srsLTE/srsue/test/phy/ue_phy_test.cc

527 lines
19 KiB
C++

/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <srslte/common/test_common.h>
#include <srslte/common/threads.h>
#include <srslte/phy/utils/random.h>
#include <srslte/srslte.h>
#include <srsue/hdr/phy/phy.h>
#define CALLBACK(NAME, ...) \
private: \
bool received_##NAME = false; \
\
public: \
bool wait_##NAME(uint32_t timeout_ms, bool reset_flag = false) \
{ \
std::unique_lock<std::mutex> lock(mutex); \
std::chrono::system_clock::time_point expire_time = std::chrono::system_clock::now(); \
expire_time += std::chrono::milliseconds(timeout_ms); \
bool expired = false; \
if (reset_flag) { \
received_##NAME = false; \
} \
while (!received_##NAME && !expired) { \
expired = (cvar.wait_until(lock, expire_time) == std::cv_status::timeout); \
} \
if (expired) { \
log_h.info("Expired " #NAME " waiting\n"); \
} \
return received_##NAME; \
} \
\
bool get_received_##NAME() { return received_##NAME; } \
\
private: \
void notify_##NAME(__VA_ARGS__) \
{ \
std::unique_lock<std::mutex> lock(mutex); \
cvar.notify_all(); \
log_h.info(#NAME " received\n"); \
received_##NAME = true; \
}
class phy_test_bench : public srslte::thread
{
private:
// Dummy classes
class dummy_stack : public srsue::stack_interface_phy_lte
{
private:
srslte::log_filter log_h;
uint16_t rnti = 0x3c;
std::mutex mutex;
std::condition_variable cvar;
CALLBACK(in_sync)
CALLBACK(out_of_sync)
CALLBACK(new_phy_meas)
CALLBACK(new_grant_ul)
CALLBACK(new_grant_dl)
CALLBACK(run_tti)
public:
// Local test access methods
explicit dummy_stack(srslte::logger& logger) : log_h("stack", &logger) {}
void set_rnti(uint16_t rnti_) { rnti = rnti_; }
void set_loglevel(std::string& str) { log_h.set_level(str); }
void in_sync() override { notify_in_sync(); }
void out_of_sync() override { notify_out_of_sync(); }
void new_cell_meas(const std::vector<phy_meas_t>& meas) override
{
for (auto& m : meas) {
notify_new_phy_meas();
log_h.info(
"New measurement earfcn=%d; pci=%d; rsrp=%+.1fdBm; rsrq=%+.1fdB;\n", m.earfcn, m.pci, m.rsrp, m.rsrq);
}
}
uint16_t get_dl_sched_rnti(uint32_t tti) override { return rnti; }
uint16_t get_ul_sched_rnti(uint32_t tti) override { return rnti; }
void new_grant_ul(uint32_t cc_idx, mac_grant_ul_t grant, tb_action_ul_t* action) override { notify_new_grant_ul(); }
void new_grant_dl(uint32_t cc_idx, mac_grant_dl_t grant, tb_action_dl_t* action) override
{
notify_new_grant_dl();
for (auto& i : action->tb) {
i.enabled = true;
}
}
void tb_decoded(uint32_t cc_idx, mac_grant_dl_t grant, bool* ack) override {}
void bch_decoded_ok(uint32_t cc_idx, uint8_t* payload, uint32_t len) override {}
void mch_decoded(uint32_t len, bool crc) override {}
void new_mch_dl(srslte_pdsch_grant_t phy_grant, tb_action_dl_t* action) override {}
void set_mbsfn_config(uint32_t nof_mbsfn_services) override {}
void run_tti(const uint32_t tti, const uint32_t tti_jump) override
{
notify_run_tti();
log_h.info("Run TTI %d\n", tti);
}
};
class dummy_radio : public srslte::radio_interface_phy
{
private:
srslte::log_filter log_h;
std::vector<srslte_ringbuffer_t> ring_buffers;
float base_srate = 0.0f;
float tx_srate = 0.0f;
float rx_srate = 0.0f;
float rx_gain = 0.0f;
float tx_freq = 0.0f;
float rx_freq = 0.0f;
cf_t* temp_buffer = nullptr;
uint64_t rx_timestamp = 0;
std::mutex mutex;
std::condition_variable cvar;
srslte_rf_info_t rf_info = {};
srslte_timestamp_t tx_last_tx = {};
uint32_t count_late = 0;
CALLBACK(rx_now)
CALLBACK(tx)
CALLBACK(late)
public:
dummy_radio(srslte::logger& logger, uint32_t nof_channels, float base_srate_) :
log_h("radio", &logger),
ring_buffers(nof_channels),
base_srate(base_srate_)
{
// Create Ring buffers
for (auto& rb : ring_buffers) {
if (srslte_ringbuffer_init(&rb, (uint32_t)sizeof(cf_t) * SRSLTE_SF_LEN_MAX * SRSLTE_NOF_SF_X_FRAME)) {
perror("init softbuffer");
}
}
// Create temporal buffer
temp_buffer = srslte_vec_cf_malloc(SRSLTE_SF_LEN_MAX * SRSLTE_NOF_SF_X_FRAME);
if (!temp_buffer) {
perror("malloc");
}
// Set RF Info (in dB)
rf_info.min_rx_gain = 0.0f;
rf_info.max_rx_gain = 90.0f;
rf_info.min_tx_gain = 0.0f;
rf_info.max_tx_gain = 90.0f;
}
~dummy_radio()
{
for (auto& rb : ring_buffers) {
srslte_ringbuffer_free(&rb);
}
if (temp_buffer) {
free(temp_buffer);
}
}
void set_loglevel(std::string& str) { log_h.set_level(str); }
void write_ring_buffers(cf_t** buffer, uint32_t nsamples)
{
for (uint32_t i = 0; i < ring_buffers.size(); i++) {
int ret = SRSLTE_SUCCESS;
do {
if (ret != SRSLTE_SUCCESS) {
log_h.error("Ring buffer write failed (full). Trying again.\n");
}
ret = srslte_ringbuffer_write_timed(&ring_buffers[i], buffer[i], (uint32_t)sizeof(cf_t) * nsamples, 1000);
} while (ret == SRSLTE_ERROR_TIMEOUT);
}
}
uint32_t get_count_late() { return count_late; }
bool
tx(srslte::rf_buffer_interface& buffer, const uint32_t& nof_samples, const srslte_timestamp_t& tx_time) override
{
bool ret = true;
notify_tx();
std::lock_guard<std::mutex> lock(mutex);
if (!std::isnormal(tx_srate)) {
count_late++;
}
if (srslte_timestamp_compare(&tx_time, &tx_last_tx) < 0) {
ret = false;
}
tx_last_tx = tx_time;
srslte_timestamp_add(&tx_last_tx, 0, (double)nof_samples / (double)tx_srate);
return ret;
}
void release_freq(const uint32_t& carrier_idx) override{};
void tx_end() override {}
bool rx_now(srslte::rf_buffer_interface& buffer, const uint32_t& nof_samples, srslte_timestamp_t* rxd_time) override
{
notify_rx_now();
std::lock_guard<std::mutex> lock(mutex);
auto base_nsamples = (uint32_t)floorf(((float)nof_samples * base_srate) / rx_srate);
for (uint32_t i = 0; i < ring_buffers.size(); i++) {
cf_t* buf_ptr = ((buffer.get(i) != nullptr) && (base_srate == rx_srate)) ? buffer.get(i) : temp_buffer;
// Read base srate samples
int ret = srslte_ringbuffer_read(&ring_buffers[i], buf_ptr, (uint32_t)sizeof(cf_t) * base_nsamples);
if (ret < 0) {
log_h.error("Reading ring buffer\n");
} else {
log_h.debug("-- %d samples read from ring buffer\n", base_nsamples);
}
// Only if baseband buffer is provided
if (buffer.get(i)) {
if (base_srate > rx_srate) {
// Decimate
auto decimation = (uint32_t)roundf(base_srate / rx_srate);
// Perform decimation
for (uint32_t j = 0, k = 0; j < nof_samples; j++, k += decimation) {
buffer.get(i)[j] = buf_ptr[k];
}
} else if (base_srate < rx_srate) {
// Interpolate
auto interpolation = (uint32_t)roundf(rx_srate / base_srate);
// Perform zero order hold interpolation
for (uint32_t j = 0, k = 0; j < nof_samples; k++) {
for (uint32_t c = 0; c < interpolation; c++, j++) {
buffer.get(i)[j] = buf_ptr[k];
}
}
}
}
}
// Set Rx timestamp
if (rxd_time) {
srslte_timestamp_init_uint64(rxd_time, rx_timestamp, (double)base_srate);
}
// Update timestamp
rx_timestamp += base_nsamples;
return true;
}
void set_tx_freq(const uint32_t& channel_idx, const double& freq) override
{
std::unique_lock<std::mutex> lock(mutex);
tx_freq = (float)freq;
log_h.info("Set Tx freq to %+.0f MHz.\n", freq * 1.0e-6);
}
void set_rx_freq(const uint32_t& channel_idx, const double& freq) override
{
std::unique_lock<std::mutex> lock(mutex);
rx_freq = (float)freq;
log_h.info("Set Rx freq to %+.0f MHz.\n", freq * 1.0e-6);
}
void set_rx_gain_th(const float& gain) override
{
std::unique_lock<std::mutex> lock(mutex);
rx_gain = srslte_convert_dB_to_amplitude(gain);
log_h.info("Set Rx gain-th to %+.1f dB (%.6f).\n", gain, rx_gain);
}
void set_tx_gain(const float& gain) override
{
std::unique_lock<std::mutex> lock(mutex);
rx_gain = srslte_convert_dB_to_amplitude(gain);
log_h.info("Set Tx gain to %+.1f dB (%.6f).\n", gain, rx_gain);
}
void set_rx_gain(const float& gain) override
{
std::unique_lock<std::mutex> lock(mutex);
rx_gain = srslte_convert_dB_to_amplitude(gain);
log_h.info("Set Rx gain to %+.1f dB (%.6f).\n", gain, rx_gain);
}
void set_tx_srate(const double& srate) override
{
std::unique_lock<std::mutex> lock(mutex);
tx_srate = (float)srate;
log_h.info("Set Tx sampling rate to %+.3f MHz.\n", srate * 1.0e-6);
}
void set_rx_srate(const double& srate) override
{
std::unique_lock<std::mutex> lock(mutex);
rx_srate = (float)srate;
log_h.info("Set Rx sampling rate to %+.3f MHz.\n", srate * 1.0e-6);
}
float get_rx_gain() override
{
std::unique_lock<std::mutex> lock(mutex);
return srslte_convert_amplitude_to_dB(rx_gain);
}
double get_freq_offset() override { return 0; }
bool is_continuous_tx() override { return false; }
bool get_is_start_of_burst() override { return false; }
bool is_init() override { return false; }
void reset() override {}
srslte_rf_info_t* get_info() override { return &rf_info; }
};
// Common instances
srslte::logger_stdout main_logger;
srslte::log_filter log_h;
// Dummy instances
dummy_stack stack;
dummy_radio radio;
// Phy Instances
std::unique_ptr<srsue::phy> phy;
// eNb
srslte_enb_dl_t enb_dl = {};
cf_t* enb_dl_buffer[SRSLTE_MAX_PORTS] = {};
srslte_dl_sf_cfg_t dl_sf_cfg = {};
uint64_t sfn = 0; // System Frame Number
uint32_t sf_len = 0;
// Control atributes
bool running = false;
std::mutex mutex;
std::condition_variable cvar;
public:
phy_test_bench(const srsue::phy_args_t& phy_args, const srslte_cell_t& cell) :
stack(main_logger),
radio(main_logger, cell.nof_ports, srslte_sampling_freq_hz(cell.nof_prb)),
thread("phy_test_bench"),
log_h("test bench")
{
// Deduce physical attributes
sf_len = SRSLTE_SF_LEN_PRB(cell.nof_prb);
// Initialise UE
phy = std::unique_ptr<srsue::phy>(new srsue::phy(&main_logger));
phy->init(phy_args, &stack, &radio);
// Initialise DL baseband buffers
for (uint32_t i = 0; i < cell.nof_ports; i++) {
enb_dl_buffer[i] = srslte_vec_cf_malloc(sf_len);
if (!enb_dl_buffer[i]) {
perror("malloc");
}
}
// Initialise eNb DL
srslte_enb_dl_init(&enb_dl, enb_dl_buffer, SRSLTE_MAX_PRB);
srslte_enb_dl_set_cell(&enb_dl, cell);
// Wait PHY init to end
phy->wait_initialize();
}
~phy_test_bench()
{
// Free eNb DL object
srslte_enb_dl_free(&enb_dl);
// Free buffers
for (auto& buf : enb_dl_buffer) {
if (buf) {
free(buf);
buf = nullptr;
}
}
}
dummy_stack* get_stack() { return &stack; }
dummy_radio* get_radio() { return &radio; }
srsue::phy_interface_rrc_lte* get_phy_interface_rrc() { return phy.get(); }
srsue::phy_interface_mac_lte* get_phy_interface_mac() { return phy.get(); }
void configure_dedicated(uint16_t rnti, srslte::phy_cfg_t& phy_cfg)
{
// set RNTI
phy->set_crnti(rnti);
// Set PHY configuration
phy->set_config(phy_cfg, 0, 0, nullptr);
}
void run_thread() override
{
bool _running;
// Free run DL
do {
log_h.debug("-- generating DL baseband SFN=%" PRId64 " TTI=%d;\n", sfn, dl_sf_cfg.tti);
// Create empty resource grid with basic signals
srslte_enb_dl_put_base(&enb_dl, &dl_sf_cfg);
// Generate signal and transmit
srslte_enb_dl_gen_signal(&enb_dl);
// Write baseband to radio
radio.write_ring_buffers(enb_dl_buffer, sf_len);
// Increase TTI
dl_sf_cfg.tti++;
// Increase System Frame number
if (dl_sf_cfg.tti >= 10240U) {
dl_sf_cfg.tti = 0;
sfn++;
}
// Update local running state
mutex.lock();
_running = running;
mutex.unlock();
} while (_running);
// Stop PHY now!
phy->stop();
// Finish thread
}
void start()
{
std::lock_guard<std::mutex> lock(mutex);
running = true;
thread::start();
}
void stop()
{
cvar.notify_all();
mutex.lock();
running = false;
mutex.unlock();
wait_thread_finish();
}
void set_loglevel(std::string str)
{
log_h.set_level(str);
radio.set_loglevel(str);
stack.set_loglevel(str);
}
};
int main(int argc, char** argv)
{
int ret = SRSLTE_SUCCESS;
const uint32_t default_timeout = 60000; // 1 minute
// Define Cell
srslte_cell_t cell = {.nof_prb = 6,
.nof_ports = 4,
.id = 1,
.cp = SRSLTE_CP_NORM,
.phich_length = SRSLTE_PHICH_NORM,
.phich_resources = SRSLTE_PHICH_R_1,
.frame_type = SRSLTE_FDD};
// Define PHY arguments
srsue::phy_args_t phy_args = {};
// Set custom test cell and arguments here
phy_args.log.phy_level = "info";
// Create test bench
std::unique_ptr<phy_test_bench> phy_test = std::unique_ptr<phy_test_bench>(new phy_test_bench(phy_args, cell));
phy_test->set_loglevel("info");
// Start test bench
phy_test->start();
// 1. Cell search
srsue::phy_interface_rrc_lte::phy_cell_t phy_cell;
auto cell_search_res = phy_test->get_phy_interface_rrc()->cell_search(&phy_cell);
TESTASSERT(cell_search_res.found == srsue::phy_interface_rrc_lte::cell_search_ret_t::CELL_FOUND);
TESTASSERT(phy_test->get_stack()->wait_in_sync(default_timeout));
TESTASSERT(phy_cell.pci == cell.id);
// 2. Cell select
phy_test->get_phy_interface_rrc()->cell_select(&phy_cell);
TESTASSERT(phy_test->get_stack()->wait_in_sync(default_timeout));
TESTASSERT(phy_test->get_stack()->wait_new_phy_meas(default_timeout));
// 3. Transmit PRACH
phy_test->get_phy_interface_mac()->configure_prach_params();
phy_test->get_phy_interface_mac()->prach_send(0, -1, 0.0f);
TESTASSERT(phy_test->get_radio()->wait_tx(default_timeout, false));
// 4. Configure RNTI with PUCCH and check transmission
uint16_t rnti = 0x3c;
srslte::phy_cfg_t phy_cfg = {};
phy_cfg.set_defaults();
phy_cfg.dl_cfg.cqi_report.periodic_mode = SRSLTE_CQI_MODE_12;
phy_cfg.dl_cfg.cqi_report.periodic_configured = true;
phy_cfg.dl_cfg.cqi_report.pmi_idx = 0;
phy_cfg.ul_cfg.pucch.n_pucch_2 = 0;
phy_test->configure_dedicated(rnti, phy_cfg);
TESTASSERT(phy_test->get_radio()->wait_tx(default_timeout));
// Wait to finish test
phy_test->stop();
// Final test checks...
TESTASSERT(!phy_test->get_radio()->get_count_late()); // No Late allowed
return ret;
}