_start < pdu.buf->N_bytes && status.nacks[j].so_end <= pdu.buf->N_bytes) {
retx.is_segment = true;
retx.so_start = status.nacks[j].so_start;
} else {
RlcWarning("invalid segment NACK received for SN %d. so_start: %d, so_end: %d, N_bytes: %d",
i,
status.nacks[j].so_start,
status.nacks[j].so_end,
pdu.buf->N_bytes);
}
}
} else {
RlcInfo("NACKed SN=%d already considered for retransmission", i);
}
} else {
RlcError("NACKed SN=%d already removed from Tx window", i);
}
}
}
if (!nack) {
// ACKed SNs get marked and removed from tx_window so PDCP get's only notified once
std::lock_guard<std::mutex> lock(mutex);
if (tx_window.has_sn(i)) {
update_notification_ack_info(i);
RlcDebug("Tx PDU SN=%zd being removed from tx window", i);
tx_window.remove_pdu(i);
}
// Advance window if possible
if (update_vt_a) {
vt_a = (vt_a + 1) % MOD;
vt_ms = (vt_ms + 1) % MOD;
}
}
i = (i + 1) % MOD;
}
{
// Make sure vt_a points to valid SN
std::lock_guard<std::mutex> lock(mutex);
if (not tx_window.empty() && not tx_window.has_sn(vt_a)) {
RlcError("vt_a=%d points to invalid position in Tx window.", vt_a);
parent->rrc->protocol_failure();
}
}
debug_state();
// Notify PDCP without holding Tx mutex
if (not notify_info_vec.empty()) {
parent->pdcp->notify_delivery(parent->lcid, notify_info_vec);
}
notify_info_vec.clear();
}
/*
* Helper function to detect whether a PDU has been fully ack'ed and the PDCP needs to be notified about it
* @tx_pdu: RLC PDU that was ack'ed.
* @notify_info_vec: Vector which will keep track of the PDCP PDU SNs that have been fully ack'ed.
*/
void rlc_am_lte_tx::update_notification_ack_info(uint32_t rlc_sn)
{
RlcDebug("Updating ACK info: RLC SN=%d, number of notified SDU=%ld, number of undelivered SDUs=%ld",
rlc_sn,
notify_info_vec.size(),
undelivered_sdu_info_queue.nof_sdus());
// Iterate over all undelivered SDUs
if (not tx_window.has_sn(rlc_sn)) {
return;
}
auto& acked_pdu = tx_window[rlc_sn];
// Iterate over all PDCP SNs of the same RLC PDU that were TX'ed
for (rlc_am_pdu_segment& acked_segment : acked_pdu) {
uint32_t pdcp_sn = acked_segment.pdcp_sn();
if (pdcp_sn == rlc_am_pdu_segment::invalid_pdcp_sn) {
RlcDebug("ACKed segment in RLC_SN=%d already discarded in PDCP. No need to notify the PDCP.", rlc_sn);
continue;
}
pdcp_pdu_info_lte& info = undelivered_sdu_info_queue[pdcp_sn];
// Remove RLC SN from PDCP PDU undelivered list
info.ack_segment(acked_segment);
// Check whether the SDU was fully acked
if (info.fully_acked()) {
// Check if all SNs were ACK'ed
if (not notify_info_vec.full()) {
notify_info_vec.push_back(pdcp_sn);
} else {
RlcWarning("Can't notify delivery of PDCP_SN=%d.", pdcp_sn);
}
RlcDebug("Erasing SDU info: PDCP_SN=%d", pdcp_sn);
undelivered_sdu_info_queue.clear_pdcp_sdu(pdcp_sn);
}
}
}
void rlc_am_lte_tx::debug_state()
{
RlcDebug("vt_a = %d, vt_ms = %d, vt_s = %d, poll_sn = %d", vt_a, vt_ms, vt_s, poll_sn);
}
int rlc_am_lte_tx::required_buffer_size(const rlc_amd_retx_lte_t& retx)
{
if (!retx.is_segment) {
if (tx_window.has_sn(retx.sn)) {
if (tx_window[retx.sn].buf) {
return rlc_am_packed_length(&tx_window[retx.sn].header) + tx_window[retx.sn].buf->N_bytes;
} else {
RlcWarning("retx.sn=%d has null ptr in required_buffer_size()", retx.sn);
return -1;
}
} else {
RlcWarning("retx.sn=%d does not exist in required_buffer_size()", retx.sn);
return -1;
}
}
// Construct new header
rlc_amd_pdu_header_t new_header;
rlc_amd_pdu_header_t old_header = tx_window[retx.sn].header;
new_header.dc = RLC_DC_FIELD_DATA_PDU;
new_header.rf = 1;
new_header.p = 0;
new_header.fi = RLC_FI_FIELD_NOT_START_OR_END_ALIGNED;
new_header.sn = old_header.sn;
new_header.lsf = 0;
new_header.so = retx.so_start;
new_header.N_li = 0;
// Need to rebuild the li table & update fi based on so_start and so_end
if (retx.so_start != 0 && rlc_am_start_aligned(old_header.fi)) {
new_header.fi &= RLC_FI_FIELD_NOT_END_ALIGNED; // segment is start aligned
}
uint32_t lower = 0;
uint32_t upper = 0;
uint32_t li = 0;
for (uint32_t i = 0; i < old_header.N_li; i++) {
if (lower >= retx.so_end) {
break;
}
upper += old_header.li[i];
if (upper > retx.so_start && lower < retx.so_end) { // Current SDU is needed
li = upper - lower;
if (upper > retx.so_end) {
li -= upper - retx.so_end;
}
if (lower < retx.so_start) {
li -= retx.so_start - lower;
}
if (lower > 0 && lower == retx.so_start) {
new_header.fi &= RLC_FI_FIELD_NOT_END_ALIGNED; // segment start is aligned with this SDU
}
if (upper == retx.so_end) {
new_header.fi &= RLC_FI_FIELD_NOT_START_ALIGNED; // segment end is aligned with this SDU
}
new_header.li[new_header.N_li++] = li;
}
lower += old_header.li[i];
}
// if(tx_window[retx.sn].buf->N_bytes != retx.so_end) {
// if(new_header.N_li > 0)
// new_header.N_li--; // No li for last segment
// }
return rlc_am_packed_length(&new_header) + (retx.so_end - retx.so_start);
}
/****************************************************************************
* Rx subclass implementation
***************************************************************************/
rlc_am_lte_rx::rlc_am_lte_rx(rlc_am* parent_) :
parent(parent_),
pool(byte_buffer_pool::get_instance()),
reordering_timer(parent_->timers->get_unique_timer()),
rlc_am_base_rx(parent_, parent_->logger)
{
}
bool rlc_am_lte_rx::configure(const rlc_config_t& cfg_)
{
// TODO: add config checks
cfg = cfg_.am;
rb_name = parent->rb_name;
// check timers
if (not reordering_timer.is_valid()) {
RlcError("Configuring RLC AM TX: timers not configured");
return false;
}
// configure timer
if (cfg.t_reordering > 0) {
reordering_timer.set(static_cast<uint32_t>(cfg.t_reordering), [this](uint32_t tid) { timer_expired(tid); });
}
return true;
}
void rlc_am_lte_rx::reestablish()
{
stop();
}
void rlc_am_lte_rx::stop()
{
std::lock_guard<std::mutex> lock(mutex);
if (parent->timers != nullptr && reordering_timer.is_valid()) {
reordering_timer.stop();
}
rx_sdu.reset();
vr_r = 0;
vr_mr = RLC_AM_WINDOW_SIZE;
vr_x = 0;
vr_ms = 0;
vr_h = 0;
poll_received = false;
do_status = false;
// Drop all messages in RX segments
rx_segments.clear();
// Drop all messages in RX window
rx_window.clear();
}
/** Called from stack thread when MAC has received a new RLC PDU
*
* @param payload Pointer to payload
* @param nof_bytes Payload length
*/
void rlc_am_lte_rx::handle_data_pdu(uint8_t* payload, uint32_t nof_bytes)
{
std::lock_guard<std::mutex> lock(mutex);
rlc_amd_pdu_header_t header = {};
uint32_t payload_len = nof_bytes;
rlc_am_read_data_pdu_header(&payload, &payload_len, &header);
if (payload_len > nof_bytes) {
RlcInfo("Dropping corrupted PDU (%d B). Remaining length after header %d B.", nof_bytes, payload_len);
return;
}
if (header.rf != 0) {
handle_data_pdu_segment(payload, payload_len, header);
} else {
handle_data_pdu_full(payload, payload_len, header);
}
}
/** Called from stack thread when MAC has received a new RLC PDU
*
* @param payload Pointer to payload
* @param nof_bytes Payload length
* @param header Reference to PDU header (unpacked by caller)
*/
void rlc_am_lte_rx::handle_data_pdu_full(uint8_t* payload, uint32_t nof_bytes, rlc_amd_pdu_header_t& header)
{
std::map<uint32_t, rlc_amd_rx_pdu>::iterator it;
RlcHexInfo(payload, nof_bytes, "Rx data PDU SN=%d (%d B)", header.sn, nof_bytes);
log_rlc_amd_pdu_header_to_string(logger.debug, rb_name, "%s", header);
// sanity check for segments not exceeding PDU length
if (header.N_li > 0) {
uint32_t segments_len = 0;
for (uint32_t i = 0; i < header.N_li; i++) {
segments_len += header.li[i];
if (segments_len > nof_bytes) {
RlcInfo("Dropping corrupted PDU (segments_len=%d > pdu_len=%d)", segments_len, nof_bytes);
return;
}
}
}
if (!inside_rx_window(header.sn)) {
if (header.p) {
RlcInfo("Status packet requested through polling bit");
do_status = true;
}
RlcInfo("SN=%d outside rx window [%d:%d] - discarding", header.sn, vr_r, vr_mr);
return;
}
if (rx_window.has_sn(header.sn)) {
if (header.p) {
RlcInfo("Status packet requested through polling bit");
do_status = true;
}
RlcInfo("Discarding duplicate SN=%d", header.sn);
return;
}
// Write to rx window
rlc_amd_rx_pdu& pdu = rx_window.add_pdu(header.sn);
pdu.buf = srsran::make_byte_buffer();
if (pdu.buf == NULL) {
#ifdef RLC_AM_BUFFER_DEBUG
srsran::console("Fatal Error: Couldn't allocate PDU in handle_data_pdu().\n");
exit(-1);
#else
RlcError("Fatal Error: Couldn't allocate PDU in handle_data_pdu().");
rx_window.remove_pdu(header.sn);
return;
#endif
}
pdu.buf->set_timestamp();
// check available space for payload
if (nof_bytes > pdu.buf->get_tailroom()) {
RlcError("Discarding SN=%d of size %d B (available space %d B)", header.sn, nof_bytes, pdu.buf->get_tailroom());
return;
}
memcpy(pdu.buf->msg, payload, nof_bytes);
pdu.buf->N_bytes = nof_bytes;
pdu.header = header;
// Update vr_h
if (RX_MOD_BASE(header.sn) >= RX_MOD_BASE(vr_h)) {
vr_h = (header.sn + 1) % MOD;
}
// Update vr_ms
while (rx_window.has_sn(vr_ms)) {
vr_ms = (vr_ms + 1) % MOD;
}
// Check poll bit
if (header.p) {
RlcInfo("Status packet requested through polling bit");
poll_received = true;
// 36.322 v10 Section 5.2.3
if (RX_MOD_BASE(header.sn) < RX_MOD_BASE(vr_ms) || RX_MOD_BASE(header.sn) >= RX_MOD_BASE(vr_mr)) {
do_status = true;
}
// else delay for reordering timer
}
// Reassemble and deliver SDUs
reassemble_rx_sdus();
// Update reordering variables and timers (36.322 v10.0.0 Section 5.1.3.2.3)
if (reordering_timer.is_valid()) {
if (reordering_timer.is_running()) {
if (vr_x == vr_r || (!inside_rx_window(vr_x) && vr_x != vr_mr)) {
RlcDebug("Stopping reordering timer.");
reordering_timer.stop();
} else {
RlcDebug("Leave reordering timer running.");
}
debug_state();
}
if (not reordering_timer.is_running()) {
if (RX_MOD_BASE(vr_h) > RX_MOD_BASE(vr_r)) {
RlcDebug("Starting reordering timer.");
reordering_timer.run();
vr_x = vr_h;
} else {
RlcDebug("Leave reordering timer stopped.");
}
debug_state();
}
}
debug_state();
}
void rlc_am_lte_rx::handle_data_pdu_segment(uint8_t* payload, uint32_t nof_bytes, rlc_amd_pdu_header_t& header)
{
std::map<uint32_t, rlc_amd_rx_pdu_segments_t>::iterator it;
RlcHexInfo(payload,
nof_bytes,
"Rx data PDU segment of SN=%d (%d B), SO=%d, N_li=%d",
header.sn,
nof_bytes,
header.so,
header.N_li);
log_rlc_amd_pdu_header_to_string(logger.debug, rb_name, "Rx data PDU segment %s", header);
// Check inside rx window
if (!inside_rx_window(header.sn)) {
if (header.p) {
logger.info("Status packet requested through polling bit");
do_status = true;
}
logger.info("SN=%d outside rx window [%d:%d] - discarding", header.sn, vr_r, vr_mr);
return;
}
rlc_amd_rx_pdu segment;
segment.buf = srsran::make_byte_buffer();
if (segment.buf == NULL) {
#ifdef RLC_AM_BUFFER_DEBUG
srsran::console("Fatal Error: Couldn't allocate PDU in handle_data_pdu_segment().\n");
exit(-1);
#else
logger.error("Fatal Error: Couldn't allocate PDU in handle_data_pdu_segment().");
return;
#endif
}
if (segment.buf->get_tailroom() < nof_bytes) {
RlcInfo("Dropping corrupted segment SN=%d, not enough space to fit %d B", header.sn, nof_bytes);
return;
}
memcpy(segment.buf->msg, payload, nof_bytes);
segment.buf->N_bytes = nof_bytes;
segment.header = header;
// Check if we already have a segment from the same PDU
it = rx_segments.find(header.sn);
if (rx_segments.end() != it) {
if (header.p) {
RlcInfo("Status packet requested through polling bit");
do_status = true;
}
// Add segment to PDU list and check for complete
// NOTE: MAY MOVE. Preference would be to capture by value, and then move; but header is stack allocated
if (add_segment_and_check(&it->second, &segment)) {
rx_segments.erase(it);
}
} else {
// Create new PDU segment list and write to rx_segments
rlc_amd_rx_pdu_segments_t pdu;
pdu.segments.push_back(std::move(segment));
rx_segments[header.sn] = std::move(pdu);
// Update vr_h
if (RX_MOD_BASE(header.sn) >= RX_MOD_BASE(vr_h)) {
vr_h = (header.sn + 1) % MOD;
}
// Check poll bit
if (header.p) {
RlcInfo("Status packet requested through polling bit");
poll_received = true;
// 36.322 v10 Section 5.2.3
if (RX_MOD_BASE(header.sn) < RX_MOD_BASE(vr_ms) || RX_MOD_BASE(header.sn) >= RX_MOD_BASE(vr_mr)) {
do_status = true;
}
// else delay for reordering timer
}
}
#ifdef RLC_AM_BUFFER_DEBUG
print_rx_segments();
#endif
debug_state();
}
void rlc_am_lte_rx::reassemble_rx_sdus()
{
uint32_t len = 0;
if (rx_sdu == NULL) {
rx_sdu = srsran::make_byte_buffer();
if (rx_sdu == NULL) {
#ifdef RLC_AM_BUFFER_DEBUG
srsran::console("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (1)\n");
exit(-1);
#else
RlcError("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (1)");
return;
#endif
}
}
// Iterate through rx_window, assembling and delivering SDUs
while (rx_window.has_sn(vr_r)) {
// Handle any SDU segments
for (uint32_t i = 0; i < rx_window[vr_r].header.N_li; i++) {
len = rx_window[vr_r].header.li[i];
RlcHexDebug(rx_window[vr_r].buf->msg,
len,
"Handling segment %d/%d of length %d B of SN=%d",
i + 1,
rx_window[vr_r].header.N_li,
len,
vr_r);
// sanity check to avoid zero-size SDUs
if (len == 0) {
break;
}
if (rx_sdu->get_tailroom() >= len) {
if ((rx_window[vr_r].buf->msg - rx_window[vr_r].buf->buffer) + len < SRSRAN_MAX_BUFFER_SIZE_BYTES) {
if (rx_window[vr_r].buf->N_bytes < len) {
RlcError("Dropping corrupted SN=%d", vr_r);
rx_sdu.reset();
goto exit;
}
// store timestamp of the first segment when starting to assemble SDUs
if (rx_sdu->N_bytes == 0) {
rx_sdu->set_timestamp(rx_window[vr_r].buf->get_timestamp());
}
memcpy(&rx_sdu->msg[rx_sdu->N_bytes], rx_window[vr_r].buf->msg, len);
rx_sdu->N_bytes += len;
rx_window[vr_r].buf->msg += len;
rx_window[vr_r].buf->N_bytes -= len;
RlcHexInfo(rx_sdu->msg, rx_sdu->N_bytes, "Rx SDU (%d B)", rx_sdu->N_bytes);
sdu_rx_latency_ms.push(std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - rx_sdu->get_timestamp())
.count());
parent->pdcp->write_pdu(parent->lcid, std::move(rx_sdu));
{
std::lock_guard<std::mutex> lock(parent->metrics_mutex);
parent->metrics.num_rx_sdus++;
}
rx_sdu = srsran::make_byte_buffer();
if (rx_sdu == nullptr) {
#ifdef RLC_AM_BUFFER_DEBUG
srsran::console("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (2)\n");
exit(-1);
#else
RlcError("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (2)");
return;
#endif
}
} else {
int buf_len = rx_window[vr_r].buf->msg - rx_window[vr_r].buf->buffer;
RlcError("Cannot read %d bytes from rx_window. vr_r=%d, msg-buffer=%d B", len, vr_r, buf_len);
rx_sdu.reset();
goto exit;
}
} else {
RlcError("Cannot fit RLC PDU in SDU buffer, dropping both.");
rx_sdu.reset();
goto exit;
}
}
// Handle last segment
len = rx_window[vr_r].buf->N_bytes;
RlcHexDebug(rx_window[vr_r].buf->msg, len, "Handling last segment of length %d B of SN=%d", len, vr_r);
if (rx_sdu->get_tailroom() >= len) {
// store timestamp of the first segment when starting to assemble SDUs
if (rx_sdu->N_bytes == 0) {
rx_sdu->set_timestamp(rx_window[vr_r].buf->get_timestamp());
}
memcpy(&rx_sdu->msg[rx_sdu->N_bytes], rx_window[vr_r].buf->msg, len);
rx_sdu->N_bytes += rx_window[vr_r].buf->N_bytes;
} else {
printf("Cannot fit RLC PDU in SDU buffer (tailroom=%d, len=%d), dropping both. Erasing SN=%d.\n",
rx_sdu->get_tailroom(),
len,
vr_r);
rx_sdu.reset();
goto exit;
}
if (rlc_am_end_aligned(rx_window[vr_r].header.fi)) {
RlcHexInfo(rx_sdu->msg, rx_sdu->N_bytes, "Rx SDU (%d B)", rx_sdu->N_bytes);
sdu_rx_latency_ms.push(std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - rx_sdu->get_timestamp())
.count());
parent->pdcp->write_pdu(parent->lcid, std::move(rx_sdu));
{
std::lock_guard<std::mutex> lock(parent->metrics_mutex);
parent->metrics.num_rx_sdus++;
}
rx_sdu = srsran::make_byte_buffer();
if (rx_sdu == NULL) {
#ifdef RLC_AM_BUFFER_DEBUG
srsran::console("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (3)\n");
exit(-1);
#else
RlcError("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (3)");
return;
#endif
}
}
exit:
// Move the rx_window
RlcDebug("Erasing SN=%d.", vr_r);
// also erase any segments of this SN
std::map<uint32_t, rlc_amd_rx_pdu_segments_t>::iterator it;
it = rx_segments.find(vr_r);
if (rx_segments.end() != it) {
RlcDebug("Erasing segments of SN=%d", vr_r);
std::list<rlc_amd_rx_pdu>::iterator segit;
for (segit = it->second.segments.begin(); segit != it->second.segments.end(); ++segit) {
RlcDebug(" Erasing segment of SN=%d SO=%d Len=%d N_li=%d",
segit->header.sn,
segit->header.so,
segit->buf->N_bytes,
segit->header.N_li);
}
it->second.segments.clear();
}
rx_window.remove_pdu(vr_r);
vr_r = (vr_r + 1) % MOD;
vr_mr = (vr_mr + 1) % MOD;
}
}
void rlc_am_lte_rx::reset_status()
{
do_status = false;
poll_received = false;
}
bool rlc_am_lte_rx::get_do_status()
{
return do_status.load(std::memory_order_relaxed);
}
uint32_t rlc_am_lte_rx::get_rx_buffered_bytes()
{
std::lock_guard<std::mutex> lock(mutex);
return rx_window.get_buffered_bytes();
}
uint32_t rlc_am_lte_rx::get_sdu_rx_latency_ms()
{
std::lock_guard<std::mutex> lock(mutex);
return sdu_rx_latency_ms.value();
}
/**
* Function called from stack thread when timer has expired
*
* @param timeout_id
*/
void rlc_am_lte_rx::timer_expired(uint32_t timeout_id)
{
std::lock_guard<std::mutex> lock(mutex);
if (reordering_timer.is_valid() and reordering_timer.id() == timeout_id) {
RlcDebug("reordering timeout expiry - updating vr_ms (was %d)", vr_ms);
// 36.322 v10 Section 5.1.3.2.4
vr_ms = vr_x;
while (rx_window.has_sn(vr_ms)) {
vr_ms = (vr_ms + 1) % MOD;
}
if (poll_received) {
do_status = true;
}
if (RX_MOD_BASE(vr_h) > RX_MOD_BASE(vr_ms)) {
reordering_timer.run();
vr_x = vr_h;
}
debug_state();
}
}
// Called from Tx object to pack status PDU that doesn't exceed a given size
// If lock-acquisition fails, return -1. Otherwise it returns the length of the generated PDU.
int rlc_am_lte_rx::get_status_pdu(rlc_status_pdu_t* status, const uint32_t max_pdu_size)
{
std::unique_lock<std::mutex> lock(mutex, std::try_to_lock);
if (not lock.owns_lock()) {
return SRSRAN_ERROR;
}
status->N_nack = 0;
status->ack_sn = vr_r; // start with lower edge of the rx window
// We don't use segment NACKs - just NACK the full PDU
uint32_t i = vr_r;
while (RX_MOD_BASE(i) <= RX_MOD_BASE(vr_ms) && status->N_nack < RLC_AM_WINDOW_SIZE) {
if (rx_window.has_sn(i) || i == vr_ms) {
// only update ACK_SN if this SN has been received, or if we reached the maximum possible SN
status->ack_sn = i;
} else {
status->nacks[status->N_nack].nack_sn = i;
status->N_nack++;
}
// make sure we don't exceed grant size
if (rlc_am_packed_length(status) > max_pdu_size) {
RlcDebug("Status PDU too big (%d > %d)", rlc_am_packed_length(status), max_pdu_size);
if (status->N_nack >= 1 && status->N_nack < RLC_AM_WINDOW_SIZE) {
RlcDebug("Removing last NACK SN=%d", status->nacks[status->N_nack].nack_sn);
status->N_nack--;
// make sure we don't have the current ACK_SN in the NACK list
if (rlc_am_is_valid_status_pdu(*status, vr_r) == false) {
// No space to send any NACKs, play safe and just ack lower edge
RlcWarning("Resetting ACK_SN and N_nack to initial state");
status->ack_sn = vr_r;
status->N_nack = 0;
}
} else {
RlcWarning("Failed to generate small enough status PDU (packed_len=%d, max_pdu_size=%d, status->N_nack=%d)",
rlc_am_packed_length(status),
max_pdu_size,
status->N_nack);
return 0;
}
break;
}
i = (i + 1) % MOD;
}
// valid PDU could be generated
reset_status();
return rlc_am_packed_length(status);
}
// Called from Tx object to obtain length of the full status PDU
int rlc_am_lte_rx::get_status_pdu_length()
{
std::unique_lock<std::mutex> lock(mutex, std::try_to_lock);
if (not lock.owns_lock()) {
return 0;
}
rlc_status_pdu_t status = {};
status.ack_sn = vr_ms;
uint32_t i = vr_r;
while (RX_MOD_BASE(i) < RX_MOD_BASE(vr_ms) && status.N_nack < RLC_AM_WINDOW_SIZE) {
if (not rx_window.has_sn(i)) {
status.N_nack++;
}
i = (i + 1) % MOD;
}
return rlc_am_packed_length(&status);
}
void rlc_am_lte_rx::print_rx_segments()
{
std::map<uint32_t, rlc_amd_rx_pdu_segments_t>::iterator it;
std::stringstream ss;
ss << "rx_segments:" << std::endl;
for (it = rx_segments.begin(); it != rx_segments.end(); it++) {
std::list<rlc_amd_rx_pdu>::iterator segit;
for (segit = it->second.segments.begin(); segit != it->second.segments.end(); segit++) {
ss << " SN=" << segit->header.sn << " SO:" << segit->header.so << " N:" << segit->buf->N_bytes
<< " N_li: " << segit->header.N_li << std::endl;
}
}
RlcDebug("%s", ss.str().c_str());
}
// NOTE: Preference would be to capture by value, and then move; but header is stack allocated
bool rlc_am_lte_rx::add_segment_and_check(rlc_amd_rx_pdu_segments_t* pdu, rlc_amd_rx_pdu* segment)
{
// Find segment insertion point in the list of segments
auto it1 = pdu->segments.begin();
while (it1 != pdu->segments.end() && (*it1).header.so < segment->header.so) {
// Increment iterator
it1++;
}
// Check if the insertion point was found
if (it1 != pdu->segments.end()) {
// Found insertion point
rlc_amd_rx_pdu& s = *it1;
if (s.header.so == segment->header.so) {
// Same Segment offset
if (segment->buf->N_bytes > s.buf->N_bytes) {
// replace if the new one is bigger
s = std::move(*segment);
} else {
// Ignore otherwise
}
} else if (s.header.so > segment->header.so) {
pdu->segments.insert(it1, std::move(*segment));
}
} else {
// Either the new segment is the latest or the only one, push back
pdu->segments.push_back(std::move(*segment));
}
// Check for complete
uint32_t so = 0;
std::list<rlc_amd_rx_pdu>::iterator it, tmpit;
for (it = pdu->segments.begin(); it != pdu->segments.end(); /* Do not increment */) {
// Check that there is no gap between last segment and current; overlap allowed
if (so < it->header.so) {
// return
return false;
}
// Check if segment is overlapped
if (it->header.so + it->buf->N_bytes <= so) {
// completely overlapped with previous segments, erase
it = pdu->segments.erase(it); // Returns next iterator
} else {
// Update segment offset it shall not go backwards
so = SRSRAN_MAX(so, it->header.so + it->buf->N_bytes);
it++; // Increments iterator
}
}
// Check for last segment flag available
if (!pdu->segments.back().header.lsf) {
return false;
}
// We have all segments of the PDU - reconstruct and handle
rlc_amd_pdu_header_t header;
header.dc = RLC_DC_FIELD_DATA_PDU;
header.rf = 0;
header.p = 0;
header.fi = RLC_FI_FIELD_START_AND_END_ALIGNED;
header.sn = pdu->segments.front().header.sn;
header.lsf = 0;
header.so = 0;
header.N_li = 0;
// Reconstruct fi field
header.fi |= (pdu->segments.front().header.fi & RLC_FI_FIELD_NOT_START_ALIGNED);
header.fi |= (pdu->segments.back().header.fi & RLC_FI_FIELD_NOT_END_ALIGNED);
RlcDebug("Starting header reconstruction of %zd segments", pdu->segments.size());
// Reconstruct li fields
uint16_t count = 0;
uint16_t carryover = 0;
uint16_t consumed_bytes = 0; // rolling sum of all allocated LIs during segment reconstruction
for (it = pdu->segments.begin(); it != pdu->segments.end(); ++it) {
RlcDebug(" Handling %d PDU segments", it->header.N_li);
for (uint32_t i = 0; i < it->header.N_li; i++) {
// variable marks total offset of each _processed_ LI of this segment
uint32_t total_pdu_offset = it->header.so;
for (uint32_t k = 0; k <= i; k++) {
total_pdu_offset += it->header.li[k];
}
RlcDebug(" - (total_pdu_offset=%d, consumed_bytes=%d, header.li[i]=%d)",
total_pdu_offset,
consumed_bytes,
header.li[i]);
if (total_pdu_offset > header.li[i] && total_pdu_offset > consumed_bytes) {
header.li[header.N_li] = total_pdu_offset - consumed_bytes;
consumed_bytes = total_pdu_offset;
RlcDebug(" - adding segment %d/%d (%d B, SO=%d, carryover=%d, count=%d)",
i + 1,
it->header.N_li,
header.li[header.N_li],
header.so,
carryover,
count);
header.N_li++;
count += it->header.li[i];
carryover = 0;
} else {
RlcDebug(" - Skipping segment in reTx PDU segment which is already included (%d B, SO=%d)",
it->header.li[i],
header.so);
}
}
if (count <= it->buf->N_bytes) {
carryover = it->header.so + it->buf->N_bytes;
// substract all previous LIs
for (uint32_t k = 0; k < header.N_li; ++k) {
carryover -= header.li[k];
}
RlcDebug("Incremented carryover (it->buf->N_bytes=%d, count=%d). New carryover=%d",
it->buf->N_bytes,
count,
carryover);
} else {
// Next segment would be too long, recalculate carryover
header.N_li--;
carryover = it->buf->N_bytes - (count - header.li[header.N_li]);
RlcDebug("Recalculated carryover=%d (it->buf->N_bytes=%d, count=%d, header.li[header.N_li]=%d)",
carryover,
it->buf->N_bytes,
count,
header.li[header.N_li]);
}
tmpit = it;
if (rlc_am_end_aligned(it->header.fi) && ++tmpit != pdu->segments.end()) {
RlcDebug("Header is end-aligned, overwrite header.li[%d]=%d", header.N_li, carryover);
header.li[header.N_li] = carryover;
header.N_li++;
consumed_bytes += carryover;
carryover = 0;
}
count = 0;
// set Poll bit if any of the segments had it set
header.p |= it->header.p;
}
RlcDebug("Finished header reconstruction of %zd segments", pdu->segments.size());
// Copy data
unique_byte_buffer_t full_pdu = srsran::make_byte_buffer();
if (full_pdu == NULL) {
#ifdef RLC_AM_BUFFER_DEBUG
srsran::console("Fatal Error: Could not allocate PDU in add_segment_and_check()\n");
exit(-1);
#else
RlcError("Fatal Error: Could not allocate PDU in add_segment_and_check()");
return false;
#endif
}
for (it = pdu->segments.begin(); it != pdu->segments.end(); it++) {
// By default, the segment is not copied. It could be it is fully overlapped with previous segments
uint32_t overlap = 0;
uint32_t n = 0;
// Check if the segment has non-overlapped bytes
if (it->header.so + it->buf->N_bytes > full_pdu->N_bytes) {
// Calculate overlap and number of bytes
overlap = full_pdu->N_bytes - it->header.so;
n = it->buf->N_bytes - overlap;
}
// Copy data itself
memcpy(&full_pdu->msg[full_pdu->N_bytes], &it->buf->msg[overlap], n);
full_pdu->N_bytes += n;
}
handle_data_pdu_full(full_pdu->msg, full_pdu->N_bytes, header);
return true;
}
bool rlc_am_lte_rx::inside_rx_window(const int16_t sn)
{
if (RX_MOD_BASE(sn) >= RX_MOD_BASE(static_cast<int16_t>(vr_r)) && RX_MOD_BASE(sn) < RX_MOD_BASE(vr_mr)) {
return true;
} else {
return false;
}
}
void rlc_am_lte_rx::debug_state()
{
RlcDebug("vr_r = %d, vr_mr = %d, vr_x = %d, vr_ms = %d, vr_h = %d", vr_r, vr_mr, vr_x, vr_ms, vr_h);
}
} // namespace srsran