
Ciphertext Validity Argument

1 Preliminaries

Basic notation. For two integers n < m, we write [n,m] to denote the set {n, n+1, . . . ,m}. When
n = 1, we simply write [m] to denote the set {1, . . . ,m}. For any finite set S, we use x ←R S to
denote the process of sampling an element x ∈ S uniformly at random. Unless specified otherwise,
we use λ to denote the security parameter. We say that an algorithm is efficient if it runs in
probabilistic polynomial time in the length of its input. We say that a function f : N → N is
negligible if f = o(1/nc) for any positive integer c ∈ N. Throughout the exposition, we use poly(·)
and negl(·) to denote any polynomial and negligible functions respectively.

1.1 Discrete Log Relation Assumption

The discrete log relation assumption states that given a number of random group elements in G, no
efficient adversary can find a non-trivial relation on these elements.

Definition 1.1 (Discrete Log Relation). Let G = G(λ) be a group of prime order p. Then the
discrete log relation assumption on G states that for any efficient adversary A and n ≥ 2, there
exists a negligible function negl(λ) such that

Pr
[
A(G1, . . . , Gn)→ a1, . . . , an ∈ Zp : ∃ ai ̸= 0 ∧

∑
i∈[n]

ai ·G = 0
]
= negl(λ),

where G1, . . . , Gn ←R G.

1.2 Rewinding Lemma

To prove security, we make use of the rewinding lemma. For the purpose of this document, we do
not require the rewinding lemma in its full generality and therefore, we rely on the following simple
variant from the work of Boneh et al. [1].

Lemma 1.2 (Rewinding Lemma). Let S, R, and T be finite, non-empty sets, and let X, Y , Y ′, Z,
and Z ′ be mutually independent random variables such that

• X takes values in the set S,
• Y and Y ′ are each uniformly distributed over R,
• Z and Z ′ take values in the set T .

Then for any function f : S ×R× T → {0, 1}, we have

Pr
[
f(X,Y, Z) = 1 ∧ f(X,Y ′, Z ′) = 1 ∧ Y ̸= Y ′] ≥ ε2 − ε/N,

where ε = Pr[f(X,Y, Z) = 1] and N = |R|.

1

2 Zero-Knowledge Argument Definitions

In full generality, zero-knowledge argument systems can be defined with respect to any class of
decidable languages. However, to simplify the presentation, we define argument systems with
respect to CRS-dependent languages. Specifically, let R ⊂ {0, 1}∗×{0, 1}∗×{0, 1}∗ be an efficiently
decidable ternary relation. Then a CRS-dependent language for a string ρ ∈ {0, 1}∗ is defined as

Lρ = {u | ∃ w : (ρ, u, w) ∈ R}.

We generally refer to ρ as the common reference string, u as the instance of the langauge, and w as
the witness for u.

For a class of CRS-dependent languages, an argument system consists of the following algorithms.

Definition 2.1 (Argument System). A non-interactive argument system ΠAS for a CRS-dependent
relation R consists of a tuple of efficient algorithms (Setup,Prove,Verify) with the following syntax:

• Setup(1λ)→ ρ: On input the security parameter λ, the setup algorithm returns a common
reference string ρ.

• P(σ, u, w): The prover P is an interactive algorithm that takes in as input a common reference
string σ, instance u, and witness w. It interacts with the verifier V according to the specification
of the protocol.

• V(σ, u): The verifier V is an interactive algorithm that takes in as input a common reference
string ρ and an instance x. It interacts with the prover P in the protocol and in the end, it
either accepts (returns 1) or rejects (returns 0) the instance x.

We use
〈
P(ρ, u, w),V(ρ, u)

〉
= 1 to denote the event that the verifier V accepts the instance of the

protocol. We use
〈
P(ρ, u, w),V(ρ, u)

〉
→ tr to denote the communication transacript between the

prover P and verifier V during a specific execution of the protocol.

An argument system must satisfy a correctness and two security properties. The correctness property
of an argument system is generally referred to as completeness. It states that if the prover P takes
in as input a valid instance-witness tuple (ρ, u, w) ∈ R and follows the protocol specification, then
it must be able to convince the verifier to accept.

Definition 2.2 (Completeness). Let ΠAS be a proof system for a relation R. Then we say that
ΠAS satisfies perfect completeness if for any (u,w) ∈ R, we have

Pr
[〈
P(ρ, u, w),V(ρ, u)

〉
= 1

]
= 1,

where ρ← Setup(1λ).

The first security property that an argument system must satisfy is soundness, which can be defined
in a number of ways. In this work, we work with computational witness-extended emulation as
presented in Bulletproofs [2].

Definition 2.3 (Soundness [3, 4, 2]). Let ΠAS be a proof system for a relation R. Then we say
that ΠAS satisfies witness-extended emulation soundness if for all deterministic polynomial time P∗,

2

there exists an efficient emulator E such that for all efficient adversaries A = (A1,A2), there exists
a negligible function negl(λ) such that∣∣∣∣∣∣∣∣∣∣

Pr

[
A2(tr) = 1

∣∣∣∣ ρ← Setup(1λ), (u, st)← A1(ρ),
tr←

〈
P∗(ρ, u, st),V(ρ, u)

〉]
−

Pr

A2(tr) = 1 ∧ (tr accepting ⇒ (ρ, u, w) ∈ R)

∣∣∣∣∣∣
ρ← Setup(1λ),
(u, st)← A1(ρ),
(tr, w)← EO(ρ, u)


∣∣∣∣∣∣∣∣∣∣
= negl(λ),

where the oracle is defined as O =
〈
P∗(ρ, u, st),V(ρ, u)

〉
. The oracle O allows the emulator E to

rewind the protocol to a specific point and resume the protocol after reprogramming the verifier
with fresh randomness.

Traditionally, the soundness condition for an argument system of knowledge requires that there
exists an extractor that can use its rewinding capability to extract a valid witness from any accepting
transcript of the protocol that is produced by a dishonest prover P∗. The witness-extended emulation
strengthens this traditional definition by requiring that the extractor (emulator) not only successfully
extracts a valid witness, but also produces (emulates) a valid transcript of the protocol for which
the verifier accepts. The value st in the definition above can be viewed as the internal state of P∗,
which can also be its randomness.

The second security property that we require from an argument system is the zero-knowledge
property. All argument systems that we rely on in the ZK-Token program are public coin protocols
that we ultimately convert into a non-interactive protocol. Therefore, we rely on the standard
zero-knowledge property against honest verifiers.

Definition 2.4 (Zero-Knowledge). Let ΠAS be a proof system for a relation R. Then we say that
ΠAS satisfies honest verifier zero-knowledge if there exists an efficient simulator S such that for all
efficient adversaries A = (A1,A2), we have

Pr

[
(ρ, u, w) ∈ R ∧A1(tr) = 1

∣∣∣∣ ρ← Setup(1λ), (u,w, τ)← A2(ρ),
tr←

〈
P(ρ, u, w),V(ρ, u; τ)

〉]

= Pr

(ρ, u, w) ∈ R ∧A1(tr) = 1

∣∣∣∣∣∣
ρ← Setup(1λ),

(u,w, τ)← A2(ρ),
tr← S(u, τ)

 ,

where ρ is the public coin randomness used by the verifier.

3 Ciphertext Validity Argument

At the start of a ciphertext valdity argument protocol, the prover and verifier have access to two joint
ciphertexts ctlo = (Clo, Dlo,1, Dlo,2) and cthi = (Chi, Dhi,1, Dhi,2). The prover’s goal in the protocol
is to convince the verifier that it knows valid randomness and message pairs (rlo, xlo) and (rhi, xhi)
that each guarantee the validity of (Clo, Dlo,1, Dlo,2) and cthi = (Chi, Dhi,1, Dhi,2). Formally, the
ciphertext-validity protocol captures the following language:

3

Lct-validityG,H =


u = (P1, P2, Clo, Dlo,1, Dlo,2, Chi, Dhi,1, Dhi,2) ∈ G8,

w = (rlo, xlo, rhi, xhi) ∈ Z4
p

∣∣∣∣∣∣∣∣∣∣∣∣

Clo = rlo ·H + xlo ·G
Chi = rhi ·H + xhi ·G

Dlo,1 = rlo · P1

Dlo,2 = rlo · P2

Dhi,1 = rhi · P1

Dhi,2 = rhi · P2


.

The formal specification of the protocol is given as follows:

Prover(x,w) Verifier(x)

w ←R Zp

t

r ← rlo + t · rhi
x← xhi + t · xhi

yr ←R Zp

yx ←R Zp

Y0 ← yr ·H + yx ·G
Y1 ← yr · P1

Y2 ← yr · P2

Y0, Y1, Y2

c←R Zp

c

zr ← c · r + yr

zx ← c · x+ yx

zr, zx

C ← Clo + t · Chi

D1 ← Dlo,1 + t ·Dhi,1

D2 ← Dlo,2 + t ·Dhi,2

zr ·H + zx ·G
?
= c · C + Y0

zr · P1
?
= c ·D1 + Y1

zr · P2
?
= c ·D2 + Y2

At the start of the protocol, the verifier sends the prover a challenge value t ←R Zp. The prover
uses t to combine its witnesses r ← rlo + t · rhi and x← xhi + t · xhi. At this point of the protocol,

4

the prover and the verifier proceeds in a standard sigma protocol where the prover samples random
scalar elements yr, yx and commits to them by sending Y0 = yr · H + yx · G, Y1 = yr · P1, and
Y2 = yr · P2 to the verifier. Upon receiving another challenge c, it provides the verifier with the
masked randomness and message zr = c · r + yr and zx = c · x+ yx. Finally, the verifier tests the
relations zr ·H + zx ·G = c · C + Y0, zr · P1 = c ·D1 + Y1, and zr · P2 = c ·D2 + Y2.

The ciphertext validity argument above satisfies all the correctness and security properties that
are specified in Section 2. We formally state these properties in the following theorems.

Theorem 3.1 (Completeness). The ciphertext validity argument satisfies completeness 2.2.

Theorem 3.2 (Soundness). Suppose that G is a prime order group for which the discrete log relation
assumption (Definition 1.1) holds. Then the ciphertext valdity argument satisfies witness-extended
emulation soundness 2.3.

Theorem 3.3 (Zero-Knowledge). The ciphertext validity argument satisfies perfect honest verifier
zero-knowledge 2.4.

We provide the formal proofs for these theorems in Section ??.

4 Proof of Security

4.0.1 Proof of Theorem 3.1

To prove completeness, let us fix any valid instance and witness for Lct−validity
G,H : P1, P2, Clo, Dlo,1,

Dlo,2, Chi, Dhi,1, Dhi,2 ∈ G and rlo, xlo, rhi, xhi ∈ Zp such that

• Clo = rlo ·H + xlo ·G,
• Chi = rhi ·H + xhi ·G,
• Dlo,1 = rlo · P1,
• Dlo,2 = rlo · P2,
• Dhi,1 = rhi · P1.
• Dhi,2 = rhi · P2.

Let t, yr, yx, zr, zx be any elements in Zp and let

• Y0 = yr ·H + yx ·G,
• Y1 = yr · P1,
• Y2 = yr · P2,
• zr = c · r + yr,
• zx = c · x+ yx,

in an execution of the protocol. Then we have

zr ·H + zx ·G = (c · r + yr) ·H + (c · x+ yx) ·G
= c · (r ·H + x ·G) + (yr ·H + yx ·G)

= c ·
(
(rlo + t · rhi) ·H + (xlo + t · xhi) ·G

)
+ Y0

= c ·
(
Clo + t · Chi

)
= c · C + Y0

5

zr · P1 = (c · r + yr) · P1

= c · (r · P1) + yr · P1

= c ·
(
(rlo + t · rhi) · P1

)
+ yr · P1

= c · (Dlo,1 + t ·Dhi,1) + Y1

= c ·D1 + Y1

zr · P2 = (c · r + yr) · P2

= c · (r · P2) + yr · P2

= c ·
(
(rlo + t · rhi) · P2

)
+ yr · P2

= c · (Dlo,2 + t ·Dhi,2) + Y2

= c ·D2 + Y2

As all of the algebraic relations that the verifier checks at the end of the protocol hold, the proof is
always accepted. Completeness follows.

4.0.2 Proof of Theorem 3.2

To prove soundness, we construct an emulator E that has oracle access to any malicious prover P∗

and extracts a valid witness by rewinding P∗ and simulating four executions of the zero-balance
protocol with an honest verifier V.

Let (P,Clo, Dlo,1, Dlo,2, Chi, Dhi,1, Dhi,2) be an instance of the language Lct−validity
G,H . We construct

an emulator E that uses P∗ to extract a valid witness. The emulator E rewinds the protocol at
different stages. To simplify the presentation, we define a sub-emulator Einner that E uses as a
subroutine to extract a valid witness. The sub-emulator Einner works as follows:

• The emulator Einner first executes
〈
P∗(ρ, u, st),V(ρ, u)

〉
to produce a transcript tr = (w, Y0,

Y1, Y2, c, zr, zx).

• Then, it rewinds the protocol to the point where the verifier V samples a random c←R Zp. It
programs V with fresh randomness such that V generates a new c′ ← Zp independently of the
previous execution of the protocol.

• The emulator completes the second execution of
〈
P∗(ρ, u, st),V(ρ, u)

〉
, producing a new

transcript tr = (t, Y0, Y1, c
′, z′r, z

′
x).

• If c− c′ = 0, then the emulator aborts and returns ⊥. Otherwise, it computes

– r ← (zr − z′r)/(c− c′)
– x← (zx − z′x)/(c− c′)

and returns (r, x).

We first bound the probability that Einner does not abort at the end of the two executions of〈
P∗(ρ, u, st),V(ρ, u)

〉
. Then, we show that if Einner does not abort, then its output (r, x) satisfies

• C = r ·H + x ·G,
• D1 = r · P1,

6

• D2 = r · P2,

where C = Clo + t · Chi, D1 = Dlo,1 + t · Dhi,1, and D2 = Dlo,2 + t · Dhi,2 in an execution of the
protocol.

Abort probability of the sub-emulator. The emulator Einner aborts only when c = c′, which is
dependent on the probability that P∗ successfully convinces V at the end of the protocol. Let εP∗ be
the probability that P∗ successfully convinces V in

〈
P∗(ρ, u, st),V(ρ, u)

〉
. We bound the probability

that c = c′ with εP∗ using the rewinding lemma 1.2. Specifically, let us define the following random
variables:

• Let X be the elements (w, Y0, Y1, Y2) in the transcript of an execution of
〈
P∗(ρ, u, st),V(ρ, u)

〉
.

• Let Y and Y ′ be the values c and c′ respectively in the two executions of
〈
P∗(ρ, u, st),V(ρ, u)

〉
.

• Let Z and Z ′ be the values (zr, zx) and (z′r, z
′
x) respectively in the two executions of〈

P∗(ρ, u, st),V(ρ, u)
〉
.

• Let f(tr) → {0, 1} be the protocol verification function that returns 1 if tr is an accepting
transcript and 0 otherwise.

Then, the rewiding lemma states that

Pr
[
f(X,Y, Z) = 1 ∧ f(X,Y ′, Z ′) = 1 ∧ Y ̸= Y ′] ≥ ε2 − ε/p.

By assumption, we have 1/p = negl(λ). Therefore, if εP∗ is non-negligible, then the probability that
E aborts at the end of the two executions of

〈
P∗(ρ, u, st),V(ρ, u)

〉
is non-negligible.

Output validity of sub-emulator. Now assume that the two executions of
〈
P(ρ, u, w),V(ρ, u)

〉
returns two accepting transcripts tr = (t, Y0, Y1, Y2, c, zr, zx), tr

′ = (t, Y0, Y1, Y2, c
′, z′r, z

′
x), and that

Einner does not abort and returns

• r ← (zr − z′r)/(c− c′)
• x← (zx − z′x)/(c− c′)

Since tr and tr′ are accepting transcripts, we have

zr ·H + zx ·G = c · C + Y0,

z′r ·H + z′x ·G = c′ · C + Y0,

This means that (zr − z′r) ·H + (zx − z′x) ·G = (c− c′) · C and hence, r ·H + x ·G = C. Similarly,
we have

zr · P1 = c ·D + Y1,

z′r · P1 = c′ ·D + Y1,

This means that (zr − z′r) · P1 = (c− c′) ·D1, which means that r · P1 = D1. The argument can be
used to show that r · P2 = D2.

Main emulator. For a language instance u = (P,Clo, Dlo,1, Dlo,2, Chi, Dhi,1, Dhi,2), the main
emulator E executes two instances of the sub-emulator Einner to obtain two outputs

7

• Let t be the verifier’s first message in the protocol on the first execution of Einner. The
sub-emulator returns r and x such that

– C = r ·H + x ·G,
– D1 = r · P1,
– D2 = r · P2,

where C = Clo + t · Chi, D1 = Dlo,1 + t ·Dhi,1, and D2 = Dlo,2 + t ·Dhi,2.

• Let t′ be the verifier’s first message in the protocol on the first execution of Einner. The
sub-emulator returns r′ and x′ such that

– C = r′ ·H + x′ ·G,
– D1 = r′ · P1,
– D2 = r′ · P2,

where C ′ = Clo + t′ · Chi, D1 = Dlo,1 + t′ ·Dhi,1, and D2 = Dlo,2 + t′ ·Dhi,2.

If t = t′ in the two executions, E aborts and returns ⊥. Otherwise, the emulator returns the
following:

• rlo = (rt′ − r′t)/(t′ − t) and xlo = (xt′ − x′t)/(t′ − t),

• rhi = (r − r′)/(t− t′) and xhi = (x− x′)/(t− t′).

To finish the proof, we bound the probability that E does not abort at the end of the two executions
of

〈
P∗(ρ, u, st),V(ρ, u)

〉
. Then, we show that if E does not abort, then its output (r, x) is a valid

witness.

Abort probability of the main emulator. The emulator E aborts only when t = t′, which
is dependent on the probability that Einner successfully returns an output (r, x). Let εEinner be the
probability that Einner successfully returns an output (r, x). We bound the probability that t = t′

with εEinner using the rewinding lemma. Specifically, let us define the following random variables:

• The variable X = ε is an empty variable.

• Let Y and Y ′ be the values t and t′ respectively in the two executions of
〈
P∗(ρ, u, st),V(ρ, u)

〉
.

• Let Z and Z ′ be the values in the two pairs of transcripts tr = (tr0, tr1) and tr′ = (tr′0, tr
′
1)

during Einner’s executions of
〈
P∗(ρ, u, st),V(ρ, u)

〉
.

• Let f(tr)→ {0, 1} be the function that output 1 if Einner can successfully extract (r, x) from tr
and 0 otherwise.

Then, the rewinding lemma states that

Pr
[
f(X,Y, Z) = 1 ∧ f(X,Y ′, Z ′) = 1 ∧ Y ̸= Y ′] ≥ ε2 − ε/p.

By assumption, we have 1/p = negl(λ). Therefore, if εEinner is non-negligible, then the probability
that E aborts at the end of the two executions of Einner is non-negligible.

Witness validity. Now assume that E does not abort after two executions of the protocol. Then it
returns we have t ̸= t′ and E returns

8

• rlo = (rt′ − r′t)/(t′ − t) and xlo = (xt′ − x′t)/(t′ − t),

• rhi = (r − r′)/(t− t′) and xhi = (x− x′)/(t− t′).

We show that rlo, xlo, rhi, xhi make a valid witness for the ciphertext validity relation. By assumption
on Einner, the values r, x, r′, x′ satisfy the following relations:

r ·H + x ·G = C = Clo + t · Chi,

r′ ·H + x′ ·G = C = Clo + t′ · Chi.

Subtracting the two relations above, we have

(r − r′) ·H + (x− x′) ·G = (t− t′) · Chi,

and hence, we have (r − r′)/(t− t′) ·H + (x− x′)/(t− t′) ·G = Chi.
Likewise, by assumption on rlo, xlo, rhi, xhi, we have

r · P1 = D1 = Dlo,1 + t ·Dhi,1,

r′ · P1 = D1 = Dlo,1 + t′ ·Dhi,1.

Subtracting the two relations, we have

(r − r′) · P1 = (t− t′) ·Dhi,1,

and hence, we have (r− r′)/(t− t′) ·P1 = Dhi,1. Similar arguments shows that rlo ·H + xlo ·G = Clo,
rlo · P1 = Dlo,1, rlo · P2 = Dlo,2, and rhi · P2 = Dhi,2. Soundness follows.

4.0.3 Proof of Theorem 3.3

Fix any elements P,Clo, Dlo,1, Dlo,2, Chi, Dhi,1, Dhi,2 ∈ G and rlo, xlo, rhi, xhi ∈ Zp such that the
ciphertext validity relation hold. Let tr∗ = (t∗, Y ∗

0 , Y
∗
1 , Y

∗
2 , c

∗, z∗r , z
∗
x) be any accepting transcript.

By the specification of the protocol, the probability that an honest execution of the protocol by the
prover and the verifier results in the transcript tr∗ is given by

Pr
[〈
P(ρ, u, w),V(ρ, u)

〉
→ tr ∧ tr = tr∗

]
= 1/p4.

To prove zero-knowledge, we define a simulator S that produces such distribution without knowledge
of a valid witness rlo, xlo, rhi, and xhi.

S(P,Clo, Dlo,1, Dlo,2, Chi, Dhi,1, Dhi,2):

1. Sample t, c, zr, zx,←R Zp

2. Let C = Clo + t · Chi, D1 = Dlo,1 + t ·Dhi,1, and D2 = Dlo,2 + t ·Dhi,2

3. Set Y0 = zr ·H + zx ·G− c · C
4. Set Y1 = zr · P − c ·D1

5. Set Y2 = zr · P − c ·D2

6. Return tr = (w, Y0, Y1, c, zr, zx)

9

The simulator S returns a transcript that is uniformly random given that

• zr ·H + zx ·G = c · C + Y0,
• zr · P1 = c ·D1 + Y1,
• zr · P2 = c ·D2 + Y1,

where C = Clo + w · Chi, D1 = Dlo,1 + w ·Dhi,1, and D2 = Dlo,2 + w ·Dhi,2. As the variables Y0, Y1,
and Y2 are completely determined by t, c, zr, zx, we have

Pr [S(P,Clo, Dlo,1, Dlo,2, Chi, Dhi,1, Dhi,2)→ tr ∧ tr = tr∗] = 1/p4,

for any fixed transcript tr∗. Zero-knowledge now follows.

10

References

[1] Boneh, D., Drijvers, M., and Neven, G. Compact multi-signatures for smaller blockchains.
In International Conference on the Theory and Application of Cryptology and Information
Security (2018), Springer, pp. 435–464.

[2] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., and Maxwell, G.
Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on
Security and Privacy (SP) (2018), IEEE, pp. 315–334.

[3] Groth, J., and Ishai, Y. Sub-linear zero-knowledge argument for correctness of a shuffle. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques
(2008), Springer, pp. 379–396.

[4] Lindell, Y. Parallel coin-tossing and constant-round secure two-party computation. Journal
of Cryptology 16, 3 (2003).

11

	Preliminaries
	Discrete Log Relation Assumption
	Rewinding Lemma

	Zero-Knowledge Argument Definitions
	Ciphertext Validity Argument
	Proof of Security
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3

