srsLTE/lib/test/common/multiqueue_test.cc

500 lines
14 KiB
C++

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2021 Software Radio Systems Limited
*
* By using this file, you agree to the terms and conditions set
* forth in the LICENSE file which can be found at the top level of
* the distribution.
*
*/
#include "srsran/adt/move_callback.h"
#include "srsran/common/multiqueue.h"
#include "srsran/common/test_common.h"
#include "srsran/common/thread_pool.h"
#include <iostream>
#include <map>
#include <random>
#include <thread>
#include <unistd.h>
using namespace srsran;
int test_multiqueue()
{
std::cout << "\n======= TEST multiqueue test: start =======\n";
int number = 2;
multiqueue_handler<int> multiqueue;
TESTASSERT(multiqueue.nof_queues() == 0);
// test push/pop and size for one queue
queue_handle<int> qid1 = multiqueue.add_queue();
TESTASSERT(qid1.active());
TESTASSERT(qid1.size() == 0 and qid1.empty());
TESTASSERT(multiqueue.nof_queues() == 1);
TESTASSERT(qid1.try_push(5).has_value());
TESTASSERT(qid1.try_push(number));
TESTASSERT(qid1.size() == 2 and not qid1.empty());
TESTASSERT(multiqueue.wait_pop(&number));
TESTASSERT(number == 5);
TESTASSERT(multiqueue.wait_pop(&number));
TESTASSERT(number == 2 and qid1.empty());
// test push/pop and size for two queues
queue_handle<int> qid2 = multiqueue.add_queue();
TESTASSERT(qid2.active());
TESTASSERT(multiqueue.nof_queues() == 2 and qid1.active());
TESTASSERT(qid2.try_push(3).has_value());
TESTASSERT(qid2.size() == 1 and not qid2.empty());
TESTASSERT(qid1.empty());
// check if erasing a queue breaks anything
qid1.reset();
TESTASSERT(multiqueue.nof_queues() == 1 and not qid1.active());
qid1 = multiqueue.add_queue();
TESTASSERT(qid1.empty() and qid1.active());
TESTASSERT(qid2.size() == 1 and not qid2.empty());
multiqueue.wait_pop(&number);
// check round-robin
for (int i = 0; i < 10; ++i) {
TESTASSERT(qid1.try_push(i));
}
for (int i = 20; i < 35; ++i) {
TESTASSERT(qid2.try_push(i));
}
TESTASSERT(qid1.size() == 10);
TESTASSERT(qid2.size() == 15);
TESTASSERT(multiqueue.wait_pop(&number) and number == 0);
TESTASSERT(multiqueue.wait_pop(&number) and number == 20);
TESTASSERT(multiqueue.wait_pop(&number) and number == 1);
TESTASSERT(multiqueue.wait_pop(&number) and number == 21);
TESTASSERT(qid1.size() == 8);
TESTASSERT(qid2.size() == 13);
for (int i = 0; i < 8 * 2; ++i) {
multiqueue.wait_pop(&number);
}
TESTASSERT(qid1.size() == 0);
TESTASSERT(qid2.size() == 5);
TESTASSERT(multiqueue.wait_pop(&number) and number == 30);
// remove existing queues
qid1.reset();
qid2.reset();
TESTASSERT(multiqueue.nof_queues() == 0);
// check that adding a queue of different capacity works
{
qid1 = multiqueue.add_queue();
qid2 = multiqueue.add_queue();
// remove first queue again
qid1.reset();
TESTASSERT(multiqueue.nof_queues() == 1);
// add queue with non-default capacity
auto qid3 = multiqueue.add_queue(10);
TESTASSERT(qid3.capacity() == 10);
// make sure neither a new queue index is returned
TESTASSERT(qid1 != qid3);
TESTASSERT(qid2 != qid3);
}
std::cout << "outcome: Success\n";
std::cout << "===========================================\n";
return 0;
}
int test_multiqueue_threading()
{
std::cout << "\n===== TEST multiqueue threading test: start =====\n";
int capacity = 4, number = 0, start_number = 2, nof_pushes = capacity + 1;
multiqueue_handler<int> multiqueue(capacity);
auto qid1 = multiqueue.add_queue();
std::atomic<bool> t1_running = {true};
auto push_blocking_func = [&t1_running](queue_handle<int>* qid, int start_value, int nof_pushes) {
for (int i = 0; i < nof_pushes; ++i) {
qid->push(start_value + i);
std::cout << "t1: pushed item " << i << std::endl;
}
std::cout << "t1: pushed all items\n";
t1_running = false;
};
std::thread t1(push_blocking_func, &qid1, start_number, nof_pushes);
// Wait for queue to fill
while ((int)qid1.size() != capacity) {
usleep(1000);
TESTASSERT(t1_running);
}
for (int i = 0; i < nof_pushes; ++i) {
TESTASSERT(multiqueue.wait_pop(&number));
TESTASSERT(number == start_number + i);
std::cout << "main: popped item " << i << "\n";
}
std::cout << "main: popped all items\n";
// wait for thread to finish
while (t1_running) {
usleep(1000);
}
TESTASSERT(qid1.size() == 0);
multiqueue.stop();
t1.join();
std::cout << "outcome: Success\n";
std::cout << "==================================================\n";
return 0;
}
int test_multiqueue_threading2()
{
std::cout << "\n===== TEST multiqueue threading test 2: start =====\n";
// Description: push items until blocking in thread t1. Unblocks in main thread by calling multiqueue.reset()
int capacity = 4, start_number = 2, nof_pushes = capacity + 1;
multiqueue_handler<int> multiqueue(capacity);
auto qid1 = multiqueue.add_queue();
auto push_blocking_func = [](queue_handle<int>* qid, int start_value, int nof_pushes, bool* is_running) {
for (int i = 0; i < nof_pushes; ++i) {
qid->push(start_value + i);
}
std::cout << "t1: pushed all items\n";
*is_running = false;
};
bool t1_running = true;
std::thread t1(push_blocking_func, &qid1, start_number, nof_pushes, &t1_running);
// Wait for queue to fill
while ((int)qid1.size() != capacity) {
usleep(1000);
TESTASSERT(t1_running);
}
multiqueue.stop();
t1.join();
std::cout << "outcome: Success\n";
std::cout << "===================================================\n";
return 0;
}
int test_multiqueue_threading3()
{
std::cout << "\n===== TEST multiqueue threading test 3: start =====\n";
// pop will block in a separate thread, but multiqueue.reset() will unlock it
int capacity = 4;
multiqueue_handler<int> multiqueue(capacity);
auto qid1 = multiqueue.add_queue();
auto pop_blocking_func = [&multiqueue](bool* success) {
int number = 0;
bool ret = multiqueue.wait_pop(&number);
*success = not ret;
};
bool t1_success = false;
std::thread t1(pop_blocking_func, &t1_success);
TESTASSERT(not t1_success);
usleep(1000);
TESTASSERT(not t1_success);
TESTASSERT((int)qid1.size() == 0);
// Should be able to unlock all
multiqueue.stop();
TESTASSERT(multiqueue.nof_queues() == 0);
TESTASSERT(not qid1.active());
t1.join();
TESTASSERT(t1_success);
std::cout << "outcome: Success\n";
std::cout << "===================================================\n";
return 0;
}
int test_multiqueue_threading4()
{
std::cout << "\n===== TEST multiqueue threading test 4: start =====\n";
// Description: the consumer will block on popping, but the pushing from different producers
// should be sufficient to awake it when necessary
int capacity = 4;
multiqueue_handler<int> multiqueue(capacity);
auto qid1 = multiqueue.add_queue();
auto qid2 = multiqueue.add_queue();
auto qid3 = multiqueue.add_queue();
auto qid4 = multiqueue.add_queue();
std::mutex mutex;
int last_number = -1;
auto pop_blocking_func = [&multiqueue, &last_number, &mutex](bool* success) {
int number = 0;
while (multiqueue.wait_pop(&number)) {
std::lock_guard<std::mutex> lock(mutex);
last_number = std::max(last_number, number);
}
*success = true;
};
bool t1_success = false;
std::thread t1(pop_blocking_func, &t1_success);
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> dist{0, 2};
for (int i = 0; i < 10000; ++i) {
int qidx = dist(gen);
switch (qidx) {
case 0:
qid1.push(i);
break;
case 1:
qid2.push(i);
break;
case 2:
qid4.push(i);
break;
default:
break;
}
if (i % 20 == 0) {
int count = 0;
std::unique_lock<std::mutex> lock(mutex);
while (last_number != i) {
lock.unlock();
usleep(100);
count++;
TESTASSERT(count < 100000);
lock.lock();
}
}
}
// Should be able to unlock all
multiqueue.stop();
TESTASSERT(multiqueue.nof_queues() == 0);
TESTASSERT(not qid1.active());
t1.join();
TESTASSERT(t1_success);
std::cout << "outcome: Success\n";
std::cout << "===================================================\n";
return 0;
}
int test_task_thread_pool()
{
std::cout << "\n====== TEST task thread pool test 1: start ======\n";
// Description: check whether the tasks are successfully distributed between workers
uint32_t nof_workers = 4, nof_runs = 10000;
std::mutex count_mutex;
std::map<std::thread::id, int> count_worker;
task_thread_pool thread_pool(nof_workers);
auto task = [&count_worker, &count_mutex]() {
std::lock_guard<std::mutex> lock(count_mutex);
count_worker[std::this_thread::get_id()]++;
};
for (uint32_t i = 0; i < nof_runs; ++i) {
thread_pool.push_task(task);
}
// wait for all tasks to be successfully processed
while (thread_pool.nof_pending_tasks() > 0) {
usleep(100);
}
thread_pool.stop();
uint32_t total_count = 0;
for (auto& w : count_worker) {
if (w.second < 10) {
std::cout << "WARNING: the number of tasks " << w.second << " assigned to worker " << w.first << " is too low";
}
total_count += w.second;
std::cout << "worker " << w.first << ": " << w.second << " runs\n";
}
if (total_count != nof_runs) {
printf("Number of task runs=%d does not match total=%d\n", total_count, nof_runs);
return -1;
}
std::cout << "outcome: Success\n";
std::cout << "===================================================\n";
return 0;
}
int test_task_thread_pool2()
{
std::cout << "\n====== TEST task thread pool test 2: start ======\n";
// Description: push a very long task to all workers, and call thread_pool.stop() to check if it waits for the tasks
// to be completed, and does not get stuck.
uint32_t nof_workers = 4;
std::atomic<uint8_t> workers_started{0};
uint8_t workers_finished = 0;
std::mutex mut;
task_thread_pool thread_pool(nof_workers);
thread_pool.start();
auto task = [&workers_started, &workers_finished, &mut]() {
{
std::lock_guard<std::mutex> lock(mut);
workers_started++;
}
std::this_thread::sleep_for(std::chrono::seconds{1});
std::lock_guard<std::mutex> lock(mut);
std::cout << "worker has finished\n";
workers_finished++;
};
for (uint32_t i = 0; i < nof_workers; ++i) {
thread_pool.push_task(task);
}
while (workers_started != nof_workers) {
usleep(10);
}
std::cout << "stopping thread pool...\n";
thread_pool.stop();
std::cout << "thread pool stopped.\n";
TESTASSERT(workers_finished == nof_workers);
std::cout << "outcome: Success\n";
std::cout << "===================================================\n";
return 0;
}
int test_task_thread_pool3()
{
std::cout << "\n====== TEST task thread pool test 3: start ======\n";
// Description: create many workers and shut down the pool before all of them started yet. Should exit cleanly
uint32_t nof_workers = 100;
task_thread_pool thread_pool(nof_workers);
thread_pool.start();
std::cout << "outcome: Success\n";
std::cout << "===================================================\n";
return 0;
}
struct C {
std::unique_ptr<int> val{new int{5}};
};
struct D {
std::array<int, 64> big_val;
D() { big_val[0] = 6; }
};
int test_inplace_task()
{
std::cout << "\n======= TEST inplace task: start =======\n";
int v = 0;
auto l0 = [&v]() { v = 1; };
srsran::move_callback<void()> t{l0};
srsran::move_callback<void()> t2{[v]() mutable { v = 2; }};
// sanity static checks
static_assert(task_details::is_move_callback<std::decay<decltype(t)>::type>::value, "failed check\n");
static_assert(
std::is_base_of<std::false_type, task_details::is_move_callback<std::decay<decltype(l0)>::type> >::value,
"failed check\n");
t();
t2();
TESTASSERT(v == 1);
v = 2;
decltype(t) t3 = std::move(t);
t3();
TESTASSERT(v == 1);
C c;
srsran::move_callback<void()> t4{std::bind([&v](C& c) { v = *c.val; }, std::move(c))};
{
decltype(t4) t5;
t5 = std::move(t4);
t5();
TESTASSERT(v == 5);
}
D d;
srsran::move_callback<void()> t6 = [&v, d]() { v = d.big_val[0]; };
{
srsran::move_callback<void()> t7;
t6();
TESTASSERT(v == 6);
v = 0;
t7 = std::move(t6);
t7();
TESTASSERT(v == 6);
}
auto l1 = std::bind([&v](C& c) { v = *c.val; }, C{});
auto l2 = [&v, d]() { v = d.big_val[0]; };
t = std::move(l1);
t2 = l2;
v = 0;
t();
TESTASSERT(v == 5);
t2();
TESTASSERT(v == 6);
TESTASSERT(t.is_in_small_buffer() and not t2.is_in_small_buffer());
std::swap(t, t2);
TESTASSERT(t2.is_in_small_buffer() and not t.is_in_small_buffer());
v = 0;
t();
TESTASSERT(v == 6);
t2();
TESTASSERT(v == 5);
// TEST: task works in const contexts
t = l2;
auto l3 = [](const srsran::move_callback<void()>& task) { task(); };
v = 0;
l3(t);
TESTASSERT(v == 6);
std::cout << "outcome: Success\n";
std::cout << "========================================\n";
return 0;
}
int main()
{
TESTASSERT(test_multiqueue() == 0);
TESTASSERT(test_multiqueue_threading() == 0);
TESTASSERT(test_multiqueue_threading2() == 0);
TESTASSERT(test_multiqueue_threading3() == 0);
TESTASSERT(test_multiqueue_threading4() == 0);
TESTASSERT(test_task_thread_pool() == 0);
TESTASSERT(test_task_thread_pool2() == 0);
TESTASSERT(test_task_thread_pool3() == 0);
TESTASSERT(test_inplace_task() == 0);
}