srsLTE/matlab/tests/equalizer_test.m

225 lines
6.7 KiB
Matlab

%% LTE Downlink Channel Estimation and Equalization
%% Cell-Wide Settings
clear
plot_noise_estimation_only=false;
SNR_values_db=10;%linspace(0,30,8);
Nrealizations=1 ;
preEVM = zeros(length(SNR_values_db),Nrealizations);
postEVM_mmse = zeros(length(SNR_values_db),Nrealizations);
postEVM_mmse_lin = zeros(length(SNR_values_db),Nrealizations);
postEVM_srslte = zeros(length(SNR_values_db),Nrealizations);
enb.NDLRB = 6; % Number of resource blocks
enb.CellRefP = 1; % One transmit antenna port
enb.NCellID = 0; % Cell ID
enb.CyclicPrefix = 'Normal'; % Normal cyclic prefix
enb.DuplexMode = 'FDD'; % FDD
%% Channel Model Configuration
rng(1); % Configure random number generators
cfg.Seed = 2; % Random channel seed
cfg.NRxAnts = 2; % 1 receive antenna
cfg.DelayProfile = 'EVA'; % EVA delay spread
cfg.DopplerFreq = 120; % 120Hz Doppler frequency
cfg.MIMOCorrelation = 'Low'; % Low (no) MIMO correlation
cfg.InitTime = 0; % Initialize at time zero
cfg.NTerms = 16; % Oscillators used in fading model
cfg.ModelType = 'GMEDS'; % Rayleigh fading model type
cfg.InitPhase = 'Random'; % Random initial phases
cfg.NormalizePathGains = 'On'; % Normalize delay profile power
cfg.NormalizeTxAnts = 'On'; % Normalize for transmit antennas
%% Channel Estimator Configuration
cec = struct; % Channel estimation config structure
cec.PilotAverage = 'UserDefined'; % Type of pilot symbol averaging
cec.FreqWindow = 9; % Frequency window size
cec.TimeWindow = 9; % Time window size
cec.InterpType = 'Linear'; % 2D interpolation type
cec.InterpWindow = 'Centered'; % Interpolation window type
cec.InterpWinSize = 1; % Interpolation window size
%% Subframe Resource Grid Size
gridsize = lteDLResourceGridSize(enb);
K = gridsize(1); % Number of subcarriers
L = gridsize(2); % Number of OFDM symbols in one subframe
P = gridsize(3); % Number of transmit antenna ports
for nreal=1:Nrealizations
%% Transmit Resource Grid
txGrid = [];
RSRP = [];
%% Payload Data Generation
% Number of bits needed is size of resource grid (K*L*P) * number of bits
% per symbol (2 for QPSK)
numberOfBits = K*L*P*2;
% Create random bit stream
inputBits = randi([0 1], numberOfBits, 1);
% Modulate input bits
inputSym = lteSymbolModulate(inputBits,'QPSK');
%% Frame Generation
% For all subframes within the frame
for sf = 0:10
% Set subframe number
enb.NSubframe = mod(sf,10);
% Generate empty subframe
subframe = lteDLResourceGrid(enb);
% Map input symbols to grid
subframe(:) = inputSym;
% Generate synchronizing signals
pssSym = ltePSS(enb);
sssSym = lteSSS(enb);
pssInd = ltePSSIndices(enb);
sssInd = lteSSSIndices(enb);
% Map synchronizing signals to the grid
subframe(pssInd) = pssSym;
subframe(sssInd) = sssSym;
% Generate cell specific reference signal symbols and indices
cellRsSym = lteCellRS(enb);
cellRsInd = lteCellRSIndices(enb);
% Map cell specific reference signal to grid
subframe(cellRsInd) = cellRsSym;
% Append subframe to grid to be transmitted
txGrid = [txGrid subframe]; %#ok
end
txGrid([1:5 68:72],6:7) = zeros(10,2);
%% OFDM Modulation
[txWaveform,info] = lteOFDMModulate(enb,txGrid);
txGrid = txGrid(:,1:140);
%% SNR Configuration
for snr_idx=1:length(SNR_values_db)
SNRdB = SNR_values_db(snr_idx); % Desired SNR in dB
SNR = 10^(SNRdB/20); % Linear SNR
%% Fading Channel
cfg.SamplingRate = info.SamplingRate;
% Pass data through the fading channel model
%rxWaveform = lteFadingChannel(cfg,txWaveform);
rxWaveform = txWaveform;
%% Additive Noise
% Calculate noise gain
N0 = 1/(sqrt(2.0*enb.CellRefP*double(info.Nfft))*SNR);
% Create additive white Gaussian noise
noise = N0*complex(randn(size(rxWaveform)),randn(size(rxWaveform)));
noiseTx(snr_idx) = N0;
% Add noise to the received time domain waveform
rxWaveform = rxWaveform + noise;
%% Synchronization
offset = lteDLFrameOffset(enb,rxWaveform);
rxWaveform = rxWaveform(1+offset+2:end,:);
%% OFDM Demodulation
rxGrid = lteOFDMDemodulate(enb,rxWaveform);
rxGrid = rxGrid(:,1:140);
addpath('../../build/srslte/lib/ch_estimation/test')
%% Channel Estimation
[estChannel, noiseEst(snr_idx)] = lteDLChannelEstimate(enb,cec,rxGrid);
output=[];
snrest_srslte = zeros(10,1);
noise_srslte = zeros(10,1);
rsrp = zeros(1,10);
[d, ~, out] = srslte_chest(enb.NCellID,enb.CellRefP,rxGrid);
output = [output out];
%RSRP = [RSRP rsrp];
%meanRSRP(snr_idx)=mean(rsrp);
%SNR_srslte(snr_idx)=mean(snrest_srslte);
%noiseEst_srslte(snr_idx)=mean(noise_srslte);
d=reshape(d, size(estChannel));
plot(1:288,real(reshape(estChannel(:,11:14),1,[])),'b-',...
1:288,real(reshape(d(:,11:14),1,[])),'r-')
% if ~plot_noise_estimation_only
%
% %% MMSE Equalization
% eqGrid_mmse = lteEqualizeMMSE(rxGrid, estChannel, noiseEst(snr_idx));
%
% eqGrid_srslte = reshape(output,size(eqGrid_mmse));
%
% % Analysis
%
% %Compute EVM across all input values EVM of pre-equalized receive signal
% preEqualisedEVM = lteEVM(txGrid,rxGrid);
% fprintf('%d-%d: Pre-EQ: %0.3f%%\n', ...
% snr_idx,nreal,preEqualisedEVM.RMS*100);
%
%
% %EVM of post-equalized receive signal
% postEqualisedEVM_mmse = lteEVM(txGrid,reshape(eqGrid_mmse,size(txGrid)));
% fprintf('%d-%d: MMSE: %0.3f%%\n', ...
% snr_idx,nreal,postEqualisedEVM_mmse.RMS*100);
%
% postEqualisedEVM_srslte = lteEVM(txGrid,reshape(eqGrid_srslte,size(txGrid)));
% fprintf('%d-%d: srslte: %0.3f%%\n', ...
% snr_idx,nreal,postEqualisedEVM_srslte.RMS*100);
%
% preEVM(snr_idx,nreal) = preEqualisedEVM.RMS;
% postEVM_mmse(snr_idx,nreal) = mean([postEqualisedEVM_mmse.RMS]);
% postEVM_srslte(snr_idx,nreal) = mean([postEqualisedEVM_srslte.RMS]);
% end
end
end
%
% % subplot(1,2,1)
%
% if ~plot_noise_estimation_only
% plot(SNR_values_db, mean(preEVM,2), ...
% SNR_values_db, mean(postEVM_mmse,2), ...
% SNR_values_db, mean(postEVM_srslte,2))
% legend('No Eq','MMSE-lin','MMSE-srslte')
% grid on
% end
%
% % subplot(1,2,2)
% if plot_noise_estimation_only
% SNR_matlab = 1./(noiseEst*sqrt(2.0)*enb.CellRefP);
%
% subplot(1,3,1)
% plot(SNR_values_db, SNR_values_db, SNR_values_db, 10*log10(SNR_srslte),SNR_values_db, 10*log10(SNR_matlab))
% legend('Theory','srsLTE','Matlab')
%
% subplot(1,3,2)
% plot(SNR_values_db, 10*log10(noiseTx), SNR_values_db, 10*log10(noiseEst_srslte),SNR_values_db, 10*log10(noiseEst))
% legend('Theory','srsLTE','Matlab')
%
% subplot(1,3,3)
% plot(1:10*length(SNR_values_db),RSRP,10*(1:length(SNR_values_db)),meanRSRP)
% end