srsLTE/lib/include/srslte/common/multiqueue.h

325 lines
8.3 KiB
C++

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2020 Software Radio Systems Limited
*
* By using this file, you agree to the terms and conditions set
* forth in the LICENSE file which can be found at the top level of
* the distribution.
*
*/
/******************************************************************************
* File: multiqueue.h
* Description: General-purpose non-blocking multiqueue. It behaves as a list
* of bounded/unbounded queues.
*****************************************************************************/
#ifndef SRSLTE_MULTIQUEUE_H
#define SRSLTE_MULTIQUEUE_H
#include "srslte/adt/move_callback.h"
#include <algorithm>
#include <condition_variable>
#include <functional>
#include <mutex>
#include <queue>
#include <vector>
namespace srslte {
#define MULTIQUEUE_DEFAULT_CAPACITY (8192) // Default per-queue capacity
template <typename myobj>
class multiqueue_handler
{
class circular_buffer
{
public:
circular_buffer(uint32_t cap) : buffer(cap + 1) {}
circular_buffer(circular_buffer&& other) noexcept
{
active = other.active;
other.active = false;
widx = other.widx;
ridx = other.ridx;
buffer = std::move(other.buffer);
}
std::condition_variable cv_full;
bool active = true;
bool empty() const { return widx == ridx; }
size_t size() const { return widx >= ridx ? widx - ridx : widx + (buffer.size() - ridx); }
bool full() const { return (ridx > 0) ? widx == ridx - 1 : widx == buffer.size() - 1; }
size_t capacity() const { return buffer.size() - 1; }
template <typename T>
void push(T&& o) noexcept
{
buffer[widx++] = std::forward<T>(o);
if (widx >= buffer.size()) {
widx = 0;
}
}
void pop() noexcept
{
ridx++;
if (ridx >= buffer.size()) {
ridx = 0;
}
}
myobj& front() noexcept { return buffer[ridx]; }
const myobj& front() const noexcept { return buffer[ridx]; }
private:
std::vector<myobj> buffer;
size_t widx = 0, ridx = 0;
};
public:
class queue_handle
{
public:
queue_handle() = default;
queue_handle(multiqueue_handler<myobj>* parent_, int id) : parent(parent_), queue_id(id) {}
template <typename FwdRef>
void push(FwdRef&& value)
{
parent->push(queue_id, std::forward<FwdRef>(value));
}
bool try_push(const myobj& value) { return parent->try_push(queue_id, value); }
std::pair<bool, myobj> try_push(myobj&& value) { return parent->try_push(queue_id, std::move(value)); }
size_t size() { return parent->size(queue_id); }
private:
multiqueue_handler<myobj>* parent = nullptr;
int queue_id = -1;
};
explicit multiqueue_handler(uint32_t capacity_ = MULTIQUEUE_DEFAULT_CAPACITY) : capacity(capacity_) {}
~multiqueue_handler() { reset(); }
void reset()
{
std::unique_lock<std::mutex> lock(mutex);
running = false;
while (nof_threads_waiting > 0) {
uint32_t size = queues.size();
cv_empty.notify_one();
for (uint32_t i = 0; i < size; ++i) {
queues[i].cv_full.notify_all();
}
// wait for all threads to unblock
cv_exit.wait(lock);
}
queues.clear();
}
/**
* Adds a new queue with fixed capacity
* @param capacity_ The capacity of the queue.
* @return The index of the newly created (or reused) queue within the vector of queues.
*/
int add_queue(uint32_t capacity_)
{
uint32_t qidx = 0;
std::lock_guard<std::mutex> lock(mutex);
if (not running) {
return -1;
}
for (; qidx < queues.size() and queues[qidx].active; ++qidx)
;
// check if there is a free queue of the required size
if (qidx == queues.size() || queues[qidx].capacity() != capacity_) {
// create new queue
queues.emplace_back(capacity_);
qidx = queues.size() - 1; // update qidx to the last element
} else {
queues[qidx].active = true;
}
return (int)qidx;
}
/**
* Add queue using the default capacity of the underlying multiqueue
* @return The queue index
*/
int add_queue() { return add_queue(capacity); }
int nof_queues()
{
std::lock_guard<std::mutex> lock(mutex);
uint32_t count = 0;
for (uint32_t i = 0; i < queues.size(); ++i) {
count += queues[i].active ? 1 : 0;
}
return count;
}
template <typename FwdRef>
void push(int q_idx, FwdRef&& value)
{
{
std::unique_lock<std::mutex> lock(mutex);
while (is_queue_active_(q_idx) and queues[q_idx].full()) {
nof_threads_waiting++;
queues[q_idx].cv_full.wait(lock);
nof_threads_waiting--;
}
if (not is_queue_active_(q_idx)) {
cv_exit.notify_one();
return;
}
queues[q_idx].push(std::forward<FwdRef>(value));
}
cv_empty.notify_one();
}
bool try_push(int q_idx, const myobj& value)
{
{
std::lock_guard<std::mutex> lock(mutex);
if (not is_queue_active_(q_idx) or queues[q_idx].full()) {
return false;
}
queues[q_idx].push(value);
}
cv_empty.notify_one();
return true;
}
std::pair<bool, myobj> try_push(int q_idx, myobj&& value)
{
{
std::lock_guard<std::mutex> lck(mutex);
if (not is_queue_active_(q_idx) or queues[q_idx].full()) {
return {false, std::move(value)};
}
queues[q_idx].push(std::move(value));
}
cv_empty.notify_one();
return {true, std::move(value)};
}
int wait_pop(myobj* value)
{
std::unique_lock<std::mutex> lock(mutex);
while (running) {
if (round_robin_pop_(value)) {
if (nof_threads_waiting > 0) {
lock.unlock();
queues[spin_idx].cv_full.notify_one();
}
return spin_idx;
}
nof_threads_waiting++;
cv_empty.wait(lock);
nof_threads_waiting--;
}
cv_exit.notify_one();
return -1;
}
int try_pop(myobj* value)
{
std::unique_lock<std::mutex> lock(mutex);
if (running) {
if (round_robin_pop_(value)) {
if (nof_threads_waiting > 0) {
lock.unlock();
queues[spin_idx].cv_full.notify_one();
}
return spin_idx;
}
// didn't find any task
return -1;
}
cv_exit.notify_one();
return -1;
}
bool empty(int qidx)
{
std::lock_guard<std::mutex> lck(mutex);
return queues[qidx].empty();
}
size_t size(int qidx)
{
std::lock_guard<std::mutex> lck(mutex);
return queues[qidx].size();
}
size_t max_size(int qidx)
{
std::lock_guard<std::mutex> lck(mutex);
return queues[qidx].capacity();
}
const myobj& front(int qidx)
{
std::lock_guard<std::mutex> lck(mutex);
return queues[qidx].front();
}
void erase_queue(int qidx)
{
std::lock_guard<std::mutex> lck(mutex);
if (is_queue_active_(qidx)) {
queues[qidx].active = false;
while (not queues[qidx].empty()) {
queues[qidx].pop();
}
}
}
bool is_queue_active(int qidx)
{
std::lock_guard<std::mutex> lck(mutex);
return is_queue_active_(qidx);
}
queue_handle get_queue_handler() { return {this, add_queue()}; }
queue_handle get_queue_handler(uint32_t size) { return {this, add_queue(size)}; }
private:
bool is_queue_active_(int qidx) const { return running and queues[qidx].active; }
bool round_robin_pop_(myobj* value)
{
// Round-robin for all queues
for (const circular_buffer& q : queues) {
spin_idx = (spin_idx + 1) % queues.size();
if (is_queue_active_(spin_idx) and not queues[spin_idx].empty()) {
if (value) {
*value = std::move(queues[spin_idx].front());
}
queues[spin_idx].pop();
return true;
}
}
return false;
}
std::mutex mutex;
std::condition_variable cv_empty, cv_exit;
uint32_t spin_idx = 0;
bool running = true;
std::vector<circular_buffer> queues;
uint32_t capacity = 0;
uint32_t nof_threads_waiting = 0;
};
//! Specialization for tasks
using task_multiqueue = multiqueue_handler<move_task_t>;
using task_queue_handle = task_multiqueue::queue_handle;
} // namespace srslte
#endif // SRSLTE_MULTIQUEUE_H