srsLTE/srsenb/src/phy/phy.cc

406 lines
14 KiB
C++

/**
* Copyright 2013-2022 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srsenb/hdr/phy/phy.h"
#include "srsran/common/band_helper.h"
#include "srsran/common/phy_cfg_nr_default.h"
#include "srsran/common/threads.h"
#include <pthread.h>
#include <sstream>
#include <string.h>
#include <string>
#include <strings.h>
#include <unistd.h>
#define Error(fmt, ...) \
if (SRSRAN_DEBUG_ENABLED) \
phy_log.error(fmt, ##__VA_ARGS__)
#define Warning(fmt, ...) \
if (SRSRAN_DEBUG_ENABLED) \
phy_log.warning(fmt, ##__VA_ARGS__)
#define Info(fmt, ...) \
if (SRSRAN_DEBUG_ENABLED) \
phy_log.info(fmt, ##__VA_ARGS__)
#define Debug(fmt, ...) \
if (SRSRAN_DEBUG_ENABLED) \
phy_log.debug(fmt, ##__VA_ARGS__)
using namespace std;
using namespace asn1::rrc;
namespace srsenb {
static void srsran_phy_handler(phy_logger_level_t log_level, void* ctx, char* str)
{
phy* r = (phy*)ctx;
r->srsran_phy_logger(log_level, str);
}
void phy::srsran_phy_logger(phy_logger_level_t log_level, char* str)
{
switch (log_level) {
case LOG_LEVEL_INFO_S:
phy_lib_log.info(" %s", str);
break;
case LOG_LEVEL_DEBUG_S:
phy_lib_log.debug(" %s", str);
break;
case LOG_LEVEL_ERROR_S:
phy_lib_log.error(" %s", str);
break;
default:
break;
}
}
phy::phy(srslog::sink& log_sink) :
log_sink(log_sink),
phy_log(srslog::fetch_basic_logger("PHY", log_sink)),
phy_lib_log(srslog::fetch_basic_logger("PHY_LIB", log_sink)),
lte_workers(MAX_WORKERS),
workers_common(),
nof_workers(0),
tx_rx(phy_log)
{}
phy::~phy()
{
stop();
}
void phy::parse_common_config(const phy_cfg_t& cfg)
{
// PRACH configuration
prach_cfg.config_idx = cfg.prach_cnfg.prach_cfg_info.prach_cfg_idx;
prach_cfg.hs_flag = cfg.prach_cnfg.prach_cfg_info.high_speed_flag;
prach_cfg.root_seq_idx = cfg.prach_cnfg.root_seq_idx;
prach_cfg.zero_corr_zone = cfg.prach_cnfg.prach_cfg_info.zero_correlation_zone_cfg;
prach_cfg.freq_offset = cfg.prach_cnfg.prach_cfg_info.prach_freq_offset;
prach_cfg.num_ra_preambles = cfg.phy_cell_cfg.empty() ? 0 : cfg.phy_cell_cfg.at(0).num_ra_preambles;
// DMRS
workers_common.dmrs_pusch_cfg.cyclic_shift = cfg.pusch_cnfg.ul_ref_sigs_pusch.cyclic_shift;
workers_common.dmrs_pusch_cfg.delta_ss = cfg.pusch_cnfg.ul_ref_sigs_pusch.group_assign_pusch;
workers_common.dmrs_pusch_cfg.group_hopping_en = cfg.pusch_cnfg.ul_ref_sigs_pusch.group_hop_enabled;
workers_common.dmrs_pusch_cfg.sequence_hopping_en = cfg.pusch_cnfg.ul_ref_sigs_pusch.seq_hop_enabled;
}
int phy::init(const phy_args_t& args,
const phy_cfg_t& cfg,
srsran::radio_interface_phy* radio_,
stack_interface_phy_lte* stack_lte_,
stack_interface_phy_nr& stack_nr_,
enb_time_interface* enb_)
{
if (init_lte(args, cfg, radio_, stack_lte_, enb_) != SRSRAN_SUCCESS) {
phy_log.error("Couldn't initialize LTE PHY");
return SRSRAN_ERROR;
}
if (init_nr(args, cfg, stack_nr_) != SRSRAN_SUCCESS) {
phy_log.error("Couldn't initialize NR PHY");
return SRSRAN_ERROR;
}
tx_rx.init(enb_, radio, &lte_workers, &workers_common, &prach, SF_RECV_THREAD_PRIO);
initialized = true;
return SRSRAN_SUCCESS;
}
int phy::init(const phy_args_t& args,
const phy_cfg_t& cfg,
srsran::radio_interface_phy* radio_,
stack_interface_phy_lte* stack_lte_,
enb_time_interface* enb_)
{
if (init_lte(args, cfg, radio_, stack_lte_, enb_) != SRSRAN_SUCCESS) {
phy_log.error("Couldn't initialize LTE PHY");
return SRSRAN_ERROR;
}
tx_rx.init(enb_, radio, &lte_workers, &workers_common, &prach, SF_RECV_THREAD_PRIO);
initialized = true;
return SRSRAN_SUCCESS;
}
int phy::init_lte(const phy_args_t& args,
const phy_cfg_t& cfg,
srsran::radio_interface_phy* radio_,
stack_interface_phy_lte* stack_lte_,
enb_time_interface* enb_)
{
if (cfg.phy_cell_cfg.size() > SRSRAN_MAX_CARRIERS) {
phy_log.error(
"Number of carriers=%zd provided above its maximum=%zd", cfg.phy_cell_cfg.size(), SRSRAN_MAX_CARRIERS);
return SRSRAN_ERROR;
}
// Add PHY lib log.
srslog::basic_levels lib_log_lvl = srslog::str_to_basic_level(args.log.phy_lib_level);
srslog::basic_levels log_lvl = srslog::str_to_basic_level(args.log.phy_level);
phy_lib_log.set_level(lib_log_lvl);
phy_lib_log.set_hex_dump_max_size(args.log.phy_hex_limit);
if (log_lvl != srslog::basic_levels::none) {
srsran_phy_log_register_handler(this, srsran_phy_handler);
}
// Create default log.
phy_log.set_level(log_lvl);
phy_log.set_hex_dump_max_size(args.log.phy_hex_limit);
radio = radio_;
nof_workers = cfg.phy_cell_cfg.empty() ? 0 : args.nof_phy_threads;
workers_common.params = args;
workers_common.init(cfg.phy_cell_cfg, cfg.phy_cell_cfg_nr, radio, stack_lte_);
if (cfg.cfr_config.cfr_enable) {
workers_common.set_cfr_config(cfg.cfr_config);
}
parse_common_config(cfg);
// Add workers to workers pool and start threads
if (not cfg.phy_cell_cfg.empty()) {
lte_workers.init(args, &workers_common, log_sink, WORKERS_THREAD_PRIO);
}
// For each carrier, initialise PRACH worker
for (uint32_t cc = 0; cc < cfg.phy_cell_cfg.size(); cc++) {
prach_cfg.root_seq_idx = cfg.phy_cell_cfg[cc].root_seq_idx;
prach.init(cc,
cfg.phy_cell_cfg[cc].cell,
prach_cfg,
stack_lte_,
phy_log,
PRACH_WORKER_THREAD_PRIO,
args.nof_prach_threads);
}
prach.set_max_prach_offset_us(args.max_prach_offset_us);
return SRSRAN_SUCCESS;
}
void phy::stop()
{
if (initialized) {
tx_rx.stop();
workers_common.stop();
lte_workers.stop();
if (nr_workers != nullptr) {
nr_workers->stop();
}
prach.stop();
initialized = false;
}
}
/***** MAC->PHY interface **********/
void phy::rem_rnti(uint16_t rnti)
{
// Remove the RNTI when the TTI finishes, this has a delay up to the pipeline length (3 ms)
for (uint32_t i = 0; i < nof_workers; i++) {
lte::sf_worker* w = lte_workers.wait_worker_id(i);
if (w) {
w->rem_rnti(rnti);
w->release();
}
}
if (SRSRAN_RNTI_ISUSER(rnti)) {
workers_common.ue_db.rem_rnti(rnti);
workers_common.clear_grants(rnti);
}
}
void phy::set_mch_period_stop(uint32_t stop)
{
workers_common.set_mch_period_stop(stop);
}
void phy::set_activation_deactivation_scell(uint16_t rnti, const std::array<bool, SRSRAN_MAX_CARRIERS>& activation)
{
// Iterate all elements except 0 that is reserved for primary cell
for (uint32_t scell_idx = 1; scell_idx < SRSRAN_MAX_CARRIERS; scell_idx++) {
workers_common.ue_db.activate_deactivate_scell(rnti, scell_idx, activation[scell_idx]);
}
}
void phy::get_metrics(std::vector<phy_metrics_t>& metrics)
{
std::vector<phy_metrics_t> metrics_tmp;
for (uint32_t i = 0; i < nof_workers; i++) {
lte_workers[i]->get_metrics(metrics_tmp);
metrics.resize(std::max(metrics_tmp.size(), metrics.size()));
for (uint32_t j = 0; j < metrics_tmp.size(); j++) {
metrics[j].dl.n_samples += metrics_tmp[j].dl.n_samples;
metrics[j].dl.mcs += metrics_tmp[j].dl.n_samples * metrics_tmp[j].dl.mcs;
metrics[j].ul.n_samples += metrics_tmp[j].ul.n_samples;
metrics[j].ul.n_samples_pucch += metrics_tmp[j].ul.n_samples_pucch;
metrics[j].ul.mcs += metrics_tmp[j].ul.n_samples * metrics_tmp[j].ul.mcs;
metrics[j].ul.n += metrics_tmp[j].ul.n_samples * metrics_tmp[j].ul.n;
metrics[j].ul.pusch_rssi += metrics_tmp[j].ul.n_samples * metrics_tmp[j].ul.pusch_rssi;
metrics[j].ul.pusch_sinr += metrics_tmp[j].ul.n_samples * metrics_tmp[j].ul.pusch_sinr;
metrics[j].ul.pucch_rssi += metrics_tmp[j].ul.n_samples_pucch * metrics_tmp[j].ul.pucch_rssi;
metrics[j].ul.pucch_ni += metrics_tmp[j].ul.n_samples_pucch * metrics_tmp[j].ul.pucch_ni;
metrics[j].ul.pucch_sinr += metrics_tmp[j].ul.n_samples_pucch * metrics_tmp[j].ul.pucch_sinr;
metrics[j].ul.turbo_iters += metrics_tmp[j].ul.n_samples * metrics_tmp[j].ul.turbo_iters;
}
}
for (uint32_t j = 0; j < metrics.size(); j++) {
if (metrics[j].dl.n_samples > 0) {
metrics[j].dl.mcs /= metrics[j].dl.n_samples;
}
if (metrics[j].ul.n_samples > 0) {
metrics[j].ul.mcs /= metrics[j].ul.n_samples;
metrics[j].ul.n /= metrics[j].ul.n_samples;
metrics[j].ul.pusch_rssi /= metrics[j].ul.n_samples;
metrics[j].ul.pusch_sinr /= metrics[j].ul.n_samples;
metrics[j].ul.pucch_rssi /= metrics[j].ul.n_samples_pucch;
metrics[j].ul.pucch_ni /= metrics[j].ul.n_samples_pucch;
metrics[j].ul.pucch_sinr /= metrics[j].ul.n_samples_pucch;
metrics[j].ul.turbo_iters /= metrics[j].ul.n_samples;
}
}
}
void phy::cmd_cell_gain(uint32_t cell_id, float gain_db)
{
Info("set_cell_gain: cell_id=%d, gain_db=%.2f", cell_id, gain_db);
workers_common.set_cell_gain(cell_id, gain_db);
}
void phy::cmd_cell_measure()
{
workers_common.set_cell_measure_trigger();
}
/***** RRC->PHY interface **********/
void phy::set_config(uint16_t rnti, const phy_rrc_cfg_list_t& phy_cfg_list)
{
// Update UE Database
workers_common.ue_db.addmod_rnti(rnti, phy_cfg_list);
// Iterate over the list and add the RNTIs
for (const phy_rrc_cfg_t& config : phy_cfg_list) {
// Add RNTI to eNb cell/carrier.
// - Do not ignore PCell, it could have changed
// - Do not remove RNTI from unused workers, it will be removed when the UE is released
if (config.configured) {
// Add RNTI to all SF workers
for (uint32_t w = 0; w < nof_workers; w++) {
lte_workers[w]->add_rnti(rnti, config.enb_cc_idx);
}
}
}
}
void phy::complete_config(uint16_t rnti)
{
// Forwards call to the UE Database
if (workers_common.ue_db.complete_config(rnti) < SRSRAN_SUCCESS) {
Error("Error completing configuration for RNTI %x. It does not exist.", rnti);
}
}
void phy::configure_mbsfn(srsran::sib2_mbms_t* sib2, srsran::sib13_t* sib13, const srsran::mcch_msg_t& mcch)
{
if (sib2->mbsfn_sf_cfg_list_present) {
if (sib2->nof_mbsfn_sf_cfg == 0) {
Warning("SIB2 does not have any MBSFN config although it was set as present");
} else {
if (sib2->nof_mbsfn_sf_cfg > 1) {
Warning("SIB2 has %d MBSFN subframe configs - only 1 supported", sib2->nof_mbsfn_sf_cfg);
}
mbsfn_config.mbsfn_subfr_cnfg = sib2->mbsfn_sf_cfg_list[0];
}
} else {
fprintf(stderr, "SIB2 has no MBSFN subframe config specified\n");
return;
}
mbsfn_config.mbsfn_notification_cnfg = sib13->notif_cfg;
if (sib13->nof_mbsfn_area_info > 0) {
if (sib13->nof_mbsfn_area_info > 1) {
Warning("SIB13 has %d MBSFN area info elements - only 1 supported", sib13->nof_mbsfn_area_info);
}
mbsfn_config.mbsfn_area_info = sib13->mbsfn_area_info_list[0];
}
mbsfn_config.mcch = mcch;
workers_common.configure_mbsfn(&mbsfn_config);
}
// Start GUI
void phy::start_plot()
{
if (lte_workers.get_nof_workers() > 0) {
lte_workers[0]->start_plot();
}
}
int phy::init_nr(const phy_args_t& args, const phy_cfg_t& cfg, stack_interface_phy_nr& stack)
{
if (cfg.phy_cell_cfg_nr.empty()) {
return SRSRAN_SUCCESS;
}
nr_workers = std::unique_ptr<nr::worker_pool>(new nr::worker_pool(workers_common, stack, log_sink, MAX_WORKERS));
nr::worker_pool::args_t worker_args = {};
worker_args.nof_phy_threads = args.nof_phy_threads;
worker_args.log.phy_level = args.log.phy_level;
worker_args.log.phy_hex_limit = args.log.phy_hex_limit;
worker_args.pusch_max_its = args.nr_pusch_max_its;
if (not nr_workers->init(worker_args, cfg.phy_cell_cfg_nr)) {
return SRSRAN_ERROR;
}
tx_rx.set_nr_workers(nr_workers.get());
if (nr_workers->set_common_cfg(common_cfg)) {
phy_log.error("Couldn't set common PHY config");
return SRSRAN_ERROR;
}
return SRSRAN_SUCCESS;
}
int phy::set_common_cfg(const phy_interface_rrc_nr::common_cfg_t& common_cfg_)
{
if (nr_workers.get() == nullptr) {
// if nr_workers are not initialized yet, store the configuration in the phy
common_cfg = common_cfg_;
return SRSRAN_SUCCESS;
}
return nr_workers->set_common_cfg(common_cfg);
}
} // namespace srsenb