solana/gossip/src/weighted_shuffle.rs

423 lines
14 KiB
Rust
Raw Normal View History

//! The `weighted_shuffle` module provides an iterator over shuffled weights.
use {
itertools::Itertools,
num_traits::{CheckedAdd, FromPrimitive, ToPrimitive},
rand::{
distributions::uniform::{SampleUniform, UniformSampler},
Rng, SeedableRng,
},
rand_chacha::ChaChaRng,
std::{
borrow::Borrow,
iter,
ops::{AddAssign, Div, Sub, SubAssign},
},
};
#[derive(Debug)]
pub enum WeightedShuffleError<T> {
NegativeWeight(T),
SumOverflow,
}
/// Implements an iterator where indices are shuffled according to their
/// weights:
/// - Returned indices are unique in the range [0, weights.len()).
/// - Higher weighted indices tend to appear earlier proportional to their
/// weight.
/// - Zero weighted indices are excluded. Therefore the iterator may have
/// count less than weights.len().
pub struct WeightedShuffle<'a, R, T> {
arr: Vec<T>, // Underlying array implementing binary indexed tree.
sum: T, // Current sum of weights, excluding already selected indices.
rng: &'a mut R, // Random number generator.
}
// The implementation uses binary indexed tree:
// https://en.wikipedia.org/wiki/Fenwick_tree
// to maintain cumulative sum of weights excluding already selected indices
// over self.arr.
impl<'a, R: Rng, T> WeightedShuffle<'a, R, T>
where
T: Copy + Default + PartialOrd + AddAssign + CheckedAdd,
{
/// Returns error if:
/// - any of the weights are negative.
/// - sum of weights overflows.
pub fn new(rng: &'a mut R, weights: &[T]) -> Result<Self, WeightedShuffleError<T>> {
let size = weights.len() + 1;
let zero = <T as Default>::default();
let mut arr = vec![zero; size];
let mut sum = zero;
for (mut k, &weight) in (1usize..).zip(weights) {
#[allow(clippy::neg_cmp_op_on_partial_ord)]
// weight < zero does not work for NaNs.
if !(weight >= zero) {
return Err(WeightedShuffleError::NegativeWeight(weight));
}
sum = sum
.checked_add(&weight)
.ok_or(WeightedShuffleError::SumOverflow)?;
while k < size {
arr[k] += weight;
k += k & k.wrapping_neg();
}
}
Ok(Self { arr, sum, rng })
}
}
impl<'a, R, T> WeightedShuffle<'a, R, T>
where
T: Copy + Default + PartialOrd + AddAssign + SubAssign + Sub<Output = T>,
{
// Returns cumulative sum of current weights upto index k (inclusive).
fn cumsum(&self, mut k: usize) -> T {
let mut out = <T as Default>::default();
while k != 0 {
out += self.arr[k];
k ^= k & k.wrapping_neg();
}
out
}
// Removes given weight at index k.
fn remove(&mut self, mut k: usize, weight: T) {
self.sum -= weight;
let size = self.arr.len();
while k < size {
self.arr[k] -= weight;
k += k & k.wrapping_neg();
}
}
// Returns smallest index such that self.cumsum(k) > val,
// along with its respective weight.
fn search(&self, val: T) -> (/*index:*/ usize, /*weight:*/ T) {
let zero = <T as Default>::default();
debug_assert!(val >= zero);
debug_assert!(val < self.sum);
let mut lo = (/*index:*/ 0, /*cumsum:*/ zero);
let mut hi = (self.arr.len() - 1, self.sum);
while lo.0 + 1 < hi.0 {
let k = lo.0 + (hi.0 - lo.0) / 2;
let sum = self.cumsum(k);
if sum <= val {
lo = (k, sum);
} else {
hi = (k, sum);
}
}
debug_assert!(lo.1 <= val);
debug_assert!(hi.1 > val);
(hi.0, hi.1 - lo.1)
}
}
impl<'a, R: Rng, T> Iterator for WeightedShuffle<'a, R, T>
where
T: Copy + Default + PartialOrd + AddAssign + SampleUniform + SubAssign + Sub<Output = T>,
{
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
let zero = <T as Default>::default();
#[allow(clippy::neg_cmp_op_on_partial_ord)]
// self.sum <= zero does not work for NaNs.
if !(self.sum > zero) {
return None;
}
let sample = <T as SampleUniform>::Sampler::sample_single(zero, self.sum, &mut self.rng);
let (index, weight) = WeightedShuffle::search(self, sample);
self.remove(index, weight);
Some(index - 1)
}
}
// Equivalent to WeightedShuffle(rng, weights).unwrap().next().
pub fn weighted_sample_single<R: Rng, T>(rng: &mut R, cumulative_weights: &[T]) -> Option<usize>
where
T: Copy + Default + PartialOrd + SampleUniform,
{
let zero = <T as Default>::default();
let high = cumulative_weights.last().copied().unwrap_or_default();
#[allow(clippy::neg_cmp_op_on_partial_ord)]
if !(high > zero) {
return None;
}
let sample = <T as SampleUniform>::Sampler::sample_single(zero, high, rng);
let mut lo = 0usize;
let mut hi = cumulative_weights.len() - 1;
while lo + 1 < hi {
let k = lo + (hi - lo) / 2;
if cumulative_weights[k] <= sample {
lo = k;
} else {
hi = k;
}
}
if cumulative_weights[lo] > sample {
Some(lo)
} else {
Some(hi)
}
}
/// Returns a list of indexes shuffled based on the input weights
/// Note - The sum of all weights must not exceed `u64::MAX`
pub fn weighted_shuffle<T, B, F>(weights: F, seed: [u8; 32]) -> Vec<usize>
where
T: Copy + PartialOrd + iter::Sum + Div<T, Output = T> + FromPrimitive + ToPrimitive,
B: Borrow<T>,
F: Iterator<Item = B> + Clone,
{
let total_weight: T = weights.clone().map(|x| *x.borrow()).sum();
let mut rng = ChaChaRng::from_seed(seed);
weights
.enumerate()
.map(|(i, weight)| {
let weight = weight.borrow();
// This generates an "inverse" weight but it avoids floating point math
let x = (total_weight / *weight)
.to_u64()
.expect("values > u64::max are not supported");
(
i,
// capture the u64 into u128s to prevent overflow
rng.gen_range(1, u128::from(std::u16::MAX)) * u128::from(x),
)
})
// sort in ascending order
.sorted_by(|(_, l_val), (_, r_val)| l_val.cmp(r_val))
.map(|x| x.0)
.collect()
}
/// Returns the highest index after computing a weighted shuffle.
/// Saves doing any sorting for O(n) max calculation.
// TODO: Remove in favor of rand::distributions::WeightedIndex.
pub fn weighted_best(weights_and_indexes: &[(u64, usize)], seed: [u8; 32]) -> usize {
if weights_and_indexes.is_empty() {
return 0;
}
let mut rng = ChaChaRng::from_seed(seed);
let total_weight: u64 = weights_and_indexes.iter().map(|x| x.0).sum();
let mut lowest_weight = std::u128::MAX;
let mut best_index = 0;
for v in weights_and_indexes {
// This generates an "inverse" weight but it avoids floating point math
let x = (total_weight / v.0)
.to_u64()
.expect("values > u64::max are not supported");
// capture the u64 into u128s to prevent overflow
let computed_weight = rng.gen_range(1, u128::from(std::u16::MAX)) * u128::from(x);
// The highest input weight maps to the lowest computed weight
if computed_weight < lowest_weight {
lowest_weight = computed_weight;
best_index = v.1;
}
}
best_index
}
#[cfg(test)]
mod tests {
use {
super::*,
std::{convert::TryInto, iter::repeat_with},
};
fn weighted_shuffle_slow<R>(rng: &mut R, mut weights: Vec<u64>) -> Vec<usize>
where
R: Rng,
{
let mut shuffle = Vec::with_capacity(weights.len());
loop {
let high: u64 = weights.iter().sum();
if high == 0 {
break shuffle;
}
let sample = rng.gen_range(0, high);
let index = weights
.iter()
.scan(0, |acc, &w| {
*acc += w;
Some(*acc)
})
.position(|acc| sample < acc)
.unwrap();
shuffle.push(index);
weights[index] = 0;
}
}
#[test]
fn test_weighted_shuffle_iterator() {
let mut test_set = [0; 6];
let mut count = 0;
let shuffle = weighted_shuffle(vec![50, 10, 2, 1, 1, 1].into_iter(), [0x5a; 32]);
shuffle.into_iter().for_each(|x| {
assert_eq!(test_set[x], 0);
test_set[x] = 1;
count += 1;
});
assert_eq!(count, 6);
}
#[test]
fn test_weighted_shuffle_iterator_large() {
let mut test_set = [0; 100];
let mut test_weights = vec![0; 100];
(0..100).for_each(|i| test_weights[i] = (i + 1) as u64);
let mut count = 0;
let shuffle = weighted_shuffle(test_weights.into_iter(), [0xa5; 32]);
shuffle.into_iter().for_each(|x| {
assert_eq!(test_set[x], 0);
test_set[x] = 1;
count += 1;
});
assert_eq!(count, 100);
}
#[test]
fn test_weighted_shuffle_compare() {
let shuffle = weighted_shuffle(vec![50, 10, 2, 1, 1, 1].into_iter(), [0x5a; 32]);
let shuffle1 = weighted_shuffle(vec![50, 10, 2, 1, 1, 1].into_iter(), [0x5a; 32]);
shuffle1
.into_iter()
.zip(shuffle.into_iter())
.for_each(|(x, y)| {
assert_eq!(x, y);
});
}
#[test]
fn test_weighted_shuffle_imbalanced() {
let mut weights = vec![std::u32::MAX as u64; 3];
weights.push(1);
let shuffle = weighted_shuffle(weights.iter().cloned(), [0x5a; 32]);
shuffle.into_iter().for_each(|x| {
if x == weights.len() - 1 {
assert_eq!(weights[x], 1);
} else {
assert_eq!(weights[x], std::u32::MAX as u64);
}
});
}
#[test]
fn test_weighted_best() {
let weights_and_indexes: Vec<_> = vec![100u64, 1000, 10_000, 10]
.into_iter()
.enumerate()
.map(|(i, weight)| (weight, i))
.collect();
let best_index = weighted_best(&weights_and_indexes, [0x5b; 32]);
assert_eq!(best_index, 2);
}
// Asserts that empty weights will return empty shuffle.
#[test]
fn test_weighted_shuffle_empty_weights() {
let weights = Vec::<u64>::new();
let mut rng = rand::thread_rng();
let shuffle = WeightedShuffle::new(&mut rng, &weights);
assert!(shuffle.unwrap().next().is_none());
assert_eq!(weighted_sample_single(&mut rng, &weights), None);
}
// Asserts that zero weights will return empty shuffle.
#[test]
fn test_weighted_shuffle_zero_weights() {
let weights = vec![0u64; 5];
let mut rng = rand::thread_rng();
let shuffle = WeightedShuffle::new(&mut rng, &weights);
assert!(shuffle.unwrap().next().is_none());
assert_eq!(weighted_sample_single(&mut rng, &weights), None);
}
// Asserts that each index is selected proportional to its weight.
#[test]
fn test_weighted_shuffle_sanity() {
let seed: Vec<_> = (1..).step_by(3).take(32).collect();
let seed: [u8; 32] = seed.try_into().unwrap();
let mut rng = ChaChaRng::from_seed(seed);
let weights = [1, 0, 1000, 0, 0, 10, 100, 0];
let mut counts = [0; 8];
for _ in 0..100000 {
let mut shuffle = WeightedShuffle::new(&mut rng, &weights).unwrap();
counts[shuffle.next().unwrap()] += 1;
let _ = shuffle.count(); // consume the rest.
}
assert_eq!(counts, [101, 0, 90113, 0, 0, 891, 8895, 0]);
}
#[test]
fn test_weighted_shuffle_hard_coded() {
let weights = [
78, 70, 38, 27, 21, 0, 82, 42, 21, 77, 77, 17, 4, 50, 96, 83, 33, 16, 72,
];
let cumulative_weights: Vec<_> = weights
.iter()
.scan(0, |acc, w| {
*acc += w;
Some(*acc)
})
.collect();
let seed = [48u8; 32];
let mut rng = ChaChaRng::from_seed(seed);
let shuffle: Vec<_> = WeightedShuffle::new(&mut rng, &weights).unwrap().collect();
assert_eq!(
shuffle,
[2, 11, 16, 0, 13, 14, 15, 10, 1, 9, 7, 6, 12, 18, 4, 17, 3, 8]
);
let mut rng = ChaChaRng::from_seed(seed);
assert_eq!(
weighted_sample_single(&mut rng, &cumulative_weights),
Some(2),
);
let seed = [37u8; 32];
let mut rng = ChaChaRng::from_seed(seed);
let shuffle: Vec<_> = WeightedShuffle::new(&mut rng, &weights).unwrap().collect();
assert_eq!(
shuffle,
[17, 3, 14, 13, 6, 10, 15, 16, 9, 2, 4, 1, 0, 7, 8, 18, 11, 12]
);
let mut rng = ChaChaRng::from_seed(seed);
assert_eq!(
weighted_sample_single(&mut rng, &cumulative_weights),
Some(17),
);
}
#[test]
fn test_weighted_shuffle_match_slow() {
let mut rng = rand::thread_rng();
let weights: Vec<u64> = repeat_with(|| rng.gen_range(0, 1000)).take(997).collect();
let cumulative_weights: Vec<_> = weights
.iter()
.scan(0, |acc, w| {
*acc += w;
Some(*acc)
})
.collect();
for _ in 0..10 {
let mut seed = [0u8; 32];
rng.fill(&mut seed[..]);
let mut rng = ChaChaRng::from_seed(seed);
let shuffle: Vec<_> = WeightedShuffle::new(&mut rng, &weights).unwrap().collect();
let mut rng = ChaChaRng::from_seed(seed);
let shuffle_slow = weighted_shuffle_slow(&mut rng, weights.clone());
assert_eq!(shuffle, shuffle_slow);
let mut rng = ChaChaRng::from_seed(seed);
assert_eq!(
weighted_sample_single(&mut rng, &cumulative_weights),
Some(shuffle[0]),
);
}
}
}