srsLTE/lib/examples/zmq_remote_rx.c

265 lines
6.9 KiB
C

/**
* Copyright 2013-2022 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <math.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <time.h>
#include <unistd.h>
#include <zmq.h>
#include <stdbool.h>
#include "srsran/phy/rf/rf.h"
#include "srsran/srsran.h"
static bool keep_running = true;
static uint32_t nof_rx_antennas = 1;
static const uint32_t max_rx_antennas = 1;
static void int_handler(int dummy);
static void usage(char* prog);
static void parse_args(int argc, char** argv);
static int init_radio(uint32_t* buf_len);
static int rx_radio(void** buffer, uint32_t buff_len);
static void close_radio();
/* Example function to initialize ZMQ socket */
static void* zmq_ctx = NULL;
static void* zmq_sock = NULL;
static const char* zmq_args = "tcp://*:5550";
static int init_zmq()
{
zmq_ctx = zmq_ctx_new();
// Create socket
zmq_sock = zmq_socket(zmq_ctx, ZMQ_PUB);
if (!zmq_sock) {
fprintf(stderr, "Error: creating transmitter socket\n");
return -1;
}
// The transmitter starts first and creates the socket
if (zmq_bind(zmq_sock, zmq_args)) {
fprintf(stderr, "Error: connecting transmitter socket: %s\n", zmq_strerror(zmq_errno()));
return -1;
}
return 0;
}
/* Example function to write samples to ZMQ socket */
static int tx_zmq(void** buffer, uint32_t buffer_len)
{
// wait for request
uint8_t dummy;
zmq_recv(zmq_sock, &dummy, sizeof(dummy), 0);
return zmq_send(zmq_sock, buffer[0], buffer_len, 0);
}
int main(int argc, char** argv)
{
void* buffer[max_rx_antennas];
int n = 0;
uint32_t buflen = 0; // in samples
uint32_t sample_size = 8;
// Sets signal handlers
signal(SIGINT, int_handler);
sigset_t sigset;
sigemptyset(&sigset);
sigaddset(&sigset, SIGINT);
sigprocmask(SIG_UNBLOCK, &sigset, NULL);
// Parse args
parse_args(argc, argv);
// Initializes ZMQ
if (init_zmq()) {
ERROR("Initializing ZMQ");
exit(-1);
}
if (init_radio(&buflen)) {
ERROR("Initializing Radio");
exit(-1);
}
// Initializes memory for input buffer
bzero(buffer, sizeof(void*) * max_rx_antennas);
for (int i = 0; i < nof_rx_antennas; i++) {
buffer[i] = srsran_vec_cf_malloc(buflen);
if (!buffer[i]) {
perror("malloc");
exit(-1);
}
}
printf("Streaming samples...\n");
uint32_t print_cnt = 0;
while (keep_running) {
n = rx_radio(buffer, buflen);
if (n < 0) {
ERROR("Error receiving samples");
exit(-1);
}
if (get_srsran_verbose_level() == SRSRAN_VERBOSE_INFO) {
printf("Received %d samples from radio\n", n);
}
n = tx_zmq((void**)buffer, n * sample_size);
if (n == -1) {
print_cnt++;
if (print_cnt == 1000) {
printf("ZMQ socket not connected\n");
print_cnt = 0;
}
} else {
if (get_srsran_verbose_level() == SRSRAN_VERBOSE_INFO) {
printf("Transmitted %d bytes to ZMQ\n", n);
}
}
}
// Cleanup memory and close RF device
for (int i = 0; i < nof_rx_antennas; i++) {
if (buffer[i]) {
free(buffer[i]);
}
}
close_radio();
printf("Exit Ok\n");
exit(0);
}
/* Example function to initialize the Radio frontend. In this case, we use srsRAN RF API to open a device,
* which automatically picks UHD, bladeRF, limeSDR, etc.
*/
static srsran_rf_t radio = {};
static char* rf_args = "fastpath";
static float rf_gain = 40.0, rf_freq = -1.0, rf_rate = 11.52e6;
static uint32_t rf_recv_frame_size_ms = 1;
static int init_radio(uint32_t* buffer_len)
{
// Uses srsRAN RF API to open a device, could use other code here
printf("Opening RF device...\n");
if (srsran_rf_open_multi(&radio, rf_args, nof_rx_antennas)) {
ERROR("Error opening rf");
return -1;
}
srsran_rf_set_rx_gain(&radio, rf_gain);
srsran_rf_set_rx_freq(&radio, nof_rx_antennas, rf_freq);
printf("Set RX freq: %.2f MHz\n", rf_freq / 1000000);
printf("Set RX gain: %.2f dB\n", rf_gain);
float srate = srsran_rf_set_rx_srate(&radio, rf_rate);
if (srate != rf_rate) {
ERROR("Error setting samplign frequency %.2f MHz", rf_rate * 1e-6);
return -1;
}
if (buffer_len) {
*buffer_len = srate * rf_recv_frame_size_ms * 1e-3;
}
printf("Set RX rate: %.2f MHz\n", srate * 1e-6);
srsran_rf_start_rx_stream(&radio, false);
return 0;
}
/* Example implementation to receive from Radio frontend. In this case we use srsRAN
*/
static int rx_radio(void** buffer, uint32_t buf_len)
{
return srsran_rf_recv_with_time_multi(&radio, buffer, buf_len, true, NULL, NULL);
}
static void close_radio()
{
srsran_rf_close(&radio);
}
static void int_handler(int dummy)
{
keep_running = false;
}
static void usage(char* prog)
{
printf("Usage: %s [agrAzv] -f rx_frequency_hz\n", prog);
printf("\t-a RF args [Default %s]\n", rf_args);
printf("\t-g RF Gain [Default %.2f dB]\n", rf_gain);
printf("\t-r RF Rate [Default %.6f Hz]\n", rf_rate);
printf("\t-m RF receive frame size in ms [Default %d ms]\n", rf_recv_frame_size_ms);
printf("\t-A Number of antennas [Max %d, Default %d]\n", max_rx_antennas, nof_rx_antennas);
printf("\t-z ZMQ args [Default %s]\n", zmq_args);
printf("\t-v srsran_verbose\n");
}
static void parse_args(int argc, char** argv)
{
int opt;
while ((opt = getopt(argc, argv, "agrfvmzA")) != -1) {
switch (opt) {
case 'a':
rf_args = argv[optind];
break;
case 'g':
rf_gain = strtof(argv[optind], NULL);
break;
case 'm':
rf_recv_frame_size_ms = strtol(argv[optind], NULL, 10);
break;
case 'r':
rf_rate = strtof(argv[optind], NULL);
break;
case 'f':
rf_freq = strtof(argv[optind], NULL);
break;
case 'v':
increase_srsran_verbose_level();
break;
case 'z':
zmq_args = argv[optind];
break;
case 'A':
nof_rx_antennas = strtol(argv[optind], NULL, 10);
break;
default:
usage(argv[0]);
exit(-1);
}
}
if (nof_rx_antennas > max_rx_antennas || nof_rx_antennas < 1) {
fprintf(stderr, "Invalid number of antennas\n");
usage(argv[0]);
exit(-1);
}
if (rf_freq < 0) {
usage(argv[0]);
exit(-1);
}
}