srsLTE/srsue/hdr/phy/sync.h

373 lines
12 KiB
C++

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2021 Software Radio Systems Limited
*
* By using this file, you agree to the terms and conditions set
* forth in the LICENSE file which can be found at the top level of
* the distribution.
*
*/
#ifndef SRSUE_PHCH_RECV_H
#define SRSUE_PHCH_RECV_H
#include <condition_variable>
#include <map>
#include <mutex>
#include <pthread.h>
#include "phy_common.h"
#include "prach.h"
#include "scell/intra_measure_lte.h"
#include "scell/scell_sync.h"
#include "search.h"
#include "sfn_sync.h"
#include "srsran/common/thread_pool.h"
#include "srsran/common/threads.h"
#include "srsran/common/tti_sync_cv.h"
#include "srsran/interfaces/radio_interfaces.h"
#include "srsran/phy/channel/channel.h"
#include "srsran/srsran.h"
#include "srsue/hdr/phy/lte/worker_pool.h"
#include "srsue/hdr/phy/nr/worker_pool.h"
#include "sync_state.h"
namespace srsue {
typedef _Complex float cf_t;
class sync : public srsran::thread,
public rsrp_insync_itf,
public search_callback,
public scell::sync_callback,
public scell::intra_measure_base::meas_itf
{
public:
sync(srslog::basic_logger& phy_logger, srslog::basic_logger& phy_lib_logger) :
thread("SYNC"),
search_p(phy_logger),
sfn_p(phy_logger),
phy_logger(phy_logger),
phy_lib_logger(phy_lib_logger),
sf_buffer(sync_nof_rx_subframes),
dummy_buffer(sync_nof_rx_subframes){};
~sync();
void init(srsran::radio_interface_phy* radio_,
stack_interface_phy_lte* _stack,
prach* prach_buffer,
lte::worker_pool* _lte_workers_pool,
nr::worker_pool* _nr_workers_pool,
phy_common* _worker_com,
uint32_t prio,
int sync_cpu_affinity = -1);
void stop();
void radio_overflow();
// RRC interface for controling the SYNC state
bool cell_search_init();
rrc_interface_phy_lte::cell_search_ret_t cell_search_start(phy_cell_t* cell, int earfcn);
bool cell_select_init(phy_cell_t cell);
bool cell_select_start(phy_cell_t cell);
bool cell_is_camping();
/**
* @brief Interface for monitoring UE's synchronization transition to IDLE. In addition to IDLE transitioning, this
* method waits for workers to finish processing and ends the current RF transmission burst.
* @return true if SYNC transitioned to IDLE, false otherwise
*/
bool wait_idle();
// RRC interface for controlling the neighbour cell measurement
void set_cells_to_meas(uint32_t earfcn, const std::set<uint32_t>& pci);
void set_inter_frequency_measurement(uint32_t cc_idx, uint32_t earfcn_, srsran_cell_t cell_);
void meas_stop();
// from chest_feedback_itf
void in_sync() final;
void out_of_sync() final;
void set_cfo(float cfo) final;
void get_current_cell(srsran_cell_t* cell, uint32_t* earfcn = nullptr);
uint32_t get_current_tti();
// From UE configuration
void set_agc_enable(bool enable);
void force_freq(float dl_freq, float ul_freq);
// Other functions
void set_rx_gain(float gain) override;
int radio_recv_fnc(srsran::rf_buffer_t&, srsran_timestamp_t* rx_time) override;
srsran::radio_interface_phy* get_radio() override { return radio_h; }
/**
* Sets secondary serving cell for synchronization purposes
* @param cc_idx component carrier index
* @param _cell Cell information
*/
void scell_sync_set(uint32_t cc_idx, const srsran_cell_t& _cell);
/**
* Stops all secondary serving cell synchronization
*/
void scell_sync_stop();
/**
* Implements Secondary Serving cell feedback
* @param ch Feedback channel
* @param offset Number of samples to offset
*/
void set_rx_channel_offset(uint32_t ch, int32_t offset) override { radio_h->set_channel_rx_offset(ch, offset); }
// Interface from scell::intra_measure for providing neighbour cell measurements
void cell_meas_reset(uint32_t cc_idx) override;
void new_cell_meas(uint32_t cc_idx, const std::vector<phy_meas_t>& meas) override;
private:
void reset();
void radio_error();
void set_ue_sync_opts(srsran_ue_sync_t* q, float cfo) override;
/**
* Search for a cell in the current frequency and go to IDLE.
* The function search_p.run() will not return until the search finishes
*/
void run_cell_search_state();
/**
* SFN synchronization using MIB. run_subframe() receives and processes 1 subframe
* and returns
*/
void run_sfn_sync_state();
/**
* Cell camping state. Calls the PHCH workers to process subframes and maintains cell synchronization
*/
void run_camping_state();
/**
* Receives and discards received samples. Does not maintain synchronization
*/
void run_idle_state();
/**
* MAIN THREAD
*
* The main thread process the SYNC state machine. Every state except IDLE must have exclusive access to
* all variables. If any change of cell configuration must be done, the thread must be in IDLE.
*
* On each state except campling, 1 function is called and the thread jumps to the next state based on the output.
*
* It has 3 states: Cell search, SFN synchronization, initial measurement and camping.
* - CELL_SEARCH: Initial Cell id and MIB acquisition. Uses 1.92 MHz sampling rate
* - CELL_SYNC: Full sampling rate, uses MIB to obtain SFN. When SFN is obtained, moves to CELL_CAMP
* - CELL_CAMP: Cell camping state. Calls the PHCH workers to process subframes and maintains cell
* synchronization.
* - IDLE: Receives and discards received samples. Does not maintain synchronization.
*
*/
void run_thread() final;
/**
* Helper method, executed when the UE is camping and in-sync
* @param lte_worker Selected LTE worker for the current TTI
* @param nr_worker Selected NR worker for the current TTI
* @param sync_buffer Sub-frame buffer for the current TTI
*/
void
run_camping_in_sync_state(lte::sf_worker* lte_worker, nr::sf_worker* nr_worker, srsran::rf_buffer_t& sync_buffer);
/**
* Helper method, executed in a TTI basis for signaling to the stack a new TTI execution
*
* The PHY shall not call run_stack_tti when the PHY has reserved a worker.
*
* Since the sync thread has reserved a worker in camping state, the PHY shall not call the stack in this state.
* Otherwise, there is a risk that the stack tries to reserve the same worker for configuration.
*/
void run_stack_tti();
float get_tx_cfo();
void set_sampling_rate();
bool set_frequency();
bool set_cell(float cfo);
std::atomic<bool> running = {false};
bool is_overflow = false;
srsran::rf_timestamp_t last_rx_time;
bool forced_rx_time_init = true; // Rx time sync after first receive from radio
// Objects for internal use
search search_p;
sfn_sync sfn_p;
std::vector<std::unique_ptr<scell::intra_measure_lte> > intra_freq_meas;
std::mutex intra_freq_cfg_mutex;
// Pointers to other classes
stack_interface_phy_lte* stack = nullptr;
srslog::basic_logger& phy_logger;
srslog::basic_logger& phy_lib_logger;
lte::worker_pool* lte_worker_pool = nullptr;
nr::worker_pool* nr_worker_pool = nullptr;
srsran::radio_interface_phy* radio_h = nullptr;
phy_common* worker_com = nullptr;
prach* prach_buffer = nullptr;
srsran::channel_ptr channel_emulator = nullptr;
// PRACH state
uint32_t prach_nof_sf = 0;
uint32_t prach_sf_cnt = 0;
cf_t* prach_ptr = nullptr;
float prach_power = 0;
// Object for synchronization of the primary cell
srsran_ue_sync_t ue_sync = {};
// Object for synchronization secondary serving cells
std::map<uint32_t, std::unique_ptr<scell::sync> > scell_sync;
// Buffer for primary and secondary cell samples
const static uint32_t sync_nof_rx_subframes = 5;
srsran::rf_buffer_t sf_buffer = {};
srsran::rf_buffer_t dummy_buffer;
// Sync metrics
std::atomic<float> sfo = {}; // SFO estimate updated after each sync-cycle
std::atomic<float> cfo = {}; // CFO estimate updated after each sync-cycle
std::atomic<float> ref_cfo = {}; // provided adjustment value applied before sync
sync_metrics_t metrics = {};
// in-sync / out-of-sync counters
std::atomic<uint32_t> out_of_sync_cnt = {0};
std::atomic<uint32_t> in_sync_cnt = {0};
std::mutex rrc_mutex;
enum {
PROC_IDLE = 0,
PROC_SELECT_START,
PROC_SELECT_RUNNING,
PROC_SEARCH_START,
PROC_SEARCH_RUNNING
} rrc_proc_state = PROC_IDLE;
sync_state phy_state;
search::ret_code cell_search_ret = search::CELL_NOT_FOUND;
// Sampling rate mode (find is 1.92 MHz, camp is the full cell BW)
class srate_safe
{
public:
void reset()
{
std::lock_guard<std::mutex> lock(mutex);
srate_mode = SRATE_NONE;
current_srate = 0;
}
float get_srate()
{
std::lock_guard<std::mutex> lock(mutex);
return current_srate;
}
bool is_normal()
{
std::lock_guard<std::mutex> lock(mutex);
return std::isnormal(current_srate) and current_srate > 0.0f;
}
void set_camp(float new_srate)
{
std::lock_guard<std::mutex> lock(mutex);
current_srate = new_srate;
srate_mode = SRATE_CAMP;
}
bool set_find()
{
std::lock_guard<std::mutex> lock(mutex);
if (srate_mode != SRATE_FIND) {
srate_mode = SRATE_FIND;
current_srate = 1.92e6;
return true;
}
return false;
}
private:
enum { SRATE_NONE = 0, SRATE_FIND, SRATE_CAMP } srate_mode = SRATE_NONE;
float current_srate = 0;
std::mutex mutex;
};
// Protect sampling rate changes since accessed by multiple threads
srate_safe srate;
// This is the primary cell
class cell_safe
{
public:
void set_pci(uint32_t id)
{
std::lock_guard<std::mutex> lock(mutex);
cell.id = id;
}
void reset()
{
std::lock_guard<std::mutex> lock(mutex);
cell = {};
}
bool is_valid()
{
std::lock_guard<std::mutex> lock(mutex);
return srsran_cell_isvalid(&cell);
}
void set(srsran_cell_t& x)
{
std::lock_guard<std::mutex> lock(mutex);
cell = x;
}
srsran_cell_t get()
{
std::lock_guard<std::mutex> lock(mutex);
return cell;
}
bool equals(srsran_cell_t& x)
{
std::lock_guard<std::mutex> lock(mutex);
return memcmp(&cell, &x, sizeof(srsran_cell_t)) == 0;
}
private:
srsran_cell_t cell = {};
std::mutex mutex;
};
// Protect access to cell configuration since it's accessed by multiple threads
cell_safe cell;
bool force_camping_sfn_sync = false;
uint32_t tti = 0;
srsran_timestamp_t stack_tti_ts_new = {};
srsran_timestamp_t stack_tti_ts = {};
std::array<uint8_t, SRSRAN_BCH_PAYLOAD_LEN> mib = {};
uint32_t nof_rf_channels = 0;
float ul_dl_factor = NAN;
int current_earfcn = 0;
uint32_t cellsearch_earfcn_index = 0;
float dl_freq = -1;
float ul_freq = -1;
const static int MIN_TTI_JUMP = 1; ///< Time gap reported to stack after receiving subframe
const static int MAX_TTI_JUMP = 1000; ///< Maximum time gap tolerance in RF stream metadata
const uint8_t SYNC_CC_IDX = 0; ///< From the sync POV, the CC idx is always the first
const uint32_t TIMEOUT_TO_IDLE_MS = 2000; ///< Timeout in milliseconds for transitioning to IDLE
};
} // namespace srsue
#endif // SRSUE_PHCH_RECV_H