use crate::*; use proc_macro2_diagnostics::SpanDiagnosticExt; use quote::quote; use syn::Expr; pub fn generate(f: &Field) -> proc_macro2::TokenStream { let constraints = linearize(&f.constraints); let rent = constraints .iter() .any(|c| matches!(c, Constraint::RentExempt(ConstraintRentExempt::Enforce))) .then(|| quote! { let __anchor_rent = Rent::get()?; }) .unwrap_or_else(|| quote! {}); let checks: Vec = constraints .iter() .map(|c| generate_constraint(f, c)) .collect(); quote! { #rent #(#checks)* } } pub fn generate_composite(f: &CompositeField) -> proc_macro2::TokenStream { let checks: Vec = linearize(&f.constraints) .iter() .filter_map(|c| match c { Constraint::Raw(_) => Some(c), Constraint::Literal(_) => Some(c), _ => panic!("Invariant violation: composite constraints can only be raw or literals"), }) .map(|c| generate_constraint_composite(f, c)) .collect(); quote! { #(#checks)* } } // Linearizes the constraint group so that constraints with dependencies // run after those without. pub fn linearize(c_group: &ConstraintGroup) -> Vec { let ConstraintGroup { init, zeroed, mutable, signer, has_one, literal, raw, owner, rent_exempt, seeds, executable, state, close, address, } = c_group.clone(); let mut constraints = Vec::new(); if let Some(c) = zeroed { constraints.push(Constraint::Zeroed(c)); } if let Some(c) = init { constraints.push(Constraint::Init(c)); } if let Some(c) = seeds { constraints.push(Constraint::Seeds(c)); } if let Some(c) = mutable { constraints.push(Constraint::Mut(c)); } if let Some(c) = signer { constraints.push(Constraint::Signer(c)); } constraints.append(&mut has_one.into_iter().map(Constraint::HasOne).collect()); constraints.append(&mut literal.into_iter().map(Constraint::Literal).collect()); constraints.append(&mut raw.into_iter().map(Constraint::Raw).collect()); if let Some(c) = owner { constraints.push(Constraint::Owner(c)); } if let Some(c) = rent_exempt { constraints.push(Constraint::RentExempt(c)); } if let Some(c) = executable { constraints.push(Constraint::Executable(c)); } if let Some(c) = state { constraints.push(Constraint::State(c)); } if let Some(c) = close { constraints.push(Constraint::Close(c)); } if let Some(c) = address { constraints.push(Constraint::Address(c)); } constraints } fn generate_constraint(f: &Field, c: &Constraint) -> proc_macro2::TokenStream { match c { Constraint::Init(c) => generate_constraint_init(f, c), Constraint::Zeroed(c) => generate_constraint_zeroed(f, c), Constraint::Mut(c) => generate_constraint_mut(f, c), Constraint::HasOne(c) => generate_constraint_has_one(f, c), Constraint::Signer(c) => generate_constraint_signer(f, c), Constraint::Literal(c) => generate_constraint_literal(c), Constraint::Raw(c) => generate_constraint_raw(c), Constraint::Owner(c) => generate_constraint_owner(f, c), Constraint::RentExempt(c) => generate_constraint_rent_exempt(f, c), Constraint::Seeds(c) => generate_constraint_seeds(f, c), Constraint::Executable(c) => generate_constraint_executable(f, c), Constraint::State(c) => generate_constraint_state(f, c), Constraint::Close(c) => generate_constraint_close(f, c), Constraint::Address(c) => generate_constraint_address(f, c), } } fn generate_constraint_composite(_f: &CompositeField, c: &Constraint) -> proc_macro2::TokenStream { match c { Constraint::Raw(c) => generate_constraint_raw(c), Constraint::Literal(c) => generate_constraint_literal(c), _ => panic!("Invariant violation"), } } fn generate_constraint_address(f: &Field, c: &ConstraintAddress) -> proc_macro2::TokenStream { let field = &f.ident; let addr = &c.address; quote! { if #field.to_account_info().key != &#addr { return Err(anchor_lang::__private::ErrorCode::ConstraintAddress.into()); } } } pub fn generate_constraint_init(f: &Field, c: &ConstraintInitGroup) -> proc_macro2::TokenStream { generate_constraint_init_group(f, c) } pub fn generate_constraint_zeroed(f: &Field, _c: &ConstraintZeroed) -> proc_macro2::TokenStream { let field = &f.ident; let ty_decl = f.ty_decl(); let from_account_info = f.from_account_info(None); quote! { let #field: #ty_decl = { let mut __data: &[u8] = &#field.try_borrow_data()?; let mut __disc_bytes = [0u8; 8]; __disc_bytes.copy_from_slice(&__data[..8]); let __discriminator = u64::from_le_bytes(__disc_bytes); if __discriminator != 0 { return Err(anchor_lang::__private::ErrorCode::ConstraintZero.into()); } #from_account_info }; } } pub fn generate_constraint_close(f: &Field, c: &ConstraintClose) -> proc_macro2::TokenStream { let field = &f.ident; let target = &c.sol_dest; quote! { if #field.to_account_info().key == #target.to_account_info().key { return Err(anchor_lang::__private::ErrorCode::ConstraintClose.into()); } } } pub fn generate_constraint_mut(f: &Field, _c: &ConstraintMut) -> proc_macro2::TokenStream { let ident = &f.ident; quote! { if !#ident.to_account_info().is_writable { return Err(anchor_lang::__private::ErrorCode::ConstraintMut.into()); } } } pub fn generate_constraint_has_one(f: &Field, c: &ConstraintHasOne) -> proc_macro2::TokenStream { let target = c.join_target.clone(); let ident = &f.ident; let field = match &f.ty { Ty::Loader(_) => quote! {#ident.load()?}, _ => quote! {#ident}, }; quote! { if &#field.#target != #target.to_account_info().key { return Err(anchor_lang::__private::ErrorCode::ConstraintHasOne.into()); } } } pub fn generate_constraint_signer(f: &Field, _c: &ConstraintSigner) -> proc_macro2::TokenStream { let ident = &f.ident; let info = match f.ty { Ty::AccountInfo => quote! { #ident }, Ty::ProgramAccount(_) => quote! { #ident.to_account_info() }, Ty::Account(_) => quote! { #ident.to_account_info() }, Ty::Loader(_) => quote! { #ident.to_account_info() }, Ty::CpiAccount(_) => quote! { #ident.to_account_info() }, _ => panic!("Invalid syntax: signer cannot be specified."), }; quote! { // Don't enforce on CPI, since usually a program is signing and so // the `try_accounts` deserializatoin will fail *if* the one // tries to manually invoke it. // // This check will be performed on the other end of the invocation. if cfg!(not(feature = "cpi")) { if !#info.to_account_info().is_signer { return Err(anchor_lang::__private::ErrorCode::ConstraintSigner.into()); } } } } pub fn generate_constraint_literal(c: &ConstraintLiteral) -> proc_macro2::TokenStream { let lit: proc_macro2::TokenStream = { let lit = &c.lit; let constraint = lit.value().replace("\"", ""); let message = format!( "Deprecated. Should be used with constraint: #[account(constraint = {})]", constraint, ); lit.span().warning(message).emit_as_item_tokens(); constraint.parse().unwrap() }; quote! { if !(#lit) { return Err(anchor_lang::__private::ErrorCode::Deprecated.into()); } } } pub fn generate_constraint_raw(c: &ConstraintRaw) -> proc_macro2::TokenStream { let raw = &c.raw; quote! { if !(#raw) { return Err(anchor_lang::__private::ErrorCode::ConstraintRaw.into()); } } } pub fn generate_constraint_owner(f: &Field, c: &ConstraintOwner) -> proc_macro2::TokenStream { let ident = &f.ident; let owner_target = c.owner_target.clone(); quote! { if #ident.to_account_info().owner != #owner_target.to_account_info().key { return Err(anchor_lang::__private::ErrorCode::ConstraintOwner.into()); } } } pub fn generate_constraint_rent_exempt( f: &Field, c: &ConstraintRentExempt, ) -> proc_macro2::TokenStream { let ident = &f.ident; let info = quote! { #ident.to_account_info() }; match c { ConstraintRentExempt::Skip => quote! {}, ConstraintRentExempt::Enforce => quote! { if !__anchor_rent.is_exempt(#info.lamports(), #info.try_data_len()?) { return Err(anchor_lang::__private::ErrorCode::ConstraintRentExempt.into()); } }, } } fn generate_constraint_init_group(f: &Field, c: &ConstraintInitGroup) -> proc_macro2::TokenStream { let payer = { let p = &c.payer; quote! { let payer = #p.to_account_info(); } }; let seeds_with_nonce = match &c.seeds { None => quote! {}, Some(c) => { let s = &c.seeds; let inner = match c.bump.as_ref() { // Bump target not given. Use the canonical bump. None => { quote! { [ #s, &[ Pubkey::find_program_address( &[#s], program_id, ).1 ] ] } } // Bump target given. Use it. Some(b) => quote! { [#s, &[#b]] }, }; quote! { &#inner[..] } } }; generate_init(f, seeds_with_nonce, payer, &c.space, &c.kind) } fn generate_constraint_seeds(f: &Field, c: &ConstraintSeedsGroup) -> proc_macro2::TokenStream { let name = &f.ident; let s = &c.seeds; // If the bump is provided with init *and target*, then force it to be the // canonical bump. if c.is_init && c.bump.is_some() { let b = c.bump.as_ref().unwrap(); quote! { let (__program_signer, __bump) = anchor_lang::solana_program::pubkey::Pubkey::find_program_address( &[#s], program_id, ); if #name.to_account_info().key != &__program_signer { return Err(anchor_lang::__private::ErrorCode::ConstraintSeeds.into()); } if __bump != #b { return Err(anchor_lang::__private::ErrorCode::ConstraintSeeds.into()); } } } else { let seeds = match c.bump.as_ref() { // Bump target not given. Find it. None => { quote! { [ #s, &[ Pubkey::find_program_address( &[#s], program_id, ).1 ] ] } } // Bump target given. Use it. Some(b) => { quote! { [#s, &[#b]] } } }; quote! { let __program_signer = Pubkey::create_program_address( &#seeds[..], program_id, ).map_err(|_| anchor_lang::__private::ErrorCode::ConstraintSeeds)?; if #name.to_account_info().key != &__program_signer { return Err(anchor_lang::__private::ErrorCode::ConstraintSeeds.into()); } } } } pub fn generate_init( f: &Field, seeds_with_nonce: proc_macro2::TokenStream, payer: proc_macro2::TokenStream, space: &Option, kind: &InitKind, ) -> proc_macro2::TokenStream { let field = &f.ident; let ty_decl = f.ty_decl(); let from_account_info = f.from_account_info(Some(kind)); match kind { InitKind::Token { owner, mint } => { let create_account = generate_create_account( field, quote! {anchor_spl::token::TokenAccount::LEN}, quote! {token_program.to_account_info().key}, seeds_with_nonce, ); quote! { let #field: #ty_decl = { // Define payer variable. #payer // Create the account with the system program. #create_account // Initialize the token account. let cpi_program = token_program.to_account_info(); let accounts = anchor_spl::token::InitializeAccount { account: #field.to_account_info(), mint: #mint.to_account_info(), authority: #owner.to_account_info(), rent: rent.to_account_info(), }; let cpi_ctx = CpiContext::new(cpi_program, accounts); anchor_spl::token::initialize_account(cpi_ctx)?; let mut pa: #ty_decl = #from_account_info; pa }; } } InitKind::Mint { owner, decimals } => { let create_account = generate_create_account( field, quote! {anchor_spl::token::Mint::LEN}, quote! {token_program.to_account_info().key}, seeds_with_nonce, ); quote! { let #field: #ty_decl = { // Define payer variable. #payer // Create the account with the system program. #create_account // Initialize the mint account. let cpi_program = token_program.to_account_info(); let accounts = anchor_spl::token::InitializeMint { mint: #field.to_account_info(), rent: rent.to_account_info(), }; let cpi_ctx = CpiContext::new(cpi_program, accounts); anchor_spl::token::initialize_mint(cpi_ctx, #decimals, &#owner.to_account_info().key, None)?; let mut pa: #ty_decl = #from_account_info; pa }; } } InitKind::Program { owner } => { let space = match space { // If no explicit space param was given, serialize the type to bytes // and take the length (with +8 for the discriminator.) None => { let account_ty = f.account_ty(); match matches!(f.ty, Ty::Loader(_)) { false => { quote! { let space = 8 + #account_ty::default().try_to_vec().unwrap().len(); } } true => { quote! { let space = 8 + anchor_lang::__private::bytemuck::bytes_of(&#account_ty::default()).len(); } } } } // Explicit account size given. Use it. Some(s) => quote! { let space = #s; }, }; // Owner of the account being created. If not specified, // default to the currently executing program. let owner = match owner { None => quote! { program_id }, Some(o) => quote! { &#o }, }; let create_account = generate_create_account(field, quote! {space}, owner, seeds_with_nonce); quote! { let #field = { #space #payer #create_account let mut pa: #ty_decl = #from_account_info; pa }; } } } } // Generated code to create an account with with system program with the // given `space` amount of data, owned by `owner`. // // `seeds_with_nonce` should be given for creating PDAs. Otherwise it's an // empty stream. pub fn generate_create_account( field: &Ident, space: proc_macro2::TokenStream, owner: proc_macro2::TokenStream, seeds_with_nonce: proc_macro2::TokenStream, ) -> proc_macro2::TokenStream { quote! { // If the account being initialized already has lamports, then // return them all back to the payer so that the account has // zero lamports when the system program's create instruction // is eventually called. let __current_lamports = #field.to_account_info().lamports(); if __current_lamports == 0 { // Create the token account with right amount of lamports and space, and the correct owner. let lamports = __anchor_rent.minimum_balance(#space); anchor_lang::solana_program::program::invoke_signed( &anchor_lang::solana_program::system_instruction::create_account( payer.to_account_info().key, #field.to_account_info().key, lamports, #space as u64, #owner, ), &[ payer.to_account_info(), #field.to_account_info(), system_program.to_account_info().clone(), ], &[#seeds_with_nonce], )?; } else { // Fund the account for rent exemption. let required_lamports = __anchor_rent .minimum_balance(#space) .max(1) .saturating_sub(__current_lamports); if required_lamports > 0 { anchor_lang::solana_program::program::invoke( &anchor_lang::solana_program::system_instruction::transfer( payer.to_account_info().key, #field.to_account_info().key, required_lamports, ), &[ payer.to_account_info(), #field.to_account_info(), system_program.to_account_info().clone(), ], )?; } // Allocate space. anchor_lang::solana_program::program::invoke_signed( &anchor_lang::solana_program::system_instruction::allocate( #field.to_account_info().key, #space as u64, ), &[ #field.to_account_info(), system_program.clone(), ], &[#seeds_with_nonce], )?; // Assign to the spl token program. anchor_lang::solana_program::program::invoke_signed( &anchor_lang::solana_program::system_instruction::assign( #field.to_account_info().key, #owner, ), &[ #field.to_account_info(), system_program.to_account_info(), ], &[#seeds_with_nonce], )?; } } } pub fn generate_constraint_executable( f: &Field, _c: &ConstraintExecutable, ) -> proc_macro2::TokenStream { let name = &f.ident; quote! { if !#name.to_account_info().executable { return Err(anchor_lang::__private::ErrorCode::ConstraintExecutable.into()); } } } pub fn generate_constraint_state(f: &Field, c: &ConstraintState) -> proc_macro2::TokenStream { let program_target = c.program_target.clone(); let ident = &f.ident; let account_ty = match &f.ty { Ty::CpiState(ty) => &ty.account_type_path, _ => panic!("Invalid state constraint"), }; quote! { // Checks the given state account is the canonical state account for // the target program. if #ident.to_account_info().key != &anchor_lang::CpiState::<#account_ty>::address(#program_target.to_account_info().key) { return Err(anchor_lang::__private::ErrorCode::ConstraintState.into()); } if #ident.to_account_info().owner != #program_target.to_account_info().key { return Err(anchor_lang::__private::ErrorCode::ConstraintState.into()); } } }