srsLTE/lib/test/upper/pdcp_nr_test.h

177 lines
7.1 KiB
C++

/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSLTE_PDCP_NR_TEST_H
#define SRSLTE_PDCP_NR_TEST_H
#include "pdcp_base_test.h"
#include "srslte/test/ue_test_interfaces.h"
#include "srslte/upper/pdcp_entity_nr.h"
struct pdcp_initial_state {
uint32_t tx_next;
uint32_t rx_next;
uint32_t rx_deliv;
uint32_t rx_reord;
};
// Helper struct to hold a packet and the number of clock
// ticks to run after writing the packet to test timeouts.
struct pdcp_test_event_t {
srslte::unique_byte_buffer_t pkt;
uint32_t ticks = 0;
};
/*
* Constant definitions that are common to multiple tests
*/
// Encryption and Integrity Keys
std::array<uint8_t, 32> k_int = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10,
0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x20, 0x21,
0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x30, 0x31};
std::array<uint8_t, 32> k_enc = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10,
0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x20, 0x21,
0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x30, 0x31};
// Security Configuration, common to all tests.
srslte::as_security_config_t sec_cfg = {
k_int,
k_enc,
k_int,
k_enc,
srslte::INTEGRITY_ALGORITHM_ID_128_EIA2,
srslte::CIPHERING_ALGORITHM_ID_128_EEA2,
};
// Test SDUs for tx
uint8_t sdu1[] = {0x18, 0xe2};
uint8_t sdu2[] = {0xde, 0xad};
// Test PDUs for rx (generated from SDU1)
uint8_t pdu1_count0_snlen12[] = {0x80, 0x00, 0x8f, 0xe3, 0xe0, 0xdf, 0x82, 0x92};
uint8_t pdu1_count2048_snlen12[] = {0x88, 0x00, 0x8d, 0x2c, 0x47, 0x5e, 0xb1, 0x5b};
uint8_t pdu1_count4096_snlen12[] = {0x80, 0x00, 0x97, 0xbe, 0xa3, 0x32, 0xfa, 0x61};
uint8_t pdu1_count4294967295_snlen12[] = {0x8f, 0xff, 0x1e, 0x47, 0xe6, 0x86, 0x28, 0x6c};
uint8_t pdu1_count0_snlen18[] = {0x80, 0x00, 0x00, 0x8f, 0xe3, 0xe0, 0xdf, 0x82, 0x92};
uint8_t pdu1_count131072_snlen18[] = {0x82, 0x00, 0x00, 0x15, 0x01, 0xf4, 0xb0, 0xfc, 0xc5};
uint8_t pdu1_count262144_snlen18[] = {0x80, 0x00, 0x00, 0xc2, 0x47, 0xa8, 0xdd, 0xc0, 0x73};
uint8_t pdu1_count4294967295_snlen18[] = {0x83, 0xff, 0xff, 0x1e, 0x47, 0xe6, 0x86, 0x28, 0x6c};
// Test PDUs for rx (generated from SDU2)
uint8_t pdu2_count1_snlen12[] = {0x80, 0x01, 0x5e, 0x3d, 0x64, 0xaf, 0xac, 0x7c};
uint8_t pdu2_count1_snlen18[] = {0x80, 0x00, 0x01, 0x5e, 0x3d, 0x64, 0xaf, 0xac, 0x7c};
// This is the normal initial state. All state variables are set to zero
pdcp_initial_state normal_init_state = {};
// Some tests regarding COUNT wraparound take really long.
// This puts the PCDC state closer to wraparound quickly.
pdcp_initial_state near_wraparound_init_state = {.tx_next = 4294967295,
.rx_next = 4294967295,
.rx_deliv = 4294967295,
.rx_reord = 0};
/*
* Helper classes to reduce copy / pasting in setting up tests
*/
// PDCP helper to setup PDCP + Dummy
class pdcp_nr_test_helper
{
public:
pdcp_nr_test_helper(srslte::pdcp_config_t cfg, srslte::as_security_config_t sec_cfg_, srslte::log_ref log) :
rlc(log),
rrc(log),
gw(log),
pdcp(&rlc, &rrc, &gw, &stack.task_sched, log, 0, cfg)
{
pdcp.config_security(sec_cfg_);
pdcp.enable_integrity(srslte::DIRECTION_TXRX);
pdcp.enable_encryption(srslte::DIRECTION_TXRX);
}
void set_pdcp_initial_state(pdcp_initial_state init_state)
{
pdcp.set_tx_next(init_state.tx_next);
pdcp.set_rx_next(init_state.rx_next);
pdcp.set_rx_deliv(init_state.rx_deliv);
pdcp.set_rx_reord(init_state.rx_reord);
}
rlc_dummy rlc;
rrc_dummy rrc;
gw_dummy gw;
srsue::stack_test_dummy stack;
srslte::pdcp_entity_nr pdcp;
};
// Helper function to generate PDUs
srslte::unique_byte_buffer_t gen_expected_pdu(const srslte::unique_byte_buffer_t& in_sdu,
uint32_t count,
uint8_t pdcp_sn_len,
srslte::as_security_config_t sec_cfg,
srslte::byte_buffer_pool* pool,
srslte::log_ref log)
{
srslte::pdcp_config_t cfg = {1,
srslte::PDCP_RB_IS_DRB,
srslte::SECURITY_DIRECTION_UPLINK,
srslte::SECURITY_DIRECTION_DOWNLINK,
pdcp_sn_len,
srslte::pdcp_t_reordering_t::ms500,
srslte::pdcp_discard_timer_t::infinity};
pdcp_nr_test_helper pdcp_hlp(cfg, sec_cfg, log);
srslte::pdcp_entity_nr* pdcp = &pdcp_hlp.pdcp;
rlc_dummy* rlc = &pdcp_hlp.rlc;
pdcp_initial_state init_state = {};
init_state.tx_next = count;
pdcp_hlp.set_pdcp_initial_state(init_state);
srslte::unique_byte_buffer_t sdu = srslte::allocate_unique_buffer(*pool);
*sdu = *in_sdu;
pdcp->write_sdu(std::move(sdu));
srslte::unique_byte_buffer_t out_pdu = srslte::allocate_unique_buffer(*pool);
rlc->get_last_sdu(out_pdu);
return out_pdu;
}
// Helper function to generate vector of PDU from a vector of TX_NEXTs for generating expected pdus
std::vector<pdcp_test_event_t> gen_expected_pdus_vector(const srslte::unique_byte_buffer_t& in_sdu,
const std::vector<uint32_t>& tx_nexts,
uint8_t pdcp_sn_len,
srslte::as_security_config_t sec_cfg_,
srslte::byte_buffer_pool* pool,
srslte::log_ref log)
{
std::vector<pdcp_test_event_t> pdu_vec;
for (uint32_t tx_next : tx_nexts) {
pdcp_test_event_t event;
event.pkt = gen_expected_pdu(in_sdu, tx_next, pdcp_sn_len, sec_cfg_, pool, log);
event.ticks = 0;
pdu_vec.push_back(std::move(event));
}
return pdu_vec;
}
#endif // SRSLTE_PDCP_NR_TEST_H