srsLTE/lib/examples/npdsch_ue.c

1087 lines
38 KiB
C

/**
* Copyright 2013-2022 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <assert.h>
#include <math.h>
#include <pthread.h>
#include <semaphore.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <sys/time.h>
#include <unistd.h>
#include "npdsch_ue_helper.h"
#include "srsran/phy/ch_estimation/chest_dl_nbiot.h"
#include "srsran/phy/channel/ch_awgn.h"
#include "srsran/phy/io/filesink.h"
#include "srsran/phy/io/filesource.h"
#include "srsran/phy/ue/ue_dl_nbiot.h"
#include "srsran/phy/ue/ue_mib_nbiot.h"
#include "srsran/phy/ue/ue_sync_nbiot.h"
#include "srsran/phy/utils/bit.h"
#undef ENABLE_AGC_DEFAULT
#ifndef DISABLE_RF
#include "srsran/phy/rf/rf.h"
#include "srsran/phy/rf/rf_utils.h"
#define ENABLE_MANUAL_NSSS_SEARCH 0
#define HAVE_PCAP 1
#if HAVE_PCAP
#include "srsran/common/pcap.h"
#endif
cell_search_cfg_t cell_detect_config = {.max_frames_pbch = SRSRAN_DEFAULT_MAX_FRAMES_NPBCH,
.max_frames_pss = SRSRAN_DEFAULT_MAX_FRAMES_NPSS,
.nof_valid_pss_frames = SRSRAN_DEFAULT_NOF_VALID_NPSS_FRAMES,
.init_agc = 0,
.force_tdd = false};
#else
#pragma message "Compiling npdsch_ue with no RF support"
#endif
#ifdef ENABLE_GUI
#include "srsgui/srsgui.h"
void init_plots();
pthread_t plot_thread;
sem_t plot_sem;
uint32_t plot_sf_idx = 0;
bool plot_track = true;
#define HAVE_RSRP_PLOT 0
#endif // ENABLE_GUI
#define PRINT_CHANGE_SCHEDULIGN
#define NPSS_FIND_PLOT_WIDTH 80
//#define CORRECT_SAMPLE_OFFSET
static srsran_nbiot_si_params_t sib2_params;
/**********************************************************************
* Program arguments processing
***********************************************************************/
typedef struct {
int nof_subframes;
bool disable_plots;
bool disable_plots_except_constellation;
bool disable_cfo;
uint32_t time_offset;
int n_id_ncell;
bool is_r14;
bool skip_sib2;
uint16_t rnti;
char* input_file_name;
int file_offset_time;
float file_offset_freq;
uint32_t file_nof_prb;
uint32_t file_nof_ports;
uint32_t file_cell_id;
char* rf_dev;
char* rf_args;
double rf_freq;
float rf_gain;
} prog_args_t;
void args_default(prog_args_t* args)
{
args->disable_plots = false;
args->disable_plots_except_constellation = false;
args->nof_subframes = -1;
args->rnti = SRSRAN_SIRNTI;
args->n_id_ncell = SRSRAN_CELL_ID_UNKNOWN;
args->is_r14 = true;
args->input_file_name = NULL;
args->disable_cfo = false;
args->time_offset = 0;
args->file_nof_prb = 1;
args->file_nof_ports = 0;
args->file_cell_id = 0;
args->file_offset_time = 0;
args->file_offset_freq = 0;
args->rf_dev = "";
args->rf_args = "";
args->rf_freq = -1.0;
#ifdef ENABLE_AGC_DEFAULT
args->rf_gain = -1.0;
#else
args->rf_gain = 70.0;
#endif
}
void usage(prog_args_t* args, char* prog)
{
printf("Usage: %s [agpRPoOildtDnrBuHvqwzxc] -f rx_frequency (in Hz) | -i input_file\n", prog);
#ifndef DISABLE_RF
printf("\t-I RF dev [Default %s]\n", args->rf_dev);
printf("\t-a RF args [Default %s]\n", args->rf_args);
#ifdef ENABLE_AGC_DEFAULT
printf("\t-g RF fix RX gain [Default AGC]\n");
#else
printf("\t-g Set RX gain [Default %.1f dB]\n", args->rf_gain);
#endif
#else
printf("\t RF is disabled.\n");
#endif
printf("\t-i input_file [Default use RF board]\n");
printf("\t-o offset frequency correction (in Hz) for input file [Default %.1f Hz]\n", args->file_offset_freq);
printf("\t-O offset samples for input file [Default %d]\n", args->file_offset_time);
printf("\t-p nof_prb for input file [Default %d]\n", args->file_nof_prb);
printf("\t-P nof_ports for input file [Default %d]\n", args->file_nof_ports);
printf("\t-r RNTI in Hex [Default 0x%x]\n", args->rnti);
printf("\t-l n_id_ncell [Default %d]\n", args->n_id_ncell);
printf("\t-R Is R14 cell [Default %s]\n", args->is_r14 ? "Yes" : "No");
printf("\t-C Disable CFO correction [Default %s]\n", args->disable_cfo ? "Disabled" : "Enabled");
printf("\t-t Add time offset [Default %d]\n", args->time_offset);
printf("\t-s Skip SIB2 decoding[Default %d]\n", args->skip_sib2);
#ifdef ENABLE_GUI
printf("\t-d disable plots [Default enabled]\n");
printf("\t-D disable all but constellation plots [Default enabled]\n");
#else
printf("\t plots are disabled. Graphics library not available\n");
#endif // ENABLE_GUI
printf("\t-n nof_subframes [Default %d]\n", args->nof_subframes);
printf("\t-v [set srsran_verbose to debug, default none]\n");
}
void parse_args(prog_args_t* args, int argc, char** argv)
{
int opt;
args_default(args);
while ((opt = getopt(argc, argv, "aogRBliIpHPOCtdDsnvrfqwzxc")) != -1) {
switch (opt) {
case 'i':
args->input_file_name = argv[optind];
break;
case 'p':
args->file_nof_prb = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'P':
args->file_nof_ports = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'o':
args->file_offset_freq = strtof(argv[optind], NULL);
break;
case 'O':
args->file_offset_time = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'I':
args->rf_dev = argv[optind];
break;
case 'a':
args->rf_args = argv[optind];
break;
case 'g':
args->rf_gain = strtof(argv[optind], NULL);
break;
case 'C':
args->disable_cfo = true;
break;
case 't':
args->time_offset = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'f':
args->rf_freq = strtod(argv[optind], NULL);
break;
case 'n':
args->nof_subframes = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'r':
args->rnti = strtol(argv[optind], NULL, 16);
break;
case 'l':
args->n_id_ncell = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'R':
args->is_r14 = !args->is_r14;
break;
case 'd':
args->disable_plots = true;
break;
case 's':
args->skip_sib2 = !args->skip_sib2;
break;
case 'D':
args->disable_plots_except_constellation = true;
break;
case 'v':
increase_srsran_verbose_level();
break;
default:
usage(args, argv[0]);
exit(-1);
}
}
if (args->rf_freq < 0 && args->input_file_name == NULL) {
usage(args, argv[0]);
exit(-1);
}
}
/**********************************************************************/
static uint8_t rx_tb[SRSRAN_MAX_DL_BITS_CAT_NB1]; // Byte buffer for rx'ed transport blocks
bool go_exit = false;
void sig_int_handler(int signo)
{
printf("SIGINT received. Exiting...\n");
if (signo == SIGINT) {
go_exit = true;
}
}
#if HAVE_PCAP
void pcap_pack_and_write(FILE* pcap_file,
uint8_t* pdu,
uint32_t pdu_len_bytes,
uint8_t reTX,
bool crc_ok,
uint32_t tti,
uint16_t crnti,
uint8_t direction,
uint8_t rnti_type)
{
MAC_Context_Info_t context = {.radioType = FDD_RADIO,
.direction = direction,
.rntiType = rnti_type,
.rnti = crnti,
.ueid = 1,
.isRetx = reTX,
.crcStatusOK = crc_ok,
.sysFrameNumber = (uint16_t)(tti / SRSRAN_NOF_SF_X_FRAME),
.subFrameNumber = (uint16_t)(tti % SRSRAN_NOF_SF_X_FRAME),
.nbiotMode = 1};
if (pdu) {
LTE_PCAP_MAC_WritePDU(pcap_file, &context, pdu, pdu_len_bytes);
}
}
#endif
#ifndef DISABLE_RF
int srsran_rf_recv_wrapper(void* h, void* data, uint32_t nsamples, srsran_timestamp_t* t)
{
DEBUG(" ---- Receive %d samples ----", nsamples);
return srsran_rf_recv_with_time(h, data, nsamples, true, &t->full_secs, &t->frac_secs);
}
void srsran_rf_set_rx_gain_th_wrapper_(void* h, float f)
{
srsran_rf_set_rx_gain_th((srsran_rf_t*)h, f);
}
#endif
enum receiver_state { DECODE_MIB, DECODE_SIB, DECODE_NPDSCH } state;
static srsran_nbiot_cell_t cell = {};
srsran_nbiot_ue_dl_t ue_dl;
srsran_nbiot_ue_sync_t ue_sync;
prog_args_t prog_args;
bool have_sib1 = false;
bool have_sib2 = false;
#ifdef ENABLE_GUI
#define MAX_MSG_BUF (8192)
static char mib_buffer_disp[MAX_MSG_BUF], mib_buffer_decode[MAX_MSG_BUF];
static char sib1_buffer_disp[MAX_MSG_BUF], sib1_buffer_decode[MAX_MSG_BUF];
static char sib2_buffer_disp[MAX_MSG_BUF], sib2_buffer_decode[MAX_MSG_BUF];
#if HAVE_RSRP_PLOT
#define RSRP_TABLE_MAX_IDX 1024
static float rsrp_table[RSRP_TABLE_MAX_IDX];
static uint32_t rsrp_table_index = 0;
static uint32_t rsrp_num_plot = RSRP_TABLE_MAX_IDX;
#endif // HAVE_RSRP_PLOT
#endif // ENABLE_GUI
static uint32_t system_frame_number = 0;
static uint32_t hyper_frame_number = 0;
int main(int argc, char** argv)
{
int ret;
int64_t sf_cnt;
srsran_ue_mib_nbiot_t ue_mib;
#ifndef DISABLE_RF
srsran_rf_t rf;
#endif
uint32_t nof_trials = 0;
int n;
uint8_t bch_payload[SRSRAN_MIB_NB_LEN] = {};
int sfn_offset;
float cfo = 0;
parse_args(&prog_args, argc, argv);
#if HAVE_PCAP
FILE* pcap_file = DLT_PCAP_Open(MAC_LTE_DLT, "/tmp/npdsch.pcap");
#endif
sigset_t sigset;
sigemptyset(&sigset);
sigaddset(&sigset, SIGINT);
sigprocmask(SIG_UNBLOCK, &sigset, NULL);
signal(SIGINT, sig_int_handler);
cell.base.nof_prb = SRSRAN_NBIOT_DEFAULT_NUM_PRB_BASECELL;
cell.nbiot_prb = SRSRAN_NBIOT_DEFAULT_PRB_OFFSET;
cell.n_id_ncell = prog_args.n_id_ncell;
cell.is_r14 = prog_args.is_r14;
#ifndef DISABLE_RF
if (!prog_args.input_file_name) {
printf("Opening RF device...\n");
if (srsran_rf_open_devname(&rf, prog_args.rf_dev, prog_args.rf_args, 1)) {
fprintf(stderr, "Error opening rf\n");
exit(-1);
}
/* Set receiver gain */
if (prog_args.rf_gain > 0) {
srsran_rf_set_rx_gain(&rf, prog_args.rf_gain);
printf("Set RX gain: %.1f dB\n", prog_args.rf_gain);
} else {
printf("Starting AGC thread...\n");
if (srsran_rf_start_gain_thread(&rf, false)) {
fprintf(stderr, "Error opening rf\n");
exit(-1);
}
srsran_rf_set_rx_gain(&rf, 50);
cell_detect_config.init_agc = 50;
}
// set transceiver frequency
printf("Set RX freq: %.6f MHz\n", srsran_rf_set_rx_freq(&rf, 0, prog_args.rf_freq) / 1000000);
// set sampling frequency
int srate = srsran_sampling_freq_hz(cell.base.nof_prb);
if (srate != -1) {
printf("Setting sampling rate %.2f MHz\n", (float)srate / 1e6);
double srate_rf = srsran_rf_set_rx_srate(&rf, srate);
printf("Actual sampling rate %.2f MHz\n", srate_rf / 1e6);
// We don't check the result rate with requested rate
} else {
fprintf(stderr, "Invalid number of PRB %d\n", cell.base.nof_prb);
exit(-1);
}
INFO("Stopping RF and flushing buffer...\r");
srsran_rf_stop_rx_stream(&rf);
#if ENABLE_MANUAL_NSSS_SEARCH
// determine n_id_ncell
if (prog_args.n_id_ncell == SRSRAN_CELL_ID_UNKNOWN) {
srsran_nsss_synch_t nsss;
float nsss_peak_value;
int input_len = srate * 10 / 1000 * 2; // capture two full frames to make sure we have one NSSS
cf_t* buffer = srsran_vec_cf_malloc(input_len * 2);
if (!buffer) {
perror("malloc");
exit(-1);
}
if (srsran_nsss_synch_init(&nsss, input_len, srate / 15000)) {
fprintf(stderr, "Error initializing NSSS object\n");
exit(-1);
}
srsran_rf_start_rx_stream(&rf, false);
n = srsran_rf_recv(&rf, buffer, input_len, 1);
if (n != input_len) {
fprintf(stderr, "Error receiving samples\n");
exit(-1);
}
srsran_rf_stop_rx_stream(&rf);
// trying to find NSSS
printf("Detecting NSSS signal .. ");
fflush(stdout);
uint32_t sfn_partial;
srsran_nsss_sync_find(&nsss, buffer, &nsss_peak_value, (uint32_t*)&cell.n_id_ncell, &sfn_partial);
printf("done!");
srsran_nsss_synch_free(&nsss);
free(buffer);
} else {
cell.n_id_ncell = prog_args.n_id_ncell;
}
printf("\nSetting n_id_ncell to %d.\n", cell.n_id_ncell);
#else
if (cell.n_id_ncell == SRSRAN_CELL_ID_UNKNOWN) {
uint32_t ntrial = 0;
do {
ret = rf_cell_search_nbiot(&rf, &cell_detect_config, &cell, &cfo);
if (ret != SRSRAN_SUCCESS) {
printf("Cell not found after %d trials. Trying again (Press Ctrl+C to exit)\n", ntrial++);
}
} while (ret != SRSRAN_SUCCESS && !go_exit);
}
#endif
if (go_exit) {
exit(0);
}
}
#endif
/* If reading from file, go straight to PDSCH decoding. Otherwise, decode MIB first */
if (prog_args.input_file_name) {
// set file specific params
cell.base.nof_ports = prog_args.file_nof_ports;
cell.nof_ports = prog_args.file_nof_ports;
if (srsran_ue_sync_nbiot_init_file(
&ue_sync, cell, prog_args.input_file_name, prog_args.file_offset_time, prog_args.file_offset_freq)) {
fprintf(stderr, "Error initiating ue_sync\n");
exit(-1);
}
} else {
#ifndef DISABLE_RF
if (srsran_ue_sync_nbiot_init(&ue_sync, cell, srsran_rf_recv_wrapper, (void*)&rf)) {
fprintf(stderr, "Error initiating ue_sync\n");
exit(-1);
}
// reduce AGC period to every 10th frame
srsran_ue_sync_nbiot_set_agc_period(&ue_sync, 10);
#endif
}
// Allocate memory to fit a full frame (needed for time re-alignment)
cf_t* buff_ptrs[SRSRAN_MAX_PORTS] = {NULL};
buff_ptrs[0] = srsran_vec_cf_malloc(SRSRAN_SF_LEN_PRB_NBIOT * 10);
if (srsran_ue_mib_nbiot_init(&ue_mib, buff_ptrs, SRSRAN_NBIOT_MAX_PRB)) {
fprintf(stderr, "Error initaiting UE MIB decoder\n");
exit(-1);
}
if (srsran_ue_mib_nbiot_set_cell(&ue_mib, cell) != SRSRAN_SUCCESS) {
fprintf(stderr, "Error setting cell configuration in UE MIB decoder\n");
exit(-1);
}
// Initialize subframe counter
sf_cnt = 0;
#ifdef ENABLE_GUI
if (!prog_args.disable_plots) {
init_plots();
}
#endif // ENABLE_GUI
#ifndef DISABLE_RF
if (!prog_args.input_file_name) {
srsran_rf_start_rx_stream(&rf, false);
}
#endif
// Variables for measurements
uint32_t nframes = 0;
float rsrp = 0.0, rsrq = 0.0, noise = 0.0;
#ifndef DISABLE_RF
if (prog_args.rf_gain < 0) {
srsran_ue_sync_nbiot_start_agc(&ue_sync, srsran_rf_set_rx_gain_th_wrapper_, cell_detect_config.init_agc);
}
#endif
#ifdef PRINT_CHANGE_SCHEDULIGN
srsran_ra_nbiot_dl_dci_t old_dl_dci;
bzero(&old_dl_dci, sizeof(srsran_ra_nbiot_dl_dci_t));
#endif
ue_sync.correct_cfo = !prog_args.disable_cfo;
// Set initial CFO for ue_sync
srsran_ue_sync_nbiot_set_cfo(&ue_sync, cfo);
srsran_npbch_decode_reset(&ue_mib.npbch);
INFO("\nEntering main loop...");
while (!go_exit && (sf_cnt < prog_args.nof_subframes || prog_args.nof_subframes == -1)) {
ret = srsran_ue_sync_nbiot_zerocopy_multi(&ue_sync, buff_ptrs);
if (ret < 0) {
fprintf(stderr, "Error calling srsran_nbiot_ue_sync_zerocopy_multi()\n");
break;
}
#ifdef CORRECT_SAMPLE_OFFSET
float sample_offset =
(float)srsran_ue_sync_get_last_sample_offset(&ue_sync) + srsran_ue_sync_get_sfo(&ue_sync) / 1000;
srsran_ue_dl_set_sample_offset(&ue_dl, sample_offset);
#endif
// srsran_ue_sync_nbiot_zerocopy_multi() returns 1 if successfully read 1 aligned subframe
if (ret == 1) {
switch (state) {
case DECODE_MIB:
if (srsran_ue_sync_nbiot_get_sfidx(&ue_sync) == 0) {
n = srsran_ue_mib_nbiot_decode(&ue_mib, buff_ptrs[0], bch_payload, &cell.nof_ports, &sfn_offset);
if (n < 0) {
fprintf(stderr, "Error decoding UE MIB\n");
exit(-1);
} else if (n == SRSRAN_UE_MIB_NBIOT_FOUND) {
printf("MIB received (CFO: %+6.2f kHz)\n", srsran_ue_sync_nbiot_get_cfo(&ue_sync) / 1000);
srsran_mib_nb_t mib;
srsran_npbch_mib_unpack(bch_payload, &mib);
// update SFN and set deployment mode
system_frame_number = (mib.sfn + sfn_offset) % 1024;
cell.mode = mib.mode;
// set number of ports of base cell to that of NB-IoT cell (TODO: read eutra-NumCRS-Ports-r13)
cell.base.nof_ports = cell.nof_ports;
if (cell.mode == SRSRAN_NBIOT_MODE_INBAND_SAME_PCI) {
cell.base.id = cell.n_id_ncell;
}
if (SRSRAN_VERBOSE_ISINFO()) {
srsran_mib_nb_printf(stdout, cell, &mib);
}
// Initialize DL
if (srsran_nbiot_ue_dl_init(&ue_dl, buff_ptrs, SRSRAN_NBIOT_MAX_PRB, SRSRAN_NBIOT_NUM_RX_ANTENNAS)) {
fprintf(stderr, "Error initiating UE downlink processing module\n");
exit(-1);
}
if (srsran_nbiot_ue_dl_set_cell(&ue_dl, cell)) {
fprintf(stderr, "Configuring cell in UE DL\n");
exit(-1);
}
// Configure downlink receiver with the MIB params and the RNTI we use
srsran_nbiot_ue_dl_set_mib(&ue_dl, mib);
srsran_nbiot_ue_dl_set_rnti(&ue_dl, prog_args.rnti);
// Pretty-print MIB
srsran_bit_pack_vector(bch_payload, rx_tb, SRSRAN_MIB_NB_CRC_LEN);
#ifdef ENABLE_GUI
if (bcch_bch_to_pretty_string(
rx_tb, SRSRAN_MIB_NB_CRC_LEN, mib_buffer_decode, sizeof(mib_buffer_decode))) {
fprintf(stderr, "Error decoding MIB\n");
}
#endif
#if HAVE_PCAP
// write to PCAP
pcap_pack_and_write(pcap_file,
rx_tb,
SRSRAN_MIB_NB_CRC_LEN,
0,
true,
system_frame_number * SRSRAN_NOF_SF_X_FRAME,
0,
DIRECTION_DOWNLINK,
NO_RNTI);
#endif
// activate SIB1 decoding
srsran_nbiot_ue_dl_decode_sib1(&ue_dl, system_frame_number);
state = DECODE_SIB;
}
}
break;
case DECODE_SIB:
if (!have_sib1) {
int dec_ret = srsran_nbiot_ue_dl_decode_npdsch(&ue_dl,
&buff_ptrs[0][prog_args.time_offset],
rx_tb,
system_frame_number,
srsran_ue_sync_nbiot_get_sfidx(&ue_sync),
SRSRAN_SIRNTI);
if (dec_ret == SRSRAN_SUCCESS) {
printf("SIB1 received\n");
srsran_sys_info_block_type_1_nb_t sib = {};
srsran_npdsch_sib1_unpack(rx_tb, &sib);
hyper_frame_number = sib.hyper_sfn;
have_sib1 = true;
#ifdef ENABLE_GUI
if (bcch_dl_sch_to_pretty_string(
rx_tb, ue_dl.npdsch_cfg.grant.mcs[0].tbs / 8, sib1_buffer_decode, sizeof(sib1_buffer_decode))) {
fprintf(stderr, "Error decoding SIB1\n");
}
#endif
// Decode SIB1 and extract SIB2 scheduling params
get_sib2_params(rx_tb, ue_dl.npdsch_cfg.grant.mcs[0].tbs / 8, &sib2_params);
// Activate SIB2 decoding
srsran_nbiot_ue_dl_decode_sib(
&ue_dl, hyper_frame_number, system_frame_number, SRSRAN_NBIOT_SI_TYPE_SIB2, sib2_params);
#if HAVE_PCAP
pcap_pack_and_write(pcap_file,
rx_tb,
ue_dl.npdsch_cfg.grant.mcs[0].tbs / 8,
0,
true,
system_frame_number * 10 + srsran_ue_sync_nbiot_get_sfidx(&ue_sync),
SRSRAN_SIRNTI,
DIRECTION_DOWNLINK,
SI_RNTI);
#endif
// if SIB1 was decoded in this subframe, skip processing it further
break;
} else if (dec_ret == SRSRAN_ERROR) {
// reactivate SIB1 grant
if (srsran_nbiot_ue_dl_has_grant(&ue_dl) == false) {
srsran_nbiot_ue_dl_decode_sib1(&ue_dl, system_frame_number);
}
}
} else if (!have_sib2 && !srsran_nbiot_ue_dl_is_sib1_sf(
&ue_dl, system_frame_number, srsran_ue_sync_nbiot_get_sfidx(&ue_sync))) {
// SIB2 is transmitted over multiple subframes, so this needs to be called more than once ..
int dec_ret = srsran_nbiot_ue_dl_decode_npdsch(&ue_dl,
&buff_ptrs[0][prog_args.time_offset],
rx_tb,
system_frame_number,
srsran_ue_sync_nbiot_get_sfidx(&ue_sync),
SRSRAN_SIRNTI);
if (dec_ret == SRSRAN_SUCCESS) {
printf("SIB2 received\n");
have_sib2 = true;
#ifdef ENABLE_GUI
if (bcch_dl_sch_to_pretty_string(
rx_tb, ue_dl.npdsch_cfg.grant.mcs[0].tbs / 8, sib2_buffer_decode, sizeof(sib2_buffer_decode))) {
fprintf(stderr, "Error decoding SIB2\n");
}
#endif
#if HAVE_PCAP
pcap_pack_and_write(pcap_file,
rx_tb,
ue_dl.npdsch_cfg.grant.mcs[0].tbs / 8,
0,
true,
system_frame_number * 10 + srsran_ue_sync_nbiot_get_sfidx(&ue_sync),
SRSRAN_SIRNTI,
DIRECTION_DOWNLINK,
SI_RNTI);
#endif
} else {
// reactivate SIB2 grant
if (srsran_nbiot_ue_dl_has_grant(&ue_dl) == false) {
srsran_nbiot_ue_dl_decode_sib(
&ue_dl, hyper_frame_number, system_frame_number, SRSRAN_NBIOT_SI_TYPE_SIB2, sib2_params);
}
}
}
if (have_sib1 && (have_sib2 || prog_args.skip_sib2)) {
if (prog_args.rnti == SRSRAN_SIRNTI) {
srsran_nbiot_ue_dl_decode_sib1(&ue_dl, system_frame_number);
}
state = DECODE_NPDSCH;
}
break;
case DECODE_NPDSCH:
if (prog_args.rnti != SRSRAN_SIRNTI) {
if (srsran_nbiot_ue_dl_has_grant(&ue_dl)) {
// attempt to decode NPDSCH
n = srsran_nbiot_ue_dl_decode_npdsch(&ue_dl,
&buff_ptrs[0][prog_args.time_offset],
rx_tb,
system_frame_number,
srsran_ue_sync_nbiot_get_sfidx(&ue_sync),
prog_args.rnti);
if (n == SRSRAN_SUCCESS) {
INFO("NPDSCH decoded ok.");
}
} else {
// decode NPDCCH
srsran_dci_msg_t dci_msg;
n = srsran_nbiot_ue_dl_decode_npdcch(&ue_dl,
&buff_ptrs[0][prog_args.time_offset],
system_frame_number,
srsran_ue_sync_nbiot_get_sfidx(&ue_sync),
prog_args.rnti,
&dci_msg);
if (n == SRSRAN_NBIOT_UE_DL_FOUND_DCI) {
INFO("DCI found for rnti=%d", prog_args.rnti);
// convert DCI to grant
srsran_ra_nbiot_dl_dci_t dci_unpacked;
srsran_ra_nbiot_dl_grant_t grant;
if (srsran_nbiot_dci_msg_to_dl_grant(&dci_msg,
prog_args.rnti,
&dci_unpacked,
&grant,
system_frame_number,
srsran_ue_sync_nbiot_get_sfidx(&ue_sync),
64 /* TODO: remove */,
cell.mode)) {
fprintf(stderr, "Error unpacking DCI\n");
return SRSRAN_ERROR;
}
// activate grant
srsran_nbiot_ue_dl_set_grant(&ue_dl, &grant);
}
}
} else {
// decode SIB1 over and over again
n = srsran_nbiot_ue_dl_decode_npdsch(&ue_dl,
&buff_ptrs[0][prog_args.time_offset],
rx_tb,
system_frame_number,
srsran_ue_sync_nbiot_get_sfidx(&ue_sync),
prog_args.rnti);
#ifdef ENABLE_GUI
if (n == SRSRAN_SUCCESS) {
if (bcch_dl_sch_to_pretty_string(
rx_tb, ue_dl.npdsch_cfg.grant.mcs[0].tbs / 8, sib1_buffer_decode, sizeof(sib1_buffer_decode))) {
fprintf(stderr, "Error decoding SIB1\n");
}
}
#endif // ENABLE_GUI
// reactivate SIB1 grant
if (srsran_nbiot_ue_dl_has_grant(&ue_dl) == false) {
srsran_nbiot_ue_dl_decode_sib1(&ue_dl, system_frame_number);
}
}
nof_trials++;
rsrq = SRSRAN_VEC_EMA(srsran_chest_dl_nbiot_get_rsrq(&ue_dl.chest), rsrq, 0.1);
rsrp = SRSRAN_VEC_EMA(srsran_chest_dl_nbiot_get_rsrp(&ue_dl.chest), rsrp, 0.05);
noise = SRSRAN_VEC_EMA(srsran_chest_dl_nbiot_get_noise_estimate(&ue_dl.chest), noise, 0.05);
nframes++;
if (isnan(rsrq)) {
rsrq = 0;
}
if (isnan(noise)) {
noise = 0;
}
if (isnan(rsrp)) {
rsrp = 0;
}
// Plot and Printf
if (srsran_ue_sync_nbiot_get_sfidx(&ue_sync) == 5) {
float gain = prog_args.rf_gain;
if (gain < 0) {
gain = 10 * log10(srsran_agc_get_gain(&ue_sync.agc));
}
printf(
"CFO: %+6.2f kHz, RSRP: %4.1f dBm "
"SNR: %4.1f dB, RSRQ: %4.1f dB, "
"NPDCCH detected: %d, NPDSCH-BLER: %5.2f%% (%d of total %d), NPDSCH-Rate: %5.2f kbit/s\r",
srsran_ue_sync_nbiot_get_cfo(&ue_sync) / 1000,
10 * log10(rsrp),
10 * log10(rsrp / noise),
10 * log10(rsrq),
ue_dl.nof_detected,
(float)100 * ue_dl.pkt_errors / ue_dl.pkts_total,
ue_dl.pkt_errors,
ue_dl.pkts_total,
(ue_dl.bits_total / ((system_frame_number * 10 + srsran_ue_sync_nbiot_get_sfidx(&ue_sync)) / 1000.0)) /
1000.0);
}
break;
}
if (srsran_ue_sync_nbiot_get_sfidx(&ue_sync) == 9) {
system_frame_number++;
if (system_frame_number == 1024) {
system_frame_number = 0;
hyper_frame_number++;
printf("\n");
// don't reset counter when reading from file to maintain complete stats
if (!prog_args.input_file_name) {
ue_dl.pkt_errors = 0;
ue_dl.pkts_total = 0;
ue_dl.nof_detected = 0;
ue_dl.bits_total = 0;
nof_trials = 0;
}
}
}
#ifdef ENABLE_GUI
if (!prog_args.disable_plots) {
if ((system_frame_number % 4) == 0) {
plot_sf_idx = srsran_ue_sync_nbiot_get_sfidx(&ue_sync);
plot_track = true;
sem_post(&plot_sem);
}
}
#endif // ENABLE_GUI
} else if (ret == 0) {
state = DECODE_MIB;
printf("Finding PSS... Peak: %8.1f, FrameCnt: %d, State: %d\r",
srsran_sync_nbiot_get_peak_value(&ue_sync.sfind),
ue_sync.frame_total_cnt,
ue_sync.state);
#ifdef ENABLE_GUI
if (!prog_args.disable_plots) {
plot_sf_idx = srsran_ue_sync_nbiot_get_sfidx(&ue_sync);
plot_track = false;
sem_post(&plot_sem);
}
#endif // ENABLE_GUI
}
sf_cnt++;
} // Main loop
// print statistics
if (prog_args.input_file_name) {
printf("pkt_total=%d\n", ue_dl.pkts_total);
printf("pkt_ok=%d\n", ue_dl.pkts_total - ue_dl.pkt_errors);
printf("pkt_errors=%d\n", ue_dl.pkt_errors);
printf("bler=%.2f\n", ue_dl.pkts_total ? (float)100 * ue_dl.pkt_errors / ue_dl.pkts_total : 0);
printf("rate=%.2f\n", ((ue_dl.bits_total / ((sf_cnt) / 1000.0)) / 1000.0));
printf("dci_detected=%d\n", ue_dl.nof_detected);
}
srsran_nbiot_ue_dl_free(&ue_dl);
srsran_ue_sync_nbiot_free(&ue_sync);
#if HAVE_PCAP
printf("Saving PCAP file\n");
DLT_PCAP_Close(pcap_file);
#endif
#ifndef DISABLE_RF
if (!prog_args.input_file_name) {
srsran_ue_mib_nbiot_free(&ue_mib);
srsran_rf_close(&rf);
for (int i = 0; i < SRSRAN_MAX_PORTS; i++) {
if (buff_ptrs[i] != NULL)
free(buff_ptrs[i]);
}
}
#endif
#ifdef ENABLE_GUI
if (!prog_args.disable_plots) {
sem_post(&plot_sem);
if (!pthread_kill(plot_thread, 0)) {
pthread_kill(plot_thread, SIGHUP);
pthread_join(plot_thread, NULL);
}
}
#endif // ENABLE_GUI
printf("\nBye\n");
return SRSRAN_SUCCESS;
}
/**********************************************************************
* Plotting Functions
***********************************************************************/
#ifdef ENABLE_GUI
plot_real_t p_sync, pce;
#if HAVE_RSRP_PLOT
plot_real_t rsrp_plot;
#endif
plot_scatter_t constellation_plot;
text_edit_t miblog, sib1log, sib2log;
key_value_t id_label, mode_label, hfn_label;
#define LABLE_MAX_LEN (10)
static char lable_buf[LABLE_MAX_LEN];
float tmp_plot[110 * 15 * 2048];
float tmp_plot2[110 * 15 * 2048];
void* plot_thread_run(void* arg)
{
uint32_t nof_re = SRSRAN_SF_LEN_RE(ue_dl.cell.base.nof_prb, ue_dl.cell.base.cp);
#if HAVE_RSRP_PLOT
float rsrp_lin = 0;
#endif
sdrgui_init_title("Software Radio Systems NB-IoT Receiver");
plot_scatter_init(&constellation_plot);
plot_scatter_setTitle(&constellation_plot, "NPDCCH/NPDSCH - Equalized Symbols");
plot_scatter_setXAxisScale(&constellation_plot, -2, 2);
plot_scatter_setYAxisScale(&constellation_plot, -2, 2);
plot_scatter_addToWindowGrid(&constellation_plot, (char*)"npdsch_ue", 1, 0);
if (!prog_args.disable_plots_except_constellation) {
plot_real_init(&pce);
plot_real_setTitle(&pce, "Channel Response - Magnitude");
plot_real_setLabels(&pce, "Index", "dB");
plot_real_setYAxisScale(&pce, -40, 40);
plot_real_init(&p_sync);
plot_real_setTitle(&p_sync, "NPSS Cross-Corr abs value");
plot_real_setYAxisScale(&p_sync, 0, 1);
#if HAVE_RSRP_PLOT
plot_real_init(&rsrp_plot);
plot_real_setTitle(&rsrp_plot, "RSRP");
plot_real_setLabels(&rsrp_plot, "subframe index", "dBm");
plot_real_setYAxisScale(&rsrp_plot, 20, 50);
#endif
plot_real_addToWindowGrid(&pce, (char*)"npdsch_ue", 1, 2);
plot_real_addToWindowGrid(&p_sync, (char*)"npdsch_ue", 1, 1);
#if HAVE_RSRP_PLOT
plot_real_addToWindowGrid(&rsrp_plot, (char*)"npdsch_ue", 1, 3);
#endif
// add log
text_edit_init(&miblog);
text_edit_addToWindowGrid(&miblog, (char*)"npdsch_ue", 2, 0);
text_edit_setTitle(&miblog, "Master Information Block - NB");
text_edit_init(&sib1log);
text_edit_addToWindowGrid(&sib1log, (char*)"npdsch_ue", 2, 1);
text_edit_setTitle(&sib1log, "System Information Block 1 - NB");
text_edit_init(&sib2log);
text_edit_addToWindowGrid(&sib2log, (char*)"npdsch_ue", 2, 2);
text_edit_setTitle(&sib2log, "System Information - NB");
key_value_init(&id_label);
text_edit_addToWindowGrid(&id_label, (char*)"npdsch_ue", 0, 0);
key_value_setKeyText(&id_label, "Cell ID:");
key_value_init(&mode_label);
text_edit_addToWindowGrid(&mode_label, (char*)"npdsch_ue", 0, 1);
key_value_setKeyText(&mode_label, "Operation Mode:");
key_value_init(&hfn_label);
text_edit_addToWindowGrid(&hfn_label, (char*)"npdsch_ue", 0, 2);
key_value_setKeyText(&hfn_label, "Hyper/System Frame Number:");
}
while (!go_exit) {
sem_wait(&plot_sem);
if (!prog_args.disable_plots_except_constellation) {
for (int i = 0; i < nof_re; i++) {
tmp_plot[i] = 20 * log10f(cabsf(ue_dl.sf_symbols[i]));
if (isinf(tmp_plot[i])) {
tmp_plot[i] = -80;
}
}
int numpoints = SRSRAN_NRE * 2;
bzero(tmp_plot2, sizeof(float) * numpoints);
int g = (numpoints - SRSRAN_NRE) / 2;
for (int i = 0; i < 12 * ue_dl.cell.base.nof_prb; i++) {
tmp_plot2[g + i] = 20 * log10(cabsf(ue_dl.ce[0][i]));
if (isinf(tmp_plot2[g + i])) {
tmp_plot2[g + i] = -80;
}
}
plot_real_setNewData(&pce, tmp_plot2, numpoints);
if (!prog_args.input_file_name) {
if (plot_track) {
srsran_npss_synch_t* pss_obj = &ue_sync.strack.npss;
int max = srsran_vec_max_fi(pss_obj->conv_output_avg, pss_obj->frame_size + pss_obj->fft_size - 1);
srsran_vec_sc_prod_fff(pss_obj->conv_output_avg,
1 / pss_obj->conv_output_avg[max],
tmp_plot2,
pss_obj->frame_size + pss_obj->fft_size - 1);
plot_real_setNewData(&p_sync, &tmp_plot2[max - NPSS_FIND_PLOT_WIDTH / 2], NPSS_FIND_PLOT_WIDTH);
} else {
int len = SRSRAN_NPSS_CORR_FILTER_LEN + ue_sync.sfind.npss.frame_size - 1;
int max = srsran_vec_max_fi(ue_sync.sfind.npss.conv_output_avg, len);
srsran_vec_sc_prod_fff(
ue_sync.sfind.npss.conv_output_avg, 1 / ue_sync.sfind.npss.conv_output_avg[max], tmp_plot2, len);
plot_real_setNewData(&p_sync, tmp_plot2, len);
}
}
#if HAVE_RSRP_PLOT
// get current RSRP estimate
rsrp_lin = SRSRAN_VEC_EMA(srsran_chest_dl_nbiot_get_rsrp(&ue_dl.chest), rsrp_lin, 0.05);
rsrp_table[rsrp_table_index++] = 10 * log10(rsrp_lin);
if (rsrp_table_index == rsrp_num_plot) {
rsrp_table_index = 0;
}
plot_real_setNewData(&rsrp_plot, rsrp_table, rsrp_num_plot);
#endif
// update MIB and SIB widget only if their content changed
if (memcmp(mib_buffer_disp, mib_buffer_decode, sizeof(mib_buffer_disp)) != 0) {
memcpy(mib_buffer_disp, mib_buffer_decode, sizeof(mib_buffer_disp));
text_edit_setMessage(&miblog, mib_buffer_disp);
}
if (memcmp(sib1_buffer_disp, sib1_buffer_decode, sizeof(sib1_buffer_disp)) != 0) {
memcpy(sib1_buffer_disp, sib1_buffer_decode, sizeof(sib1_buffer_disp));
text_edit_setMessage(&sib1log, sib1_buffer_disp);
}
if (memcmp(sib2_buffer_disp, sib2_buffer_decode, sizeof(sib2_buffer_disp)) != 0) {
memcpy(sib2_buffer_disp, sib2_buffer_decode, sizeof(sib2_buffer_disp));
text_edit_setMessage(&sib2log, sib2_buffer_disp);
}
snprintf(lable_buf, LABLE_MAX_LEN, "%d", cell.n_id_ncell);
key_value_setValueText(&id_label, lable_buf);
key_value_setValueText(&mode_label, srsran_nbiot_mode_string(cell.mode));
snprintf(lable_buf, LABLE_MAX_LEN, "%d / %d", hyper_frame_number, system_frame_number);
key_value_setValueText(&hfn_label, lable_buf);
}
// check if NPDSCH or NPDCCH has been received
if (ue_dl.npdsch_cfg.nbits.nof_re) {
// plot NPDSCH
plot_scatter_setNewData(&constellation_plot, ue_dl.npdsch.d, ue_dl.npdsch_cfg.nbits.nof_re);
} else if (ue_dl.npdcch.num_decoded_symbols) {
// plot NPDCCH
plot_scatter_setNewData(&constellation_plot, ue_dl.npdcch.d, ue_dl.npdcch.num_decoded_symbols);
}
}
return NULL;
}
void init_plots()
{
if (sem_init(&plot_sem, 0, 0)) {
perror("sem_init");
exit(-1);
}
pthread_attr_t attr;
struct sched_param param;
param.sched_priority = 0;
pthread_attr_init(&attr);
pthread_attr_setschedpolicy(&attr, SCHED_OTHER);
pthread_attr_setschedparam(&attr, &param);
if (pthread_create(&plot_thread, NULL, plot_thread_run, NULL)) {
perror("pthread_create");
exit(-1);
}
}
#endif // ENABLE_GUI