srsLTE/lib/src/rlc/rlc_am_nr_packing.cc

628 lines
18 KiB
C++

/**
* Copyright 2013-2022 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srsran/rlc/rlc_am_nr_packing.h"
#include <sstream>
namespace srsran {
/****************************************************************************
* Container implementation for pack/unpack functions
***************************************************************************/
rlc_am_nr_status_pdu_t::rlc_am_nr_status_pdu_t(rlc_am_nr_sn_size_t sn_size) :
sn_size(sn_size), mod_nr(cardinality(sn_size))
{
nacks_.reserve(RLC_AM_NR_TYP_NACKS);
}
void rlc_am_nr_status_pdu_t::reset()
{
cpt = rlc_am_nr_control_pdu_type_t::status_pdu;
ack_sn = INVALID_RLC_SN;
nacks_.clear();
packed_size_ = rlc_am_nr_status_pdu_sizeof_header_ack_sn;
}
bool rlc_am_nr_status_pdu_t::is_continuous_sequence(const rlc_status_nack_t& left, const rlc_status_nack_t& right) const
{
// SN must be continuous
if (right.nack_sn != ((left.has_nack_range ? left.nack_sn + left.nack_range : (left.nack_sn + 1)) % mod_nr)) {
return false;
}
// Segments on left side (if present) must reach the end of sdu
if (left.has_so && left.so_end != rlc_status_nack_t::so_end_of_sdu) {
return false;
}
// Segments on right side (if present) must start from the beginning
if (right.has_so && right.so_start != 0) {
return false;
}
return true;
}
void rlc_am_nr_status_pdu_t::push_nack(const rlc_status_nack_t& nack)
{
if (nacks_.size() == 0) {
nacks_.push_back(nack);
packed_size_ += nack_size(nack);
return;
}
rlc_status_nack_t& prev = nacks_.back();
if (is_continuous_sequence(prev, nack) == false) {
nacks_.push_back(nack);
packed_size_ += nack_size(nack);
return;
}
// expand previous NACK
// subtract size of previous NACK (add updated size later)
packed_size_ -= nack_size(prev);
// enable and update NACK range
if (nack.has_nack_range == true) {
if (prev.has_nack_range == true) {
// [NACK range][NACK range]
prev.nack_range += nack.nack_range;
} else {
// [NACK SDU][NACK range]
prev.nack_range = nack.nack_range + 1;
prev.has_nack_range = true;
}
} else {
if (prev.has_nack_range == true) {
// [NACK range][NACK SDU]
prev.nack_range++;
} else {
// [NACK SDU][NACK SDU]
prev.nack_range = 2;
prev.has_nack_range = true;
}
}
// enable and update segment offsets (if required)
if (nack.has_so == true) {
if (prev.has_so == false) {
// [NACK SDU][NACK segm]
prev.has_so = true;
prev.so_start = 0;
}
// [NACK SDU][NACK segm] or [NACK segm][NACK segm]
prev.so_end = nack.so_end;
} else {
if (prev.has_so == true) {
// [NACK segm][NACK SDU]
prev.so_end = rlc_status_nack_t::so_end_of_sdu;
}
// [NACK segm][NACK SDU] or [NACK SDU][NACK SDU]
}
// add updated size
packed_size_ += nack_size(prev);
}
bool rlc_am_nr_status_pdu_t::trim(uint32_t max_packed_size)
{
if (max_packed_size >= packed_size_) {
// no trimming required
return true;
}
if (max_packed_size < rlc_am_nr_status_pdu_sizeof_header_ack_sn) {
// too little space for smallest possible status PDU (only header + ACK).
return false;
}
// remove NACKs (starting from the back) until it fits into given space
// note: when removing a NACK for a segment, we have to remove all other NACKs with the same SN as well,
// see TS 38.322 Sec. 5.3.4:
// "set the ACK_SN to the SN of the next not received RLC SDU
// which is not indicated as missing in the resulting STATUS PDU."
while (nacks_.size() > 0 && (max_packed_size < packed_size_ || nacks_.back().nack_sn == ack_sn)) {
packed_size_ -= nack_size(nacks_.back());
ack_sn = nacks_.back().nack_sn;
nacks_.pop_back();
}
return true;
}
void rlc_am_nr_status_pdu_t::refresh_packed_size()
{
packed_size_ = rlc_am_nr_status_pdu_sizeof_header_ack_sn;
for (auto nack : nacks_) {
packed_size_ += nack_size(nack);
}
}
uint32_t rlc_am_nr_status_pdu_t::nack_size(const rlc_status_nack_t& nack) const
{
uint32_t result = sn_size == rlc_am_nr_sn_size_t::size12bits ? rlc_am_nr_status_pdu_sizeof_nack_sn_ext_12bit_sn
: rlc_am_nr_status_pdu_sizeof_nack_sn_ext_18bit_sn;
if (nack.has_so) {
result += rlc_am_nr_status_pdu_sizeof_nack_so;
}
if (nack.has_nack_range) {
result += rlc_am_nr_status_pdu_sizeof_nack_range;
}
return result;
}
/****************************************************************************
* Header pack/unpack helper functions
* Ref: 3GPP TS 38.322 v15.3.0 Section 6.2.2.4
***************************************************************************/
uint32_t rlc_am_nr_read_data_pdu_header(const byte_buffer_t* pdu,
const rlc_am_nr_sn_size_t sn_size,
rlc_am_nr_pdu_header_t* header)
{
return rlc_am_nr_read_data_pdu_header(pdu->msg, pdu->N_bytes, sn_size, header);
}
uint32_t rlc_am_nr_read_data_pdu_header(const uint8_t* payload,
const uint32_t nof_bytes,
const rlc_am_nr_sn_size_t sn_size,
rlc_am_nr_pdu_header_t* header)
{
uint8_t* ptr = const_cast<uint8_t*>(payload);
header->sn_size = sn_size;
// Fixed part
header->dc = (rlc_dc_field_t)((*ptr >> 7) & 0x01); // 1 bit D/C field
header->p = (*ptr >> 6) & 0x01; // 1 bit P flag
header->si = (rlc_nr_si_field_t)((*ptr >> 4) & 0x03); // 2 bits SI
if (sn_size == rlc_am_nr_sn_size_t::size12bits) {
header->sn = (*ptr & 0x0F) << 8; // first 4 bits SN
ptr++;
header->sn |= (*ptr & 0xFF); // last 8 bits SN
ptr++;
} else if (sn_size == rlc_am_nr_sn_size_t::size18bits) {
// sanity check
if ((*ptr & 0x0c) != 0) {
fprintf(stderr, "Malformed PDU, reserved bits are set.\n");
return 0;
}
header->sn = (*ptr & 0x03) << 16; // first 4 bits SN
ptr++;
header->sn |= (*ptr & 0xFF) << 8; // bit 2-10 of SN
ptr++;
header->sn |= (*ptr & 0xFF); // last 8 bits SN
ptr++;
} else {
fprintf(stderr, "Unsupported SN length\n");
return 0;
}
// Read optional part
if (header->si == rlc_nr_si_field_t::last_segment ||
header->si == rlc_nr_si_field_t::neither_first_nor_last_segment) {
// read SO
header->so = (*ptr & 0xFF) << 8;
ptr++;
header->so |= (*ptr & 0xFF);
ptr++;
}
// return consumed bytes
return (ptr - payload);
}
uint32_t rlc_am_nr_packed_length(const rlc_am_nr_pdu_header_t& header)
{
uint32_t len = 0;
if (header.si == rlc_nr_si_field_t::full_sdu || header.si == rlc_nr_si_field_t::first_segment) {
len = 2;
if (header.sn_size == rlc_am_nr_sn_size_t::size18bits) {
len++;
}
} else {
// PDU contains SO
len = 4;
if (header.sn_size == rlc_am_nr_sn_size_t::size18bits) {
len++;
}
}
return len;
}
uint32_t rlc_am_nr_write_data_pdu_header(const rlc_am_nr_pdu_header_t& header, uint8_t* payload)
{
uint8_t* ptr = payload;
// fixed header part
*ptr = (header.dc & 0x01) << 7; ///< 1 bit D/C field
*ptr |= (header.p & 0x01) << 6; ///< 1 bit P flag
*ptr |= (header.si & 0x03) << 4; ///< 2 bits SI
if (header.sn_size == rlc_am_nr_sn_size_t::size12bits) {
// write first 4 bit of SN
*ptr |= (header.sn >> 8) & 0x0f; // 4 bit SN
ptr++;
*ptr = header.sn & 0xff; // remaining 8 bit of SN
ptr++;
} else {
// 18bit SN
*ptr |= (header.sn >> 16) & 0x3; // 2 bit SN
ptr++;
*ptr = header.sn >> 8; // bit 3 - 10 of SN
ptr++;
*ptr = (header.sn & 0xff); // remaining 8 bit of SN
ptr++;
}
if (header.so) {
// write SO
*ptr = header.so >> 8; // first part of SO
ptr++;
*ptr = (header.so & 0xff); // second part of SO
ptr++;
}
return rlc_am_nr_packed_length(header);
}
uint32_t rlc_am_nr_write_data_pdu_header(const rlc_am_nr_pdu_header_t& header, byte_buffer_t* pdu)
{
// Make room for the header
uint32_t len = rlc_am_nr_packed_length(header);
pdu->msg -= len;
pdu->N_bytes += len;
rlc_am_nr_write_data_pdu_header(header, pdu->msg);
return len;
}
/****************************************************************************
* Status PDU pack/unpack helper functions
* Ref: 3GPP TS 38.322 v16.2.0 Section 6.2.2.5
***************************************************************************/
uint32_t
rlc_am_nr_read_status_pdu(const byte_buffer_t* pdu, const rlc_am_nr_sn_size_t sn_size, rlc_am_nr_status_pdu_t* status)
{
return rlc_am_nr_read_status_pdu(pdu->msg, pdu->N_bytes, sn_size, status);
}
uint32_t rlc_am_nr_read_status_pdu(const uint8_t* payload,
const uint32_t nof_bytes,
const rlc_am_nr_sn_size_t sn_size,
rlc_am_nr_status_pdu_t* status)
{
if (sn_size == rlc_am_nr_sn_size_t::size12bits) {
return rlc_am_nr_read_status_pdu_12bit_sn(payload, nof_bytes, status);
} else { // 18bit SN
return rlc_am_nr_read_status_pdu_18bit_sn(payload, nof_bytes, status);
}
}
uint32_t
rlc_am_nr_read_status_pdu_12bit_sn(const uint8_t* payload, const uint32_t nof_bytes, rlc_am_nr_status_pdu_t* status)
{
uint8_t* ptr = const_cast<uint8_t*>(payload);
status->reset();
// fixed part
status->cpt = (rlc_am_nr_control_pdu_type_t)((*ptr >> 4) & 0x07); // 3 bits CPT
// sanity check
if (status->cpt != rlc_am_nr_control_pdu_type_t::status_pdu) {
fprintf(stderr, "Malformed PDU, reserved bits are set.\n");
return 0;
}
status->ack_sn = (*ptr & 0x0F) << 8; // first 4 bits SN
ptr++;
status->ack_sn |= (*ptr & 0xFF); // last 8 bits SN
ptr++;
// read E1 flag
uint8_t e1 = *ptr & 0x80;
// sanity check for reserved bits
if ((*ptr & 0x7f) != 0) {
fprintf(stderr, "Malformed PDU, reserved bits are set.\n");
return 0;
}
// all good, continue with next byte depending on E1
ptr++;
while (e1 != 0) {
// check buffer headroom
if (uint32_t(ptr - payload) >= nof_bytes) {
fprintf(stderr, "Malformed PDU, trying to read more bytes than it is available\n");
return 0;
}
// E1 flag set, read a NACK_SN
rlc_status_nack_t nack = {};
nack.nack_sn = (*ptr & 0xff) << 4;
ptr++;
e1 = *ptr & 0x08; // 1 = further NACKs follow
uint8_t e2 = *ptr & 0x04; // 1 = set of {so_start, so_end} follows
uint8_t e3 = *ptr & 0x02; // 1 = NACK range follows (i.e. NACK across multiple SNs)
// sanity check for reserved bits
if ((*ptr & 0x01) != 0) {
fprintf(stderr, "Malformed PDU, reserved bits are set.\n");
return 0;
}
nack.nack_sn |= (*ptr & 0xF0) >> 4;
ptr++;
if (e2 != 0) {
nack.has_so = true;
nack.so_start = (*ptr) << 8;
ptr++;
nack.so_start |= (*ptr);
ptr++;
nack.so_end = (*ptr) << 8;
ptr++;
nack.so_end |= (*ptr);
ptr++;
}
if (e3 != 0) {
nack.has_nack_range = true;
nack.nack_range = (*ptr);
ptr++;
}
status->push_nack(nack);
}
return SRSRAN_SUCCESS;
}
uint32_t
rlc_am_nr_read_status_pdu_18bit_sn(const uint8_t* payload, const uint32_t nof_bytes, rlc_am_nr_status_pdu_t* status)
{
uint8_t* ptr = const_cast<uint8_t*>(payload);
status->reset();
// fixed part
status->cpt = (rlc_am_nr_control_pdu_type_t)((*ptr >> 4) & 0x07); // 3 bits CPT
// sanity check
if (status->cpt != rlc_am_nr_control_pdu_type_t::status_pdu) {
fprintf(stderr, "Malformed PDU, reserved bits are set.\n");
return 0;
}
status->ack_sn = (*ptr & 0x0F) << 14; // upper 4 bits of SN
ptr++;
status->ack_sn |= (*ptr & 0xFF) << 6; // center 8 bits of SN
ptr++;
status->ack_sn |= (*ptr & 0xFC) >> 2; // lower 6 bits of SN
// read E1 flag
uint8_t e1 = *ptr & 0x02;
// sanity check for reserved bits
if ((*ptr & 0x01) != 0) {
fprintf(stderr, "Malformed PDU, reserved bit is set.\n");
return 0;
}
// all good, continue with next byte depending on E1
ptr++;
while (e1 != 0) {
// check buffer headroom
if (uint32_t(ptr - payload) >= nof_bytes) {
fprintf(stderr, "Malformed PDU, trying to read more bytes than it is available\n");
return 0;
}
// E1 flag set, read a NACK_SN
rlc_status_nack_t nack = {};
nack.nack_sn = (*ptr & 0xFF) << 10; // upper 8 bits of SN
ptr++;
nack.nack_sn |= (*ptr & 0xFF) << 2; // center 8 bits of SN
ptr++;
nack.nack_sn |= (*ptr & 0xC0) >> 6; // lower 2 bits of SN
e1 = *ptr & 0x20; // 1 = further NACKs follow
uint8_t e2 = *ptr & 0x10; // 1 = set of {so_start, so_end} follows
uint8_t e3 = *ptr & 0x08; // 1 = NACK range follows (i.e. NACK across multiple SNs)
// sanity check for reserved bits
if ((*ptr & 0x07) != 0) {
fprintf(stderr, "Malformed PDU, reserved bits are set.\n");
return 0;
}
ptr++;
if (e2 != 0) {
nack.has_so = true;
nack.so_start = (*ptr) << 8;
ptr++;
nack.so_start |= (*ptr);
ptr++;
nack.so_end = (*ptr) << 8;
ptr++;
nack.so_end |= (*ptr);
ptr++;
}
if (e3 != 0) {
nack.has_nack_range = true;
nack.nack_range = (*ptr);
ptr++;
}
status->push_nack(nack);
}
return SRSRAN_SUCCESS;
}
/**
* Write a RLC AM NR status PDU to a PDU buffer and eets the length of the generate PDU accordingly
* @param status_pdu The status PDU
* @param pdu A pointer to a unique bytebuffer
* @return SRSRAN_SUCCESS if PDU was written, SRSRAN_ERROR otherwise
*/
int32_t rlc_am_nr_write_status_pdu(const rlc_am_nr_status_pdu_t& status_pdu,
const rlc_am_nr_sn_size_t sn_size,
byte_buffer_t* pdu)
{
if (sn_size == rlc_am_nr_sn_size_t::size12bits) {
return rlc_am_nr_write_status_pdu_12bit_sn(status_pdu, pdu);
} else { // 18bit SN
return rlc_am_nr_write_status_pdu_18bit_sn(status_pdu, pdu);
}
}
int32_t rlc_am_nr_write_status_pdu_12bit_sn(const rlc_am_nr_status_pdu_t& status_pdu, byte_buffer_t* pdu)
{
uint8_t* ptr = pdu->msg;
// fixed header part
*ptr = 0; ///< 1 bit D/C field and 3bit CPT are all zero
// write first 4 bit of ACK_SN
*ptr |= (status_pdu.ack_sn >> 8) & 0x0f; // 4 bit ACK_SN
ptr++;
*ptr = status_pdu.ack_sn & 0xff; // remaining 8 bit of SN
ptr++;
// write E1 flag in octet 3
if (status_pdu.nacks.size() > 0) {
*ptr = 0x80;
} else {
*ptr = 0x00;
}
ptr++;
if (status_pdu.nacks.size() > 0) {
for (uint32_t i = 0; i < status_pdu.nacks.size(); i++) {
// write first 8 bit of NACK_SN
*ptr = (status_pdu.nacks[i].nack_sn >> 4) & 0xff;
ptr++;
// write remaining 4 bits of NACK_SN
*ptr = (status_pdu.nacks[i].nack_sn & 0x0f) << 4;
// Set E1 if necessary
if (i < (uint32_t)(status_pdu.nacks.size() - 1)) {
*ptr |= 0x08;
}
if (status_pdu.nacks[i].has_so) {
// Set E2
*ptr |= 0x04;
}
if (status_pdu.nacks[i].has_nack_range) {
// Set E3
*ptr |= 0x02;
}
ptr++;
if (status_pdu.nacks[i].has_so) {
(*ptr) = status_pdu.nacks[i].so_start >> 8;
ptr++;
(*ptr) = status_pdu.nacks[i].so_start;
ptr++;
(*ptr) = status_pdu.nacks[i].so_end >> 8;
ptr++;
(*ptr) = status_pdu.nacks[i].so_end;
ptr++;
}
if (status_pdu.nacks[i].has_nack_range) {
(*ptr) = status_pdu.nacks[i].nack_range;
ptr++;
}
}
}
pdu->N_bytes = ptr - pdu->msg;
return SRSRAN_SUCCESS;
}
int32_t rlc_am_nr_write_status_pdu_18bit_sn(const rlc_am_nr_status_pdu_t& status_pdu, byte_buffer_t* pdu)
{
uint8_t* ptr = pdu->msg;
// fixed header part
*ptr = 0; ///< 1 bit D/C field and 3bit CPT are all zero
*ptr |= (status_pdu.ack_sn >> 14) & 0x0F; // upper 4 bits of SN
ptr++;
*ptr = (status_pdu.ack_sn >> 6) & 0xFF; // center 8 bits of SN
ptr++;
*ptr = (status_pdu.ack_sn << 2) & 0xFC; // lower 6 bits of SN
// set E1 flag if necessary
if (status_pdu.nacks.size() > 0) {
*ptr |= 0x02;
}
ptr++;
if (status_pdu.nacks.size() > 0) {
for (uint32_t i = 0; i < status_pdu.nacks.size(); i++) {
*ptr = (status_pdu.nacks[i].nack_sn >> 10) & 0xFF; // upper 8 bits of SN
ptr++;
*ptr = (status_pdu.nacks[i].nack_sn >> 2) & 0xFF; // center 8 bits of SN
ptr++;
*ptr = (status_pdu.nacks[i].nack_sn << 6) & 0xC0; // lower 2 bits of SN
if (i < (uint32_t)(status_pdu.nacks.size() - 1)) {
*ptr |= 0x20; // Set E1
}
if (status_pdu.nacks[i].has_so) {
*ptr |= 0x10; // Set E2
}
if (status_pdu.nacks[i].has_nack_range) {
*ptr |= 0x08; // Set E3
}
ptr++;
if (status_pdu.nacks[i].has_so) {
(*ptr) = status_pdu.nacks[i].so_start >> 8;
ptr++;
(*ptr) = status_pdu.nacks[i].so_start;
ptr++;
(*ptr) = status_pdu.nacks[i].so_end >> 8;
ptr++;
(*ptr) = status_pdu.nacks[i].so_end;
ptr++;
}
if (status_pdu.nacks[i].has_nack_range) {
(*ptr) = status_pdu.nacks[i].nack_range;
ptr++;
}
}
}
pdu->N_bytes = ptr - pdu->msg;
return SRSRAN_SUCCESS;
}
} // namespace srsran