srsLTE/lib/include/srsran/radio/rf_buffer.h

168 lines
5.6 KiB
C++

/**
* Copyright 2013-2021 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSRAN_RF_BUFFER_H
#define SRSRAN_RF_BUFFER_H
#include "srsran/interfaces/radio_interfaces.h"
namespace srsran {
/**
* Implemenation of the rf_buffer_interface for the current radio implementation which uses flat arrays.
* @see rf_buffer_interface
* @see radio
*
*/
class rf_buffer_t : public rf_buffer_interface
{
public:
/**
* Creates an object and allocates memory for nof_subframes_ assuming the
* largest system bandwidth
* @param nof_subframes_ Number of subframes to allocate
*/
explicit rf_buffer_t(uint32_t nof_subframes_)
{
if (nof_subframes_ > 0) {
// Allocate buffers for an integer number of subframes
for (uint32_t i = 0; i < SRSRAN_MAX_CHANNELS; i++) {
sample_buffer[i] = srsran_vec_cf_malloc(nof_subframes_ * SRSRAN_SF_LEN_MAX);
srsran_vec_cf_zero(sample_buffer[i], SRSRAN_SF_LEN_MAX);
}
allocated = true;
nof_subframes = nof_subframes_;
}
}
/**
* Creates an object and sets the buffers to the flat array pointed by data. Note that data must
* contain up to SRSRAN_MAX_CHANNELS pointers
* @param data Flat array to use as initializer for the internal buffer pointers
*/
explicit rf_buffer_t(cf_t* data[SRSRAN_MAX_CHANNELS], uint32_t nof_samples_)
{
for (uint32_t i = 0; i < SRSRAN_MAX_CHANNELS; i++) {
sample_buffer[i] = data[i];
}
nof_samples = nof_samples_;
}
/**
* Creates an object from a single array pointer. The rest of the channel pointers will be left to NULL
* @param data Flat array to use as initializer for the internal buffer pointers
*/
explicit rf_buffer_t(cf_t* data, uint32_t nof_samples_)
{
sample_buffer[0] = data;
nof_samples = nof_samples_;
}
/**
* Default constructor leaves the internal pointers to NULL
*/
rf_buffer_t() = default;
/**
* The destructor will deallocate memory only if it was allocated passing nof_subframes > 0
*/
~rf_buffer_t()
{
if (allocated) {
free_all();
}
}
/**
* Overrides the = operator such that the lvalue internal buffers point to the pointers inside rvalue.
* If memory has already been allocated in the lvalue object, it will free it before pointing the
* buffers to the lvalue.
* After this operator, when the lvalue is destroyed no memory will be freed.
* @param other rvalue
* @return lvalue
*/
rf_buffer_t& operator=(const rf_buffer_t& other)
{
if (this == &other) {
return *this;
}
if (this->allocated) {
free_all();
this->allocated = false;
}
for (int i = 0; i < SRSRAN_MAX_CHANNELS; i++) {
this->sample_buffer[i] = other.sample_buffer[i];
}
return *this;
}
rf_buffer_t(const rf_buffer_t& other) = delete;
cf_t* get(const uint32_t& channel_idx) const override { return sample_buffer.at(channel_idx); }
void set(const uint32_t& channel_idx, cf_t* ptr) override { sample_buffer.at(channel_idx) = ptr; }
cf_t* get(const uint32_t& logical_ch, const uint32_t& port_idx, const uint32_t& nof_antennas) const override
{
return sample_buffer.at(logical_ch * nof_antennas + port_idx);
}
void set(const uint32_t& logical_ch, const uint32_t& port_idx, const uint32_t& nof_antennas, cf_t* ptr) override
{
sample_buffer.at(logical_ch * nof_antennas + port_idx) = ptr;
}
void set_combine(const uint32_t& channel_idx, cf_t* ptr)
{
if (sample_buffer.at(channel_idx) == nullptr) {
sample_buffer.at(channel_idx) = ptr;
} else if (ptr != nullptr) {
srsran_vec_sum_ccc(ptr, sample_buffer.at(channel_idx), sample_buffer.at(channel_idx), nof_samples);
}
}
void set_combine(const uint32_t& logical_ch, const uint32_t& port_idx, const uint32_t& nof_antennas, cf_t* ptr)
{
set_combine(logical_ch * nof_antennas + port_idx, ptr);
}
void set_combine(const rf_buffer_interface& other)
{
// Take the other number of samples always
set_nof_samples(other.get_nof_samples());
for (uint32_t ch = 0; ch < SRSRAN_MAX_CHANNELS; ch++) {
set_combine(ch, other.get(ch));
}
}
void** to_void() override { return (void**)sample_buffer.data(); }
cf_t** to_cf_t() override { return sample_buffer.data(); }
uint32_t size() override { return nof_subframes * SRSRAN_SF_LEN_MAX; }
void set_nof_samples(uint32_t n) override { nof_samples = n; }
uint32_t get_nof_samples() const override { return nof_samples; }
private:
std::array<cf_t*, SRSRAN_MAX_CHANNELS> sample_buffer = {};
bool allocated = false;
uint32_t nof_subframes = 0;
uint32_t nof_samples = 0;
void free_all()
{
for (uint32_t i = 0; i < SRSRAN_MAX_CHANNELS; i++) {
if (sample_buffer[i]) {
free(sample_buffer[i]);
}
}
}
};
} // namespace srsran
#endif // SRSRAN_RF_BUFFER_H