srsLTE/lib/include/srsran/adt/optional_array.h

430 lines
13 KiB
C++

/**
* Copyright 2013-2022 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSRAN_OPTIONAL_ARRAY_H
#define SRSRAN_OPTIONAL_ARRAY_H
#include "optional.h"
#include "span.h"
#include "srsran/support/srsran_assert.h"
#include <array>
namespace srsran {
namespace detail {
template <typename Vec>
class base_optional_span
{
using base_t = base_optional_span<Vec>;
using T = typename Vec::value_type::value_type;
protected:
template <typename Obj>
class iterator_impl
{
using It = iterator_impl<Obj>;
using parent_t = typename std::conditional<std::is_const<Obj>::value, const base_t, base_t>::type;
public:
using iterator_category = std::forward_iterator_tag;
using value_type = Obj;
using difference_type = std::ptrdiff_t;
using pointer = Obj*;
using reference = Obj&;
iterator_impl() = default;
iterator_impl(parent_t* parent_, size_t idx_) : parent(parent_), idx(idx_)
{
if (idx < parent->vec.size() and not parent->contains(idx)) {
++(*this);
}
}
It& operator++()
{
while (++idx < parent->vec.size() and not parent->contains(idx)) {
}
return *this;
}
It& operator--()
{
while (--idx < parent->vec.size() and not parent->contains(idx)) {
}
return *this;
}
reference operator*() { return parent->operator[](idx); }
pointer operator->() { return &parent->operator[](idx); }
bool operator==(const It& other) const { return idx == other.idx and parent == other.parent; }
bool operator!=(const It& other) const { return not(*this == other); }
private:
friend base_t;
parent_t* parent = nullptr;
size_t idx = std::numeric_limits<size_t>::max();
};
size_t nof_elems = 0;
Vec vec;
public:
using value_type = T;
using iterator = iterator_impl<T>;
using const_iterator = iterator_impl<const T>;
base_optional_span() = default;
base_optional_span(Vec&& v, size_t nof_elems_) : vec(std::move(v)), nof_elems(nof_elems_) {}
base_optional_span(const Vec& v, size_t nof_elems_) : vec(v), nof_elems(nof_elems_) {}
// Find first position that is empty
size_t find_first_empty(size_t start_guess = 0)
{
if (nof_elems == vec.size()) {
return vec.size();
}
for (size_t i = start_guess; i < vec.size(); ++i) {
if (not vec[i].has_value()) {
return i;
}
}
return vec.size();
}
bool contains(size_t idx) const { return idx < vec.size() and vec[idx].has_value(); }
T& operator[](size_t idx) { return *vec[idx]; }
const T& operator[](size_t idx) const { return *vec[idx]; }
bool empty() const { return nof_elems == 0; }
size_t size() const { return nof_elems; }
iterator begin() { return iterator{this, 0}; }
iterator end() { return iterator{this, vec.size()}; }
const_iterator begin() const { return const_iterator{this, 0}; }
const_iterator end() const { return const_iterator{this, vec.size()}; }
void clear()
{
this->nof_elems = 0;
for (auto& e : *this) {
e.reset();
}
}
void erase(size_t idx)
{
srsran_assert(idx < this->vec.size(), "Out-of-bounds access to array: %zd>=%zd", idx, this->vec.size());
if (this->contains(idx)) {
this->nof_elems--;
this->vec[idx].reset();
}
}
void erase(iterator it) { erase(it.idx); }
template <typename U>
void insert(size_t idx, U&& u)
{
srsran_assert(idx < this->vec.size(), "Out-of-bounds access to array: %zd>=%zd", idx, this->vec.size());
this->nof_elems += this->contains(idx) ? 0 : 1;
this->vec[idx] = std::forward<U>(u);
}
template <typename... Args>
void emplace(size_t idx, Args&&... args)
{
srsran_assert(idx < this->vec.size(), "Out-of-bounds access to array: %zd>=%zd", idx, this->vec.size());
if (not this->contains(idx)) {
this->nof_elems++;
}
this->vec[idx].emplace(std::forward<Args>(args)...);
}
};
template <typename Vec>
class base_optional_vector : public base_optional_span<Vec>
{
using base_t = base_optional_span<Vec>;
public:
using value_type = typename base_optional_span<Vec>::value_type;
using iterator = typename base_optional_span<Vec>::iterator;
using const_iterator = typename base_optional_span<Vec>::const_iterator;
base_optional_vector() = default;
base_optional_vector(const base_optional_vector&) = default;
base_optional_vector(base_optional_vector&& other) noexcept : base_t(std::move(other.vec), other.size())
{
other.nof_elems = 0;
}
base_optional_vector& operator=(const base_optional_vector&) = default;
base_optional_vector& operator =(base_optional_vector&& other) noexcept
{
this->vec = std::move(other.vec);
this->nof_elems = other.nof_elems;
other.nof_elems = 0;
return *this;
}
};
} // namespace detail
/**
* Array of optional items. The iteration is in order of indexes and correctly skips non-present items
* Pointer/References/Iterators remain valid throughout the object lifetime
* NOTE: The sorted iteration and pointer validation guarantees add some overhead if the array is very fragmented
* @tparam T type of objects
* @tparam N static size of max nof items
*/
template <typename T, size_t N>
class optional_array : public detail::base_optional_vector<std::array<optional<T>, N> >
{};
/**
* Contrarily to optional_array, this class may allocate and cause pointer/reference/iterator invalidation.
* However, the indexes will remain valid.
* @tparam T
*/
template <typename T>
class optional_vector : public detail::base_optional_vector<std::vector<optional<T> > >
{
using base_t = detail::base_optional_vector<std::vector<optional<T> > >;
public:
/// May allocate and cause pointer invalidation
template <typename U>
void insert(size_t idx, U&& u)
{
if (idx >= this->vec.size()) {
this->vec.resize(idx + 1);
}
base_t::insert(idx, std::forward<U>(u));
}
/// May allocate and cause pointer invalidation
template <typename... Args>
void emplace(size_t idx, Args&&... args)
{
if (idx >= this->vec.size()) {
this->vec.resize(idx + 1);
}
base_t::emplace(idx, std::forward<Args>(args)...);
}
};
template <typename T>
class optional_span : public detail::base_optional_span<srsran::span<optional<T> > >
{
using base_t = detail::base_optional_span<srsran::span<optional<T> > >;
public:
template <size_t N>
optional_span(const optional_array<T, N>& ar) : base_t::vec(ar)
{}
optional_span(const optional_vector<T>& ar) : base_t::vec(ar) {}
};
namespace detail {
template <typename T>
class base_split_optional_span
{
protected:
using presence_type = typename std::conditional<std::is_const<T>::value, const bool, bool>::type;
T* ptr = nullptr;
presence_type* present_ptr = nullptr;
size_t len = 0;
template <typename Obj>
class iterator_impl
{
using It = iterator_impl<Obj>;
using Parent = typename std::
conditional<std::is_const<Obj>::value, const base_split_optional_span<T>, base_split_optional_span<T> >::type;
public:
using iterator_category = std::forward_iterator_tag;
using value_type = Obj;
using difference_type = std::ptrdiff_t;
using pointer = Obj*;
using reference = Obj&;
iterator_impl() = default;
iterator_impl(Parent* parent_, size_t idx_) : parent(parent_), idx(idx_)
{
if (idx < parent->len and not parent->contains(idx)) {
++(*this);
}
}
It& operator++()
{
while (++idx < parent->len and not parent->contains(idx)) {
}
return *this;
}
It& operator--()
{
while (--idx < parent->len and not parent->contains(idx)) {
}
return *this;
}
reference operator*() { return parent->operator[](idx); }
pointer operator->() { return &parent->operator[](idx); }
bool operator==(const It& other) const { return idx == other.idx and parent == other.parent; }
bool operator!=(const It& other) const { return not(*this == other); }
size_t get_idx() const { return idx; }
private:
Parent* parent = nullptr;
size_t idx = std::numeric_limits<size_t>::max();
};
public:
using value_type = T;
using iterator = iterator_impl<T>;
using const_iterator = iterator_impl<const T>;
constexpr base_split_optional_span() = default;
template <std::size_t N>
constexpr base_split_optional_span(value_type (&arr)[N], presence_type (&present)[N]) noexcept : ptr(arr),
present_ptr(present),
len(N)
{}
constexpr base_split_optional_span(value_type* arr, presence_type* present, size_t N) :
ptr(arr), present_ptr(present), len(N)
{}
bool contains(size_t idx) const { return idx < len and present_ptr[idx]; }
bool empty() const
{
for (size_t i = 0; i < len; ++i) {
if (present_ptr[i]) {
return false;
}
}
return true;
}
size_t size() const
{
size_t c = 0;
for (size_t i = 0; i < len; ++i) {
c += present_ptr[i] ? 1 : 0;
}
return c;
}
size_t capacity() const { return len; }
const T& operator[](size_t idx) const { return ptr[idx]; }
T& operator[](size_t idx) { return ptr[idx]; }
const T& at(size_t idx) const
{
srsran_assert(contains(idx), "Access to inexistent element of index=%zd", idx);
return ptr[idx];
}
T& at(size_t idx)
{
srsran_assert(this->contains(idx), "Access to inexistent element of index=%zd", idx);
return this->ptr[idx];
}
const_iterator begin() const { return const_iterator(this, 0); }
const_iterator end() const { return const_iterator(this, len); }
iterator begin() { return iterator(this, 0); }
iterator end() { return iterator(this, this->len); }
// Find first position that is empty
size_t find_first_empty(size_t start_guess = 0) { return begin().get_idx(); }
};
} // namespace detail
template <typename T>
class split_optional_span : public detail::base_split_optional_span<T>
{
using base_t = detail::base_split_optional_span<T>;
public:
using value_type = T;
using const_iterator = typename base_t::const_iterator;
using iterator = typename base_t::iterator;
using base_t::base_t;
template <typename U>
void insert(size_t idx, U&& u)
{
srsran_assert(idx < this->len, "Out-of-bounds access to array: %zd>=%zd", idx, this->len);
this->present_ptr[idx] = true;
this->ptr[idx] = std::forward<U>(u);
}
void erase(size_t idx)
{
srsran_assert(idx < this->len, "Out-of-bounds access to array: %zd>=%zd", idx, this->len);
this->present_ptr[idx] = false;
}
void erase(iterator it) { erase(it.get_idx()); }
void clear()
{
for (size_t i = 0; i < this->len; ++i) {
this->present_ptr[i] = false;
}
}
};
template <typename U>
class split_optional_span<const U> : public detail::base_split_optional_span<const U>
{
using base_t = detail::base_split_optional_span<const U>;
using presence_type = typename base_t::presence_type;
public:
using value_type = const U;
using const_iterator = typename base_t::const_iterator;
using base_t::base_t;
};
template <typename T>
split_optional_span<T>
make_optional_span(T* array,
typename std::conditional<std::is_const<T>::value, const bool, bool>::type* present,
size_t N)
{
return split_optional_span<T>(array, present, N);
}
template <typename T, size_t N>
split_optional_span<T>
make_optional_span(T (&array)[N],
typename std::conditional<std::is_const<T>::value, const bool, bool>::type (&present)[N])
{
return split_optional_span<T>(array, present);
}
} // namespace srsran
#endif // SRSRAN_OPTIONAL_ARRAY_H