srsLTE/lib/include/srsran/asn1/asn1_utils.h

1876 lines
56 KiB
C++

/**
* Copyright 2013-2022 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSASN_COMMON_UTILS_H
#define SRSASN_COMMON_UTILS_H
#include "srsran/common/buffer_pool.h"
#include "srsran/srslog/srslog.h"
#include "srsran/support/srsran_assert.h"
#include <array>
#include <cmath>
#include <cstdint>
#include <limits>
#include <string>
namespace asn1 {
#define ASN_16K 16384
#define ASN_64K 65536
template <class Integer>
constexpr Integer ceil_frac(Integer n, Integer d)
{
return (n + (d - 1)) / d;
}
template <std::size_t arg1, std::size_t... others>
struct static_max;
template <std::size_t arg>
struct static_max<arg> {
static const std::size_t value = arg;
};
template <std::size_t arg1, std::size_t arg2, std::size_t... others>
struct static_max<arg1, arg2, others...> {
static const std::size_t value =
arg1 >= arg2 ? static_max<arg1, others...>::value : static_max<arg2, others...>::value;
};
/************************
logging
************************/
template <typename... Args>
void log_error(const char* format, Args&&... args)
{
srslog::fetch_basic_logger("ASN1").error(format, std::forward<Args>(args)...);
}
template <typename... Args>
void log_warning(const char* format, Args&&... args)
{
srslog::fetch_basic_logger("ASN1").warning(format, std::forward<Args>(args)...);
}
template <typename... Args>
void log_info(const char* format, Args&&... args)
{
srslog::fetch_basic_logger("ASN1").info(format, std::forward<Args>(args)...);
}
template <typename... Args>
void log_debug(const char* format, Args&&... args)
{
srslog::fetch_basic_logger("ASN1").debug(format, std::forward<Args>(args)...);
}
void warn_assert(bool cond, const char* filename, int lineno);
void log_invalid_access_choice_id(uint32_t val, uint32_t choice_id);
void log_invalid_choice_id(uint32_t val, const char* choice_type);
void invalid_enum_number(int value, const char* name);
void assert_choice_type(uint32_t val, uint32_t choice_id);
template <typename Enumerated>
void assert_choice_type(typename Enumerated::options access_type, Enumerated& current_type, const char* choice_type)
{
if (srsran_unlikely(current_type.value != access_type)) {
log_error("Invalid field access for choice type \"%s\" (\"%s\"!=\"%s\")",
choice_type,
Enumerated(access_type).to_string(),
current_type.to_string());
}
}
/************************
error handling
************************/
enum SRSASN_CODE { SRSASN_SUCCESS, SRSASN_ERROR_ENCODE_FAIL, SRSASN_ERROR_DECODE_FAIL };
void log_error_code(SRSASN_CODE code, const char* filename, int line);
#define HANDLE_CODE(ret) \
do { \
SRSASN_CODE macrocode = ((ret)); \
if (macrocode != SRSASN_SUCCESS) { \
log_error_code(macrocode, __FILE__, __LINE__); \
return macrocode; \
} \
} while (0)
const char* convert_enum_idx(const char* array[], uint32_t nof_types, uint32_t enum_val, const char* enum_type);
template <class ItemType>
ItemType map_enum_number(ItemType* array, uint32_t nof_types, uint32_t enum_val, const char* enum_type);
/************************
bit_ref
************************/
struct ValOrError {
uint32_t val;
SRSASN_CODE code;
ValOrError() : val(0), code(SRSASN_SUCCESS) {}
ValOrError(uint32_t val_, SRSASN_CODE code_) : val(val_), code(code_) {}
};
template <typename T, typename Ptr>
SRSASN_CODE unpack_bits(T& val, Ptr& ptr, uint8_t& offset, const uint8_t* max_ptr, uint32_t n_bits);
template <typename Ptr = uint8_t*>
class bit_ref_impl
{
public:
bit_ref_impl() = default;
bit_ref_impl(Ptr start_ptr_, uint32_t max_size_) :
ptr(start_ptr_), start_ptr(start_ptr_), max_ptr(max_size_ + start_ptr_)
{}
int distance(const bit_ref_impl<Ptr>& other) const;
int distance(const uint8_t* ref_ptr) const;
int distance() const;
int distance_bytes(uint8_t* ref_ptr) const;
int distance_bytes() const;
int distance_bytes_end() const;
template <class T>
SRSASN_CODE unpack(T& val, uint32_t n_bits)
{
return unpack_bits(val, ptr, offset, max_ptr, n_bits);
}
SRSASN_CODE unpack_bytes(uint8_t* buf, uint32_t n_bytes);
SRSASN_CODE align_bytes();
SRSASN_CODE advance_bits(uint32_t n_bits);
void set(Ptr start_ptr_, uint32_t max_size_);
protected:
Ptr ptr = nullptr;
uint8_t offset = 0;
const uint8_t* start_ptr = nullptr;
const uint8_t* max_ptr = nullptr;
};
// read only bit_ref
using cbit_ref = bit_ref_impl<const uint8_t*>;
// write+read bit_ref version
class bit_ref : public bit_ref_impl<uint8_t*>
{
using base_t = bit_ref_impl<uint8_t*>;
public:
bit_ref() = default;
bit_ref(uint8_t* start_ptr_, uint32_t max_size_) : bit_ref_impl(start_ptr_, max_size_) {}
SRSASN_CODE pack(uint64_t val, uint32_t n_bits);
SRSASN_CODE pack_bytes(const uint8_t* buf, uint32_t n_bytes);
SRSASN_CODE align_bytes_zero();
};
/*********************
function helpers
*********************/
template <class T>
class dyn_array
{
public:
typedef T value_type;
using iterator = T*;
using const_iterator = const T*;
dyn_array() = default;
explicit dyn_array(uint32_t new_size) : size_(new_size), cap_(new_size) { data_ = new T[size_]; }
dyn_array(const dyn_array<T>& other) : dyn_array(&other[0], other.size_) {}
dyn_array(const T* ptr, uint32_t nof_items)
{
size_ = nof_items;
cap_ = nof_items;
data_ = new T[cap_];
std::copy(ptr, ptr + size_, data_);
}
~dyn_array()
{
if (data_ != NULL) {
delete[] data_;
}
}
uint32_t size() const { return size_; }
uint32_t capacity() const { return cap_; }
T& operator[](uint32_t idx) { return data_[idx]; }
const T& operator[](uint32_t idx) const { return data_[idx]; }
dyn_array<T>& operator=(const dyn_array<T>& other)
{
if (this == &other) {
return *this;
}
resize(other.size());
std::copy(&other[0], &other[size_], data_);
return *this;
}
void resize(uint32_t new_size, uint32_t new_cap = 0)
{
if (new_size == size_) {
return;
}
if (cap_ >= new_size) {
size_ = new_size;
return;
}
T* old_data = data_;
cap_ = new_size > new_cap ? new_size : new_cap;
if (cap_ > 0) {
data_ = new T[cap_];
if (old_data != NULL) {
srsran_assert(cap_ > size_, "Old size larger than new capacity in dyn_array\n");
std::copy(&old_data[0], &old_data[size_], data_);
}
} else {
data_ = NULL;
}
size_ = new_size;
if (old_data != NULL) {
delete[] old_data;
}
}
iterator erase(iterator it)
{
if (it < begin() or it >= end()) {
log_warning("Trying to access out-of-bounds iterator.");
return end();
}
std::copy(it + 1, end(), it);
size_--;
return it;
}
bool operator==(const dyn_array<T>& other) const
{
return size() == other.size() and std::equal(data_, data_ + size(), other.data_);
}
void push_back(const T& elem)
{
resize(size() + 1, size() * 2);
data_[size() - 1] = elem;
}
void clear() { resize(0); }
T& back() { return data_[size() - 1]; }
const T& back() const { return data_[size() - 1]; }
T* data() { return &data_[0]; }
const T* data() const { return &data_[0]; }
iterator begin() { return &data_[0]; }
iterator end() { return &data_[size()]; }
const_iterator begin() const { return &data_[0]; }
const_iterator end() const { return &data_[size()]; }
private:
T* data_ = nullptr;
uint32_t size_ = 0;
uint32_t cap_ = 0;
};
template <class T, uint32_t MAX_N>
class bounded_array
{
public:
typedef T item_type;
using iterator = T*;
using const_iterator = const T*;
bounded_array() : data_(), current_size(0) {}
explicit bounded_array(uint32_t size_) : data_(), current_size(size_) {}
static uint32_t capacity() { return MAX_N; }
uint32_t size() const { return current_size; }
T& operator[](uint32_t idx) { return data_[idx]; }
const T& operator[](uint32_t idx) const { return data_[idx]; }
bool operator==(const bounded_array<T, MAX_N>& other) const
{
return size() == other.size() and std::equal(data_, data_ + size(), other.data_);
}
void resize(uint32_t new_size) { current_size = new_size; }
void clear() { resize(0); }
void push_back(const T& elem)
{
if (current_size >= MAX_N) {
log_error("Maximum size %d achieved for bounded_array.", MAX_N);
return;
}
data_[current_size++] = elem;
}
T& back() { return data_[current_size - 1]; }
const T& back() const { return data_[current_size - 1]; }
T* data() { return &data_[0]; }
const T* data() const { return &data_[0]; }
iterator begin() { return &data_[0]; }
iterator end() { return &data_[size()]; }
const_iterator begin() const { return &data_[0]; }
const_iterator end() const { return &data_[size()]; }
private:
T data_[MAX_N];
uint32_t current_size;
};
/**
* This array does small buffer optimization. The array has a small stack (Nthres elements) to store elements. Once
* the number of elements exceeds this stack, the array allocs on the heap.
* @tparam T
* @tparam Nthres number of elements T that can be stored in the stack
*/
template <class T, uint32_t Nthres = ceil_frac((size_t)16, sizeof(T))>
class ext_array
{
public:
static const uint32_t small_buffer_size = Nthres;
ext_array() : size_(0), head(&small_buffer.data[0]) {}
explicit ext_array(uint32_t new_size) : ext_array() { resize(new_size); }
ext_array(const ext_array<T, Nthres>& other) : ext_array(other.size_)
{
std::copy(other.head, other.head + other.size_, head);
}
ext_array(ext_array<T, Nthres>&& other) noexcept
{
size_ = other.size();
if (other.is_in_small_buffer()) {
head = &small_buffer.data[0];
std::copy(other.data(), other.data() + other.size(), head);
} else {
head = other.head;
small_buffer.cap_ = other.small_buffer.cap_;
other.head = &other.small_buffer.data[0];
other.size_ = 0;
}
}
~ext_array()
{
if (not is_in_small_buffer()) {
delete[] head;
}
}
ext_array<T, Nthres>& operator=(const ext_array<T, Nthres>& other)
{
if (this != &other) {
resize(other.size());
std::copy(other.data(), other.data() + other.size(), head);
}
return *this;
}
uint32_t size() const { return size_; }
uint32_t capacity() const { return is_in_small_buffer() ? Nthres : small_buffer.cap_; }
T& operator[](uint32_t index) { return head[index]; }
const T& operator[](uint32_t index) const { return head[index]; }
T* data() { return &head[0]; }
const T* data() const { return &head[0]; }
T& back() { return head[size() - 1]; }
const T& back() const { return head[size() - 1]; }
bool operator==(const ext_array<T, Nthres>& other) const
{
return other.size() == size() and std::equal(other.data(), other.data() + other.size(), data());
}
void push_back(const T& elem)
{
resize(size() + 1);
head[size() - 1] = elem;
}
void resize(uint32_t new_size)
{
if (new_size == size_) {
return;
}
if (capacity() >= new_size) {
size_ = new_size;
return;
}
T* old_data = head;
uint32_t newcap = new_size + 5;
head = new T[newcap];
std::copy(&small_buffer.data[0], &small_buffer.data[size_], head);
size_ = new_size;
if (old_data != &small_buffer.data[0]) {
delete[] old_data;
}
small_buffer.cap_ = newcap;
}
bool is_in_small_buffer() const { return head == &small_buffer.data[0]; }
private:
union {
T data[Nthres];
uint32_t cap_;
} small_buffer;
uint32_t size_;
T* head;
};
/*********************
ext packing
*********************/
SRSASN_CODE pack_unsupported_ext_flag(bit_ref& bref, bool ext);
SRSASN_CODE unpack_unsupported_ext_flag(bool& ext, bit_ref& bref);
/************************
asn1 null packing
************************/
struct asn1_null_t {
SRSASN_CODE pack(bit_ref& bref) const { return SRSASN_SUCCESS; }
SRSASN_CODE unpack(cbit_ref& bref) const { return SRSASN_SUCCESS; }
};
/************************
enum packing
************************/
SRSASN_CODE pack_enum(bit_ref& bref, uint32_t enum_val, uint32_t nbits);
SRSASN_CODE pack_enum(bit_ref& bref, uint32_t enum_val, uint32_t nbits, uint32_t nof_noext);
SRSASN_CODE pack_enum(bit_ref& bref, uint32_t e, uint32_t nof_types, uint32_t nof_exts, bool has_ext);
ValOrError unpack_enum(uint32_t nof_types, uint32_t nof_exts, bool has_ext, cbit_ref& bref);
template <typename EnumType>
SRSASN_CODE pack_enum(bit_ref& bref, EnumType e)
{
return pack_enum(bref, e, EnumType::nof_types, EnumType::nof_exts, EnumType::has_ext);
}
template <typename EnumType>
SRSASN_CODE unpack_enum(EnumType& e, cbit_ref& bref)
{
ValOrError ret = unpack_enum(EnumType::nof_types, EnumType::nof_exts, EnumType::has_ext, bref);
e = (typename EnumType::options)ret.val;
return ret.code;
}
struct EnumPacker {
template <class EnumType>
SRSASN_CODE pack(bit_ref& bref, EnumType e)
{
return pack_enum(bref, e);
}
template <class EnumType>
SRSASN_CODE unpack(EnumType& e, cbit_ref& bref)
{
return unpack_enum(e, bref);
}
};
template <class EnumType>
bool string_to_enum(EnumType& e, const std::string& s)
{
for (uint32_t i = 0; i < EnumType::nof_types; ++i) {
e = (typename EnumType::options)i;
if (e.to_string() == s) {
return true;
}
}
return false;
}
template <class EnumType, class NumberType>
bool number_to_enum(EnumType& e, NumberType val)
{
for (uint32_t i = 0; i < e.nof_types; ++i) {
e = (typename EnumType::options)i;
if (e.to_number() == val) {
return true;
}
}
return false;
}
template <class EnumType>
bool number_string_to_enum(EnumType& e, const std::string& val)
{
for (uint32_t i = 0; i < e.nof_types; ++i) {
e = (typename EnumType::options)i;
if (e.to_number_string() == val) {
return true;
}
}
return false;
}
template <class EnumType, bool E = false, uint32_t M = 0>
class enumerated : public EnumType
{
public:
static const uint32_t nof_types = EnumType::nulltype, nof_exts = M;
static const bool has_ext = E;
enumerated() { EnumType::value = EnumType::nulltype; }
enumerated(typename EnumType::options o) { EnumType::value = o; }
SRSASN_CODE pack(bit_ref& bref) const { return pack_enum(bref, *this); }
SRSASN_CODE unpack(cbit_ref& bref) { return unpack_enum(*this, bref); }
EnumType& operator=(EnumType v)
{
EnumType::value = v;
return *this;
}
operator typename EnumType::options() const { return EnumType::value; }
};
/************************
PER encoding
************************/
/* X.691 - Section 10.5 - Constrained Whole Number */
template <class IntType>
SRSASN_CODE pack_constrained_whole_number(bit_ref& bref, IntType n, IntType lb, IntType ub, bool aligned);
template <class IntType>
SRSASN_CODE unpack_constrained_whole_number(IntType& n, cbit_ref& bref, IntType lb, IntType ub, bool aligned);
/* X.691 - Section 10.6 - Normally small non-negative whole Number */
template <typename UintType>
SRSASN_CODE pack_norm_small_non_neg_whole_number(bit_ref& bref, UintType n);
template <typename UintType>
SRSASN_CODE unpack_norm_small_non_neg_whole_number(UintType& n, cbit_ref& bref);
/* X.691 - Section 10.8 - Unconstrained Whole Number */
template <typename IntType>
SRSASN_CODE pack_unconstrained_whole_number(bit_ref& bref, IntType n, bool aligned);
template <typename IntType>
SRSASN_CODE unpack_unconstrained_whole_number(IntType& n, cbit_ref& bref, bool aligned);
/************************
length determinant
************************/
// Pack as whole constrained number
template <typename IntType>
SRSASN_CODE pack_length(bit_ref& bref, IntType n, IntType lb, IntType ub, bool aligned = false);
template <typename IntType>
SRSASN_CODE unpack_length(IntType& n, cbit_ref& bref, IntType lb, IntType ub, bool aligned = false);
// Pack as a small non-negative whole number
SRSASN_CODE pack_length(bit_ref& ref, uint32_t val, bool aligned = false);
SRSASN_CODE unpack_length(uint32_t& val, cbit_ref& ref, bool aligned = false);
/************************
Integer
************************/
template <typename IntType>
SRSASN_CODE pack_integer(bit_ref& bref,
IntType n,
IntType lb = std::numeric_limits<IntType>::min(),
IntType ub = std::numeric_limits<IntType>::max(),
bool has_ext = false,
bool aligned = false);
template <typename IntType>
SRSASN_CODE unpack_integer(IntType& n,
cbit_ref& bref,
IntType lb = std::numeric_limits<IntType>::min(),
IntType ub = std::numeric_limits<IntType>::max(),
bool has_ext = false,
bool aligned = false);
// unconstrained case
template <typename IntType>
SRSASN_CODE pack_unconstrained_integer(bit_ref& bref, IntType n, bool has_ext = false, bool aligned = false);
template <typename IntType>
SRSASN_CODE unpack_unconstrained_integer(IntType& n, cbit_ref& bref, bool has_ext = false, bool aligned = false);
template <class IntType>
struct integer_packer {
integer_packer(IntType lb_, IntType ub_, bool has_ext_ = false, bool aligned_ = false);
SRSASN_CODE pack(bit_ref& bref, IntType n);
SRSASN_CODE unpack(IntType& n, cbit_ref& bref);
IntType lb;
IntType ub;
bool has_ext;
bool aligned;
};
template <class IntType,
IntType LB = std::numeric_limits<IntType>::min(),
IntType UB = std::numeric_limits<IntType>::max(),
bool Ext = false,
bool Al = false>
class integer
{
public:
static const IntType ub = UB, lb = LB;
static const bool has_ext = Ext, is_aligned = Al;
IntType value;
integer() = default;
integer(IntType value_) : value(value_) {}
operator IntType() const { return value; }
SRSASN_CODE pack(bit_ref& bref) const { return pack_integer(bref, value, lb, ub, has_ext, is_aligned); }
SRSASN_CODE unpack(cbit_ref& bref) { return unpack_integer(value, bref, lb, ub, has_ext, is_aligned); }
};
/************************
General Packer/Unpacker
************************/
struct BitPacker {
BitPacker(uint32_t nof_bits_) : nof_bits(nof_bits_) {}
template <typename T>
SRSASN_CODE pack(bit_ref& bref, const T& topack)
{
bref.pack(topack, nof_bits);
return SRSASN_SUCCESS;
}
template <typename T>
SRSASN_CODE unpack(T& tounpack, cbit_ref& bref)
{
return bref.unpack(tounpack, nof_bits);
}
uint32_t nof_bits;
};
struct Packer {
template <typename T>
SRSASN_CODE pack(bit_ref& bref, const T& topack)
{
return topack.pack(bref);
}
template <typename T>
SRSASN_CODE unpack(T& tounpack, cbit_ref& bref)
{
return tounpack.unpack(bref);
}
};
/*********************
common octstring
*********************/
// helper functions common to all octstring implementations
uint64_t octstring_to_number(const uint8_t* ptr, uint32_t nbytes);
void number_to_octstring(uint8_t* ptr, uint64_t number, uint32_t nbytes);
std::string octstring_to_string(const uint8_t* ptr, uint32_t N);
void string_to_octstring(uint8_t* ptr, const std::string& str);
/************************
fixed_octstring
************************/
template <uint32_t N, bool aligned = false>
class fixed_octstring
{
public:
const uint8_t& operator[](uint32_t idx) const { return octets_[idx]; }
uint8_t& operator[](uint32_t idx) { return octets_[idx]; }
bool operator==(const fixed_octstring<N>& other) const { return octets_ == other.octets_; }
uint8_t* data() { return &octets_[0]; }
const uint8_t* data() const { return &octets_[0]; }
static uint32_t size() { return N; }
std::string to_string() const { return octstring_to_string(&octets_[0], N); }
fixed_octstring<N, aligned>& from_string(const std::string& hexstr)
{
if (hexstr.size() != 2 * N) {
log_error("The provided hex string size is not valid (%zd!=2*%zd).", hexstr.size(), (size_t)N);
} else {
string_to_octstring(&octets_[0], hexstr);
}
return *this;
}
uint64_t to_number() const { return octstring_to_number(&octets_[0], size()); }
fixed_octstring<N, aligned>& from_number(uint64_t val)
{
number_to_octstring(&octets_[0], val, size());
return *this;
}
SRSASN_CODE pack(bit_ref& bref) const;
SRSASN_CODE unpack(cbit_ref& bref);
private:
std::array<uint8_t, N> octets_;
};
/**
* X.691 Section 16 - Encoding the octetstring type
* @tparam N - number of items
* @tparam ext - aligned variant
* @param bref
* @return
*/
template <uint32_t N, bool aligned>
SRSASN_CODE fixed_octstring<N, aligned>::pack(bit_ref& bref) const
{
if (aligned and N > 2) {
bref.align_bytes_zero();
}
for (uint32_t i = 0; i < size(); ++i) {
HANDLE_CODE(bref.pack(octets_[i], 8));
}
return SRSASN_SUCCESS;
}
template <uint32_t N, bool aligned>
SRSASN_CODE fixed_octstring<N, aligned>::unpack(cbit_ref& bref)
{
if (aligned and N > 2) {
bref.align_bytes();
}
for (uint32_t i = 0; i < size(); ++i) {
HANDLE_CODE(bref.unpack(octets_[i], 8));
}
return SRSASN_SUCCESS;
}
/************************
constrained_octstring
************************/
template <uint32_t LB, uint32_t UB, bool aligned = false>
class bounded_octstring
{
public:
const uint8_t& operator[](uint32_t idx) const { return octets_[idx]; }
uint8_t& operator[](uint32_t idx) { return octets_[idx]; }
bool operator==(const bounded_octstring& other) const { return octets_ == other.octets_; }
uint8_t* data() { return &octets_[0]; }
const uint8_t* data() const { return &octets_[0]; }
void resize(uint32_t new_size) { octets_.resize(new_size); }
uint32_t size() const { return octets_.size(); }
std::string to_string() const { return octstring_to_string(data(), size()); }
bounded_octstring<LB, UB, aligned>& from_string(const std::string& hexstr)
{
if (hexstr.size() > 2 * UB) {
log_error("The provided hex string size is not valid (%zd>2*%zd).", hexstr.size(), (size_t)UB);
} else {
resize(hexstr.size() / 2);
string_to_octstring(&octets_[0], hexstr);
}
return *this;
}
uint64_t to_number() const { return octstring_to_number(&octets_[0], size()); }
bounded_octstring<LB, UB, aligned>& from_number(uint64_t val)
{
number_to_octstring(&octets_[0], val, size());
return *this;
}
SRSASN_CODE pack(bit_ref& bref) const
{
HANDLE_CODE(pack_length(bref, size(), LB, UB, aligned));
if (aligned) {
bref.align_bytes_zero();
}
for (uint32_t i = 0; i < size(); ++i) {
HANDLE_CODE(bref.pack(octets_[i], 8));
}
return SRSASN_SUCCESS;
}
SRSASN_CODE unpack(cbit_ref& bref)
{
uint32_t len;
HANDLE_CODE(unpack_length(len, bref, LB, UB, aligned));
resize(len);
if (aligned) {
bref.align_bytes();
}
for (uint32_t i = 0; i < size(); ++i) {
HANDLE_CODE(bref.unpack(octets_[i], 8));
}
return SRSASN_SUCCESS;
}
private:
ext_array<uint8_t, static_max<UB, 64u>::value> octets_;
};
/************************
dyn_octstring
************************/
template <bool Al = false>
class unbounded_octstring
{
public:
static const bool aligned = Al;
unbounded_octstring() = default;
explicit unbounded_octstring(uint32_t new_size) : octets_(new_size) {}
const uint8_t& operator[](uint32_t idx) const { return octets_[idx]; }
uint8_t& operator[](uint32_t idx) { return octets_[idx]; }
bool operator==(const unbounded_octstring<Al>& other) const { return octets_ == other.octets_; }
void resize(uint32_t new_size) { octets_.resize(new_size); }
uint32_t size() const { return octets_.size(); }
uint8_t* data() { return &octets_[0]; }
const uint8_t* data() const { return &octets_[0]; }
SRSASN_CODE pack(bit_ref& ie_ref) const;
SRSASN_CODE unpack(cbit_ref& ie_ref);
std::string to_string() const;
unbounded_octstring<Al>& from_string(const std::string& hexstr);
uint64_t to_number() const { return octstring_to_number(&octets_[0], size()); }
unbounded_octstring<Al>& from_number(uint64_t val)
{
number_to_octstring(&octets_[0], val, size());
return *this;
}
private:
dyn_array<uint8_t> octets_;
};
using dyn_octstring = unbounded_octstring<false>;
/*********************
bitstring
*********************/
namespace bitstring_utils {
inline bool get(const uint8_t* ptr, uint32_t idx)
{
uint32_t byte_idx = idx / 8;
uint32_t offset = idx % 8;
return (ptr[byte_idx] & (1u << offset)) > 0;
}
inline void set(uint8_t* ptr, uint32_t idx, bool value)
{
uint32_t byte_idx = idx / 8;
uint32_t offset = idx % 8;
if (value) {
ptr[byte_idx] |= (1u << offset);
} else {
ptr[byte_idx] &= ((uint16_t)(1u << 8u) - 1u) - (1u << offset);
}
}
SRSASN_CODE
pack(bit_ref& bref, const uint8_t* data, uint32_t size, uint32_t lb, uint32_t ub, bool has_ext, bool is_aligned);
SRSASN_CODE
unpack_length_prefix(uint32_t& len, cbit_ref& bref, uint32_t lb, uint32_t ub, bool has_ext, bool is_aligned);
SRSASN_CODE unpack_bitfield(uint8_t* buf, cbit_ref& bref, uint32_t n, uint32_t lb, uint32_t ub, bool is_aligned);
uint64_t to_number(const uint8_t* ptr, uint32_t nbits);
void from_number(uint8_t* ptr, uint64_t number, uint32_t nbits);
std::string to_string(const uint8_t* ptr, uint32_t nbits);
} // namespace bitstring_utils
template <uint32_t LB, uint32_t UB, bool ext = false, bool aligned = false>
class bitstring
{
using this_type = bitstring<LB, UB, ext, aligned>;
public:
static const uint32_t lb = LB, ub = UB;
static const bool has_ext = ext, is_aligned = aligned;
bitstring() { resize(lb); }
explicit bitstring(uint32_t siz_) { resize(siz_); }
explicit bitstring(const std::string& s)
{
resize(s.size());
memset(&octets_[0], 0, nof_octets());
for (uint32_t i = 0; i < s.size(); ++i)
set(s.size() - i - 1, s[i] == '1');
}
bool get(uint32_t idx) const { return bitstring_utils::get(data(), idx); }
void set(uint32_t idx, bool value) { bitstring_utils::set(data(), idx, value); }
uint32_t nof_octets() const { return ceil_frac(length(), 8u); }
const uint8_t* data() const { return &octets_[0]; }
uint8_t* data() { return &octets_[0]; }
uint32_t length() const { return nof_bits; }
void resize(uint32_t new_size)
{
nof_bits = new_size;
octets_.resize(nof_octets());
memset(data(), 0, nof_octets()); // resize always resets content
}
// comparison
bool operator==(const this_type& other) const
{
return length() == other.length() and std::equal(data(), data() + nof_octets(), other.data());
}
bool operator==(const char* other_str) const
{
return strlen(other_str) == length() and (*this) == this_type{}.from_string(other_str);
}
// string conversion
std::string to_string() const { return bitstring_utils::to_string(data(), length()); }
this_type& from_string(const std::string& s)
{
if (s.size() < lb or s.size() > ub) {
log_error(
"The provided string size=%zd is not withing the bounds [%d, %d]", s.size(), uint32_t(lb), uint32_t(ub));
} else {
resize(s.size());
for (uint32_t i = 0; i < s.size(); ++i) {
set(s.size() - i - 1, s[i] == '1');
}
}
return *this;
}
// number conversion
uint64_t to_number() const { return bitstring_utils::to_number(data(), length()); }
this_type& from_number(uint64_t val)
{
auto nof_bits_ = std::max((uint32_t)ceilf(log2(std::max(val, (uint64_t)1u))), LB);
if (nof_bits_ > UB) {
log_error("The provided bitstring value %ld does not fit the bounds [%d, %d]", val, uint32_t(lb), uint32_t(ub));
return *this;
}
resize(nof_bits_);
bitstring_utils::from_number(data(), val, length());
return *this;
}
this_type& from_number(uint64_t val, uint32_t nof_bits)
{
if (nof_bits > UB) {
log_error("The provided bitstring value %ld does not fit the bounds [%d, %d]", val, uint32_t(lb), uint32_t(ub));
return *this;
}
resize(nof_bits);
bitstring_utils::from_number(data(), val, length());
return *this;
}
// packers / unpackers
SRSASN_CODE pack(bit_ref& bref) const
{
return bitstring_utils::pack(bref, data(), length(), lb, ub, has_ext, is_aligned);
}
SRSASN_CODE unpack(cbit_ref& bref)
{
// X.691, subclause 15.11
uint32_t nbits;
HANDLE_CODE(bitstring_utils::unpack_length_prefix(nbits, bref, lb, ub, has_ext, is_aligned));
resize(nbits);
return bitstring_utils::unpack_bitfield(data(), bref, nbits, lb, ub, is_aligned);
}
private:
const static uint32_t stack_size = (UB == std::numeric_limits<uint32_t>::max()) ? 4 : ceil_frac(ub, 8u);
ext_array<uint8_t, stack_size> octets_;
uint32_t nof_bits = 0;
};
template <uint32_t LB, uint32_t UB, bool ext = false, bool aligned = false>
using bounded_bitstring = bitstring<LB, UB, ext, aligned>;
template <bool Ext = false, bool Al = false>
using unbounded_bitstring = bitstring<0, std::numeric_limits<uint32_t>::max(), Ext, Al>;
using dyn_bitstring = unbounded_bitstring<false, false>;
template <uint32_t N, bool Ext = false, bool Al = false>
using fixed_bitstring = bitstring<N, N, Ext, Al>;
/*********************
fixed sequence of
*********************/
// packers/unpackers for fixed_length sequence-of
template <class T, class ItemPacker>
SRSASN_CODE pack_fixed_seq_of(bit_ref& bref, const T* item_array, uint32_t nof_items, ItemPacker packer)
{
for (uint32_t i = 0; i < nof_items; ++i) {
HANDLE_CODE(packer.pack(bref, item_array[i]));
}
return SRSASN_SUCCESS;
}
template <class T>
SRSASN_CODE pack_fixed_seq_of(bit_ref& bref, const T* item_array, uint32_t nof_items)
{
for (uint32_t i = 0; i < nof_items; ++i) {
HANDLE_CODE(item_array[i].pack(bref));
}
return SRSASN_SUCCESS;
}
template <class T, class ItemUnpacker>
SRSASN_CODE unpack_fixed_seq_of(T* item_array, cbit_ref& bref, uint32_t nof_items, ItemUnpacker unpacker)
{
for (uint32_t i = 0; i < nof_items; ++i) {
HANDLE_CODE(unpacker.unpack(item_array[i], bref));
}
return SRSASN_SUCCESS;
}
template <class T>
SRSASN_CODE unpack_fixed_seq_of(T* item_array, cbit_ref& bref, uint32_t nof_items)
{
for (uint32_t i = 0; i < nof_items; ++i) {
HANDLE_CODE(item_array[i].unpack(bref));
}
return SRSASN_SUCCESS;
}
template <class ItemPacker>
struct FixedSeqOfPacker {
FixedSeqOfPacker(uint32_t nof_items_, ItemPacker packer_) : nof_items(nof_items_), packer(packer_) {}
explicit FixedSeqOfPacker(uint32_t nof_items_) : nof_items(nof_items_), packer(Packer()) {}
template <typename T>
SRSASN_CODE pack(bit_ref& bref, const T* topack)
{
return pack_fixed_seq_of(bref, topack, nof_items, packer);
}
template <typename T>
SRSASN_CODE unpack(T* tounpack, bit_ref& bref)
{
return unpack_fixed_seq_of(tounpack, bref, nof_items, packer);
}
uint32_t nof_items;
ItemPacker packer;
};
/*********************
dyn sequence of
*********************/
template <class ArrayType, class ItemPacker>
SRSASN_CODE pack_dyn_seq_of(bit_ref& bref,
const ArrayType& seqof,
uint32_t lb,
uint32_t ub,
ItemPacker packer,
bool aligned = false)
{
HANDLE_CODE(pack_length(bref, seqof.size(), lb, ub, aligned));
for (uint32_t i = 0; i < seqof.size(); ++i) {
HANDLE_CODE(packer.pack(bref, seqof[i]));
}
return SRSASN_SUCCESS;
}
template <class ArrayType>
SRSASN_CODE pack_dyn_seq_of(bit_ref& bref, const ArrayType& seqof, uint32_t lb, uint32_t ub, bool aligned = false)
{
HANDLE_CODE(pack_length(bref, seqof.size(), lb, ub, aligned));
for (uint32_t i = 0; i < seqof.size(); ++i) {
HANDLE_CODE(seqof[i].pack(bref));
}
return SRSASN_SUCCESS;
}
template <class ArrayType, class ItemUnpacker>
SRSASN_CODE unpack_dyn_seq_of(ArrayType& seqof,
cbit_ref& bref,
uint32_t lb,
uint32_t ub,
ItemUnpacker unpacker,
bool aligned = false)
{
uint32_t nof_items;
HANDLE_CODE(unpack_length(nof_items, bref, lb, ub, aligned));
seqof.resize(nof_items);
for (uint32_t i = 0; i < nof_items; ++i) {
HANDLE_CODE(unpacker.unpack(seqof[i], bref));
}
return SRSASN_SUCCESS;
}
template <class ArrayType>
SRSASN_CODE unpack_dyn_seq_of(ArrayType& seqof, cbit_ref& bref, uint32_t lb, uint32_t ub, bool aligned = false)
{
uint32_t nof_items;
HANDLE_CODE(unpack_length(nof_items, bref, lb, ub, aligned));
seqof.resize(nof_items);
for (uint32_t i = 0; i < nof_items; ++i) {
HANDLE_CODE(seqof[i].unpack(bref));
}
return SRSASN_SUCCESS;
}
template <class InnerPacker>
struct SeqOfPacker {
SeqOfPacker(uint32_t lb_, uint32_t ub_, InnerPacker packer_) : lb(lb_), ub(ub_), packer(packer_) {}
template <typename T>
SRSASN_CODE pack(bit_ref& bref, const T& topack) const
{
return pack_dyn_seq_of(bref, topack, lb, ub, packer);
}
template <typename T>
SRSASN_CODE unpack(T& tounpack, cbit_ref& bref)
{
return unpack_dyn_seq_of(tounpack, bref, lb, ub, packer);
}
InnerPacker packer;
uint32_t lb;
uint32_t ub;
};
template <class ItemType, uint32_t lb, uint32_t ub, bool aligned = false>
struct dyn_seq_of : public dyn_array<ItemType> {
dyn_seq_of() = default;
dyn_seq_of(const dyn_array<ItemType>& other) : dyn_array<ItemType>(other) {}
dyn_seq_of(const bounded_array<ItemType, ub>& other) : dyn_array<ItemType>(&other[0], other.size()) {}
SRSASN_CODE pack(bit_ref& bref) const { return pack_dyn_seq_of(bref, *this, lb, ub, aligned); }
SRSASN_CODE unpack(cbit_ref& bref) { return unpack_dyn_seq_of(*this, bref, lb, ub, aligned); }
};
/*********************
printable string
*********************/
/* X.691 - Section 27 - Character Restricted String */
namespace asn_string_utils {
SRSASN_CODE
pack(bit_ref& bref, const std::string& s, size_t lb, size_t ub, size_t alb, size_t aub, bool ext, bool aligned);
SRSASN_CODE
unpack(std::string& s, cbit_ref& bref, size_t lb, size_t ub, size_t alb, size_t aub, bool ext, bool aligned);
} // namespace asn_string_utils
template <uint32_t LB,
uint32_t UB,
uint32_t ALB = 0,
uint32_t AUB = std::numeric_limits<uint32_t>::max(),
bool ext = false,
bool aligned = false>
class asn_string
{
public:
SRSASN_CODE pack(bit_ref& bref) const { return asn_string_utils::pack(bref, str, LB, UB, ALB, AUB, ext, aligned); }
SRSASN_CODE unpack(cbit_ref& bref) { return asn_string_utils::unpack(str, bref, LB, UB, ALB, AUB, ext, aligned); }
char& operator[](std::size_t idx) { return str[idx]; }
const char& operator[](std::size_t idx) const { return str[idx]; }
void resize(std::size_t newsize) { str.resize(newsize); }
std::size_t size() const { return str.size(); }
std::string to_string() const { return str; }
void from_string(const std::string& s) { str = s; }
private:
std::string str;
};
template <uint32_t ALB = 0, uint32_t AUB = std::numeric_limits<uint32_t>::max(), bool ext = false, bool aligned = false>
using printable_string = asn_string<32, 122, ALB, AUB, ext, aligned>;
/*********************
copy_ptr
*********************/
template <class T>
class copy_ptr
{
public:
copy_ptr() : ptr(nullptr) {}
explicit copy_ptr(T* ptr_) : ptr(ptr_) {}
copy_ptr(copy_ptr<T>&& other) noexcept : ptr(other.ptr) { other.ptr = nullptr; }
copy_ptr(const copy_ptr<T>& other) { ptr = (other.ptr == nullptr) ? nullptr : new T(*other.ptr); }
~copy_ptr() { destroy_(); }
copy_ptr<T>& operator=(const copy_ptr<T>& other)
{
if (this != &other) {
reset((other.ptr == nullptr) ? nullptr : new T(*other.ptr));
}
return *this;
}
copy_ptr<T>& operator=(copy_ptr<T>&& other) noexcept
{
if (this != &other) {
ptr = other.ptr;
other.ptr = nullptr;
}
return *this;
}
bool operator==(const copy_ptr<T>& other) const { return *ptr == *other; }
T* operator->() { return ptr; }
const T* operator->() const { return ptr; }
T& operator*() { return *ptr; } // like pointers, don't call this if ptr==NULL
const T& operator*() const { return *ptr; } // like pointers, don't call this if ptr==NULL
T* get() { return ptr; }
const T* get() const { return ptr; }
T* release()
{
T* ret = ptr;
ptr = nullptr;
return ret;
}
void reset(T* ptr_ = nullptr)
{
destroy_();
ptr = ptr_;
}
void set_present(bool flag = true)
{
if (flag) {
reset(new T());
} else {
reset();
}
}
bool is_present() const { return get() != nullptr; }
private:
void destroy_()
{
if (ptr != NULL) {
delete ptr;
}
}
T* ptr;
};
template <class T>
copy_ptr<typename std::decay<T>::type> make_copy_ptr(T&& t)
{
using T2 = typename std::decay<T>::type;
return copy_ptr<T2>(new T2(std::forward<T>(t)));
}
/*********************
choice utils
*********************/
union alignment_t {
char c;
float f;
uint32_t i;
uint64_t i2;
double d;
long double d2;
uint32_t* ptr;
};
template <std::size_t Size, std::size_t Align>
struct choice_buffer_base_t {
static const std::size_t data_size = Size;
static const std::size_t data_align = Align;
using buffer_t = typename std::aligned_storage<data_size, data_align>::type;
buffer_t buffer;
choice_buffer_base_t() : buffer() {}
template <typename T>
T& get()
{
return *(reinterpret_cast<T*>(&buffer));
}
template <typename T>
const T& get() const
{
return *(reinterpret_cast<const T*>(&buffer));
}
template <typename T>
void destroy()
{
get<T>().~T();
}
template <typename T>
void init()
{
new (&buffer) T();
}
template <typename T>
void init(const T& other)
{
new (&buffer) T(other);
}
template <typename T>
void set(const T& other)
{
get<T>() = other;
}
};
template <typename... Ts>
struct choice_buffer_t : public choice_buffer_base_t<static_max<sizeof(alignment_t), sizeof(Ts)...>::value,
static_max<alignof(alignment_t), alignof(Ts)...>::value> {};
using pod_choice_buffer_t = choice_buffer_t<>;
/*********************
ext group
*********************/
class ext_groups_packer_guard
{
public:
bool& operator[](uint32_t idx);
SRSASN_CODE pack(bit_ref& bref) const;
private:
ext_array<bool> groups;
};
class ext_groups_unpacker_guard
{
public:
explicit ext_groups_unpacker_guard(uint32_t nof_supported_groups_);
~ext_groups_unpacker_guard();
void resize(uint32_t new_size);
bool& operator[](uint32_t idx);
SRSASN_CODE unpack(cbit_ref& bref);
private:
ext_array<bool> groups;
const uint32_t nof_supported_groups;
uint32_t nof_unpacked_groups = 0;
cbit_ref* bref_tracker = nullptr;
};
/*********************
Var Length Field
*********************/
class varlength_field_pack_guard
{
public:
explicit varlength_field_pack_guard(bit_ref& bref, bool align_ = false);
~varlength_field_pack_guard();
private:
using byte_array_t = std::array<uint8_t, srsran::byte_buffer_pool::BLOCK_SIZE>;
using byte_array_ptr = srsran::any_pool_ptr<byte_array_t>;
bit_ref brefstart;
bit_ref* bref_tracker;
byte_array_ptr buffer_ptr;
bool align;
};
class varlength_field_unpack_guard
{
public:
explicit varlength_field_unpack_guard(cbit_ref& bref, bool align = false);
~varlength_field_unpack_guard();
private:
cbit_ref bref0;
cbit_ref* bref_tracker = nullptr;
uint32_t len = 0;
};
/*******************
JsonWriter
*******************/
using json_buffer = fmt::basic_memory_buffer<char, 2048>;
class json_writer
{
public:
json_writer();
void write_fieldname(const std::string& fieldname);
void write_str(const std::string& fieldname, const std::string& value);
void write_str(const std::string& value);
void write_int(const std::string& fieldname, int64_t value);
void write_int(int64_t value);
void write_bool(const std::string& fieldname, bool value);
void write_bool(bool value);
void write_null(const std::string& fieldname);
void write_null();
void start_obj(const std::string& fieldname = "");
void end_obj();
void start_array(const std::string& fieldname = "");
void end_array();
std::string to_string() const;
private:
json_buffer buffer;
std::string ident;
enum separator_t { COMMA = 0, NEWLINE, NONE };
separator_t sep;
};
template <typename T>
inline auto to_json(json_writer& j, const T& obj) -> decltype(obj.to_json(j))
{
obj.to_json(j);
}
template <typename T>
inline auto to_json(json_writer& j, const T& obj) -> decltype(j.write_str(obj.to_string()))
{
j.write_str(obj.to_string());
}
template <typename T>
inline void to_json(json_writer& j, const asn1::dyn_array<T>& lst)
{
j.start_array();
for (const auto& o : lst) {
to_json(j, o);
}
j.end_array();
}
inline void to_json(json_writer& j, int64_t number)
{
j.write_int(number);
}
/*******************
Test pack/unpack
*******************/
template <class Msg>
int test_pack_unpack_consistency(const Msg& msg)
{
uint8_t buf[2048], buf2[2048];
bzero(buf, sizeof(buf));
bzero(buf2, sizeof(buf2));
Msg msg2;
asn1::bit_ref bref(&buf[0], sizeof(buf)), bref3(&buf2[0], sizeof(buf2));
asn1::cbit_ref bref2(&buf[0], sizeof(buf));
if (msg.pack(bref) != asn1::SRSASN_SUCCESS) {
log_error_code(SRSASN_ERROR_ENCODE_FAIL, __FILE__, __LINE__);
return -1;
}
if (msg2.unpack(bref2) != asn1::SRSASN_SUCCESS) {
log_error_code(SRSASN_ERROR_DECODE_FAIL, __FILE__, __LINE__);
return -1;
}
if (msg2.pack(bref3) != asn1::SRSASN_SUCCESS) {
log_error_code(SRSASN_ERROR_ENCODE_FAIL, __FILE__, __LINE__);
return -1;
}
// unpack and last pack done for the same number of bits
if (bref3.distance() != bref2.distance()) {
log_error("[%s][%d] .", __FILE__, __LINE__);
return -1;
}
// ensure packed messages are the same
if (bref3.distance() != bref.distance()) {
log_error("[%s][%d] .", __FILE__, __LINE__);
return -1;
}
if (memcmp(buf, buf2, bref.distance_bytes()) != 0) {
log_error("[%s][%d] .", __FILE__, __LINE__);
return -1;
}
return SRSASN_SUCCESS;
}
/************************
General Layer Types
************************/
/// Enumerated used in RRC and RRC NR that distinguishes Release and Setup modes
struct setup_release_opts {
enum options { release, setup, nulltype } value;
const char* to_string() const
{
static const char* options[] = {"release", "setup"};
return convert_enum_idx(options, 2, value, "setup_release_c::types");
}
};
using setup_release_e = enumerated<setup_release_opts>;
// SetupRelease{ElementTypeParam} ::= CHOICE
template <class T>
struct setup_release_c {
using types_opts = setup_release_opts;
using types = setup_release_e;
// choice methods
setup_release_c() = default;
void set(typename types::options e = types::nulltype) { type_ = e; }
types type() const { return type_; }
SRSASN_CODE pack(bit_ref& bref) const
{
type_.pack(bref);
switch (type_.value) {
case types::release:
break;
case types::setup:
HANDLE_CODE(c.pack(bref));
break;
default:
log_invalid_choice_id(type_, "setup_release_c");
return SRSASN_ERROR_ENCODE_FAIL;
}
return SRSASN_SUCCESS;
}
SRSASN_CODE unpack(cbit_ref& bref)
{
types e;
e.unpack(bref);
set(e);
switch (type_.value) {
case types::release:
break;
case types::setup:
HANDLE_CODE(c.unpack(bref));
break;
default:
log_invalid_choice_id(type_, "setup_release_c");
return SRSASN_ERROR_DECODE_FAIL;
}
return SRSASN_SUCCESS;
}
void to_json(json_writer& j) const
{
j.start_obj();
switch (type_.value) {
case types::release:
break;
case types::setup:
asn1::to_json(j, setup());
break;
default:
log_invalid_choice_id(type_, "setup_release_c");
}
j.end_obj();
}
// getters
bool is_setup() const { return type_.value == setup_release_opts::setup; }
T& setup()
{
assert_choice_type(types::setup, type_, "SetupRelease");
return c;
}
const T& setup() const
{
assert_choice_type(types::setup, type_, "SetupRelease");
return c;
}
void set_release() { set(types::release); }
T& set_setup()
{
set(types::setup);
return c;
}
private:
types type_;
T c;
};
// Criticality ::= ENUMERATED
struct crit_opts {
enum options { reject, ignore, notify, nulltype } value;
const char* to_string() const
{
static const char* options[] = {"reject", "ignore", "notify"};
return convert_enum_idx(options, 3, value, "crit_e");
}
};
typedef enumerated<crit_opts> crit_e;
// Presence ::= ENUMERATED
struct presence_opts {
enum options { optional, conditional, mandatory, nulltype } value;
const char* to_string() const
{
static const char* options[] = {"optional", "conditional", "mandatory"};
return convert_enum_idx(options, 3, value, "presence_e");
}
};
typedef enumerated<presence_opts> presence_e;
namespace detail {
template <typename IEsSetParam>
struct ie_field_value_item {
using obj_set_type = IEsSetParam;
using value_type = typename IEsSetParam::value_c;
const char* item_name() const { return "value"; }
void set_item(uint32_t id) { item = IEsSetParam::get_value(id); }
protected:
value_type item;
};
template <typename ExtensionSetParam>
struct ie_field_ext_item {
using obj_set_type = ExtensionSetParam;
using value_type = typename ExtensionSetParam::ext_c;
const char* item_name() const { return "extension"; }
void set_item(uint32_t id) { item = ExtensionSetParam::get_ext(id); }
protected:
value_type item;
};
template <class IEItem>
struct base_ie_field : public IEItem {
using obj_set_type = typename IEItem::obj_set_type;
using value_type = typename IEItem::value_type;
uint32_t id() const { return obj_set_type::idx_to_id(value().type().value); }
crit_e crit() const { return obj_set_type::get_crit(id()); }
value_type& value() { return this->item; }
const value_type& value() const { return this->item; }
value_type* operator->() { return &value(); }
const value_type* operator->() const { return &value(); }
value_type& operator*() { return value(); }
const value_type& operator*() const { return value(); }
SRSASN_CODE pack(bit_ref& bref) const
{
HANDLE_CODE(pack_integer(bref, id(), (uint32_t)0u, (uint32_t)65535u, false, true));
HANDLE_CODE(crit().pack(bref));
HANDLE_CODE(value().pack(bref));
return SRSASN_SUCCESS;
}
SRSASN_CODE unpack(cbit_ref& bref)
{
uint32_t id_val;
HANDLE_CODE(unpack_integer(id_val, bref, (uint32_t)0u, (uint32_t)65535u, false, true));
this->set_item(id_val);
HANDLE_CODE(crit().unpack(bref));
HANDLE_CODE(value().unpack(bref));
return SRSASN_SUCCESS;
}
void to_json(json_writer& j) const
{
j.start_obj();
j.write_int("id", id());
j.write_str("criticality", crit().to_string());
j.write_fieldname(this->item_name());
asn1::to_json(j, value());
j.end_obj();
}
bool load_info_obj(const uint32_t& id_)
{
if (not obj_set_type::is_id_valid(id_)) {
return false;
}
this->set_item(id_);
return value().type().value != obj_set_type::value_c::types_opts::nulltype;
}
};
} // namespace detail
// ProtocolIE-Field{LAYER-PROTOCOL-IES : IEsSetParam} ::= SEQUENCE{{IEsSetParam}}
template <class IEsSetParam>
struct protocol_ie_field_s : public detail::base_ie_field<detail::ie_field_value_item<IEsSetParam> > {};
// ProtocolIE-SingleContainer{LAYER-PROTOCOL-IES : IEsSetParam} ::= SEQUENCE{{IEsSetParam}}
template <class ies_set_paramT_>
struct protocol_ie_single_container_s : public protocol_ie_field_s<ies_set_paramT_> {};
// ProtocolExtensionField{LAYER-PROTOCOL-EXTENSION : ExtensionSetParam} ::= SEQUENCE{{LAYER-PROTOCOL-EXTENSION}}
template <class ExtensionSetParam>
struct protocol_ext_field_s : public detail::base_ie_field<detail::ie_field_ext_item<ExtensionSetParam> > {};
namespace detail {
template <typename T>
struct ie_value_item {
using value_type = T;
value_type value;
value_type* operator->() { return &value; }
const value_type* operator->() const { return &value; }
value_type& operator*() { return value; }
const value_type& operator*() const { return value; }
const char* item_name() const { return "value"; }
protected:
value_type& item() { return value; }
const value_type& item() const { return value; }
};
template <typename T>
struct ie_ext_item {
using value_type = T;
value_type ext;
value_type* operator->() { return &ext; }
const value_type* operator->() const { return &ext; }
value_type& operator*() { return ext; }
const value_type& operator*() const { return ext; }
const char* item_name() const { return "extension"; }
protected:
value_type& item() { return ext; }
const value_type& item() const { return ext; }
};
template <class IEItem>
struct base_ie_container_item : public IEItem {
using value_type = typename IEItem::value_type;
base_ie_container_item(uint32_t id_, crit_e crit_) : id(id_), crit(crit_) {}
uint32_t id = 0;
crit_e crit;
value_type* operator->() { return &this->item(); }
const value_type* operator->() const { return &this->item(); }
value_type& operator*() { return this->item(); }
const value_type& operator*() const { return this->item(); }
SRSASN_CODE pack(bit_ref& bref) const
{
HANDLE_CODE(pack_integer(bref, id, (uint32_t)0u, (uint32_t)65535u, false, true));
HANDLE_CODE(crit.pack(bref));
{
varlength_field_pack_guard varlen_scope(bref, true);
HANDLE_CODE(this->item().pack(bref));
}
return SRSASN_SUCCESS;
}
SRSASN_CODE unpack(cbit_ref& bref)
{
HANDLE_CODE(unpack_integer(id, bref, (uint32_t)0u, (uint32_t)65535u, false, true));
HANDLE_CODE(crit.unpack(bref));
{
varlength_field_unpack_guard varlen_scope(bref, true);
HANDLE_CODE(this->item().unpack(bref));
}
return SRSASN_SUCCESS;
}
void to_json(json_writer& j) const
{
j.start_obj();
j.write_int("id", id);
j.write_str("criticality", crit.to_string());
j.write_fieldname(this->item_name());
asn1::to_json(j, this->item());
j.end_obj();
}
};
} // namespace detail
template <typename T>
struct protocol_ie_container_item_s : public detail::base_ie_container_item<detail::ie_value_item<T> > {
using base_type = detail::base_ie_container_item<detail::ie_value_item<T> >;
using base_type::base_type;
};
template <typename T>
struct protocol_ext_container_item_s : public detail::base_ie_container_item<detail::ie_ext_item<T> > {
using base_type = detail::base_ie_container_item<detail::ie_ext_item<T> >;
using base_type::base_type;
};
// ProtocolIE-Container{LAYER-PROTOCOL-IES : IEsSetParam} ::= SEQUENCE (SIZE (0..65535)) OF ProtocolIE-Field
template <class IEsSetParam>
using protocol_ie_container_l = dyn_seq_of<protocol_ie_field_s<IEsSetParam>, 0, 65535, true>;
// ProtocolExtensionContainer{LAYER-PROTOCOL-EXTENSION : ExtensionSetParam} ::= SEQUENCE (SIZE (1..65535)) OF
// ProtocolExtensionField
template <class ExtensionSetParam>
using protocol_ext_container_l = dyn_seq_of<protocol_ext_field_s<ExtensionSetParam>, 1, 65535, true>;
namespace detail {
struct empty_obj_set_item_c {
struct types_opts {
enum options { nulltype } value;
const char* to_string() const;
};
typedef enumerated<types_opts> types;
// choice methods
types type() const { return types::nulltype; }
SRSASN_CODE pack(bit_ref& bref) const;
SRSASN_CODE unpack(cbit_ref& bref);
void to_json(json_writer& j) const;
};
struct base_empty_obj_set {
// members lookup methods
static uint32_t idx_to_id(uint32_t idx);
static bool is_id_valid(const uint32_t& id);
static crit_e get_crit(const uint32_t& id);
static presence_e get_presence(const uint32_t& id);
};
} // namespace detail
/// Empty Protocol IE Object Set
struct protocol_ies_empty_o : public detail::base_empty_obj_set {
using value_c = detail::empty_obj_set_item_c;
// members lookup methods
static value_c get_value(uint32_t id) { return {}; }
};
/// Empty Protocol Extension Object Set
struct protocol_ext_empty_o : public detail::base_empty_obj_set {
using ext_c = detail::empty_obj_set_item_c;
// members lookup methods
static ext_c get_ext(uint32_t id) { return {}; }
};
/// Empty ProtocolExtensionContainer
struct protocol_ie_container_empty_l {
template <class extT_>
using ie_field_s = protocol_ext_container_item_s<extT_>;
// sequence methods
SRSASN_CODE pack(bit_ref& bref) const
{
uint32_t nof_ies = 0;
pack_length(bref, nof_ies, 1u, 65535u, true);
return SRSASN_SUCCESS;
}
SRSASN_CODE unpack(cbit_ref& bref)
{
uint32_t nof_ies = 0;
unpack_length(nof_ies, bref, 1u, 65535u, true);
if (nof_ies > 0) {
return SRSASN_ERROR_DECODE_FAIL;
}
return SRSASN_SUCCESS;
}
void to_json(json_writer& j) const
{
j.start_obj();
j.end_obj();
}
};
using protocol_ext_container_empty_l = protocol_ie_container_empty_l;
template <typename ProtocolIEs>
class elementary_procedure_option
{
ProtocolIEs protocol_ies;
public:
bool ext;
// ...
ProtocolIEs* operator->() { return &protocol_ies; }
const ProtocolIEs* operator->() const { return &protocol_ies; }
ProtocolIEs& operator*() { return protocol_ies; }
const ProtocolIEs& operator*() const { return protocol_ies; }
// sequence methods
SRSASN_CODE pack(bit_ref& bref) const
{
bref.pack(ext, 1);
HANDLE_CODE(protocol_ies.pack(bref));
return SRSASN_SUCCESS;
}
SRSASN_CODE unpack(cbit_ref& bref)
{
bref.unpack(ext, 1);
HANDLE_CODE(protocol_ies.unpack(bref));
return SRSASN_SUCCESS;
}
void to_json(json_writer& j) const
{
j.start_obj();
j.write_fieldname("protocolIEs");
asn1::to_json(j, protocol_ies);
j.end_obj();
}
};
} // namespace asn1
#endif // SRSASN_COMMON_UTILS_H