srsLTE/srsue/hdr/phy/sync_state.h

186 lines
4.2 KiB
C++

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2021 Software Radio Systems Limited
*
* By using this file, you agree to the terms and conditions set
* forth in the LICENSE file which can be found at the top level of
* the distribution.
*
*/
#ifndef SRSUE_SYNC_STATE_H
#define SRSUE_SYNC_STATE_H
namespace srsue {
class sync_state
{
public:
typedef enum {
IDLE = 0,
CELL_SEARCH,
SFN_SYNC,
CAMPING,
} state_t;
/* Run_state is called by the main thread at the start of each loop. It updates the state
* and returns the current state
*/
state_t run_state()
{
std::lock_guard<std::mutex> lock(mutex);
cur_state = next_state;
if (state_setting) {
state_setting = false;
state_running = true;
}
cvar.notify_all();
return cur_state;
}
// Called by the main thread at the end of each state to indicate it has finished.
void state_exit(bool exit_ok = true)
{
std::lock_guard<std::mutex> lock(mutex);
if (cur_state == SFN_SYNC && exit_ok == true) {
next_state = CAMPING;
} else {
next_state = IDLE;
}
state_running = false;
cvar.notify_all();
}
void force_sfn_sync()
{
std::lock_guard<std::mutex> lock(mutex);
next_state = SFN_SYNC;
}
/* Functions to be called from outside the STM thread to instruct the STM to switch state.
* The functions change the state and wait until it has changed it.
*
* These functions are mutexed and only 1 can be called at a time
*/
void go_idle()
{
// Do not wait when transitioning to IDLE to avoid blocking
next_state = IDLE;
}
void run_cell_search()
{
go_state(CELL_SEARCH);
wait_state_run();
wait_state_next();
}
void run_sfn_sync()
{
go_state(SFN_SYNC);
wait_state_run();
wait_state_next();
}
/* Helpers below this */
bool is_idle()
{
std::lock_guard<std::mutex> lock(mutex);
return cur_state == IDLE;
}
bool is_camping()
{
std::lock_guard<std::mutex> lock(mutex);
return cur_state == CAMPING;
}
bool wait_idle(uint32_t timeout_ms)
{
std::unique_lock<std::mutex> lock(mutex);
// Avoid wasting time if the next state will not be IDLE
if (next_state != IDLE) {
return cur_state == IDLE;
}
// Calculate timeout
std::chrono::system_clock::time_point expire_time = std::chrono::system_clock::now();
expire_time += std::chrono::milliseconds(timeout_ms);
// Wait until the state is IDLE
while (cur_state != IDLE) {
std::cv_status cv_status = cvar.wait_until(lock, expire_time);
// Return if it timeouts
if (cv_status != std::cv_status::timeout) {
return cur_state == IDLE;
}
}
// Return true if the state is IDLE
return true;
}
const char* to_string()
{
std::lock_guard<std::mutex> lock(mutex);
switch (cur_state) {
case IDLE:
return "IDLE";
case CELL_SEARCH:
return "SEARCH";
case SFN_SYNC:
return "SYNC";
case CAMPING:
return "CAMPING";
default:
return "UNKNOWN";
}
}
sync_state() = default;
private:
void go_state(state_t s)
{
std::unique_lock<std::mutex> ul(mutex);
next_state = s;
state_setting = true;
while (state_setting) {
cvar.wait(ul);
}
}
void go_state_nowait(state_t s)
{
std::unique_lock<std::mutex> ul(mutex);
next_state = s;
state_setting = true;
}
/* Waits until there is a call to set_state() and then run_state(). Returns when run_state() returns */
void wait_state_run()
{
std::unique_lock<std::mutex> ul(mutex);
while (state_running) {
cvar.wait(ul);
}
}
void wait_state_next()
{
std::unique_lock<std::mutex> ul(mutex);
while (cur_state != next_state) {
cvar.wait(ul);
}
}
bool state_running = false;
bool state_setting = false;
std::atomic<state_t> next_state = {IDLE}; // can be updated from outside (i.e. other thread)
state_t cur_state = IDLE; // will only be accessed when holding the mutex
std::mutex mutex;
std::condition_variable cvar;
};
}; // namespace srsue
#endif // SRSUE_SYNC_STATE_H