solana/core/src/window_service.rs

497 lines
17 KiB
Rust
Raw Normal View History

//! `window_service` handles the data plane incoming blobs, storing them in
//! blocktree and retransmitting where required
2018-09-07 15:00:26 -07:00
//!
use crate::blocktree::{self, Blocktree};
2018-12-07 19:16:27 -08:00
use crate::cluster_info::ClusterInfo;
use crate::leader_schedule_cache::LeaderScheduleCache;
use crate::repair_service::{RepairService, RepairStrategy};
2018-12-07 19:16:27 -08:00
use crate::result::{Error, Result};
use crate::service::Service;
use crate::shred::Shred;
use crate::streamer::{PacketReceiver, PacketSender};
use rayon::iter::{IndexedParallelIterator, IntoParallelRefMutIterator, ParallelIterator};
use rayon::ThreadPool;
use solana_metrics::{inc_new_counter_debug, inc_new_counter_error};
2019-09-12 11:39:39 -07:00
use solana_rayon_threadlimit::get_thread_count;
use solana_runtime::bank::Bank;
use solana_sdk::pubkey::Pubkey;
2018-11-16 08:45:59 -08:00
use solana_sdk::timing::duration_as_ms;
2018-09-07 15:00:26 -07:00
use std::net::UdpSocket;
use std::sync::atomic::{AtomicBool, Ordering};
2018-09-07 15:00:26 -07:00
use std::sync::mpsc::RecvTimeoutError;
use std::sync::{Arc, RwLock};
use std::thread::{self, Builder, JoinHandle};
2018-09-07 15:00:26 -07:00
use std::time::{Duration, Instant};
pub const NUM_THREADS: u32 = 10;
fn verify_shred_slot(shred: &Shred, root: u64) -> bool {
if shred.is_data() {
// Only data shreds have parent information
blocktree::verify_shred_slots(shred.slot(), shred.parent(), root)
} else {
// Filter out outdated coding shreds
shred.slot() >= root
}
}
/// drop blobs that are from myself or not from the correct leader for the
/// blob's slot
pub fn should_retransmit_and_persist(
shred: &Shred,
bank: Option<Arc<Bank>>,
leader_schedule_cache: &Arc<LeaderScheduleCache>,
my_pubkey: &Pubkey,
root: u64,
) -> bool {
let slot_leader_pubkey = match bank {
None => leader_schedule_cache.slot_leader_at(shred.slot(), None),
Some(bank) => leader_schedule_cache.slot_leader_at(shred.slot(), Some(&bank)),
};
if let Some(leader_id) = slot_leader_pubkey {
if leader_id == *my_pubkey {
inc_new_counter_debug!("streamer-recv_window-circular_transmission", 1);
false
} else if !verify_shred_slot(shred, root) {
inc_new_counter_debug!("streamer-recv_window-outdated_transmission", 1);
false
} else if !shred.verify(&leader_id) {
inc_new_counter_debug!("streamer-recv_window-invalid_signature", 1);
false
} else {
true
}
} else {
inc_new_counter_debug!("streamer-recv_window-unknown_leader", 1);
false
}
}
fn recv_window<F>(
2019-02-07 20:52:39 -08:00
blocktree: &Arc<Blocktree>,
my_pubkey: &Pubkey,
r: &PacketReceiver,
retransmit: &PacketSender,
shred_filter: F,
thread_pool: &ThreadPool,
leader_schedule_cache: &Arc<LeaderScheduleCache>,
) -> Result<()>
where
2019-10-02 18:33:01 -07:00
F: Fn(&Shred, u64) -> bool + Sync,
{
2018-09-07 15:00:26 -07:00
let timer = Duration::from_millis(200);
let mut packets = r.recv_timeout(timer)?;
while let Ok(mut more_packets) = r.try_recv() {
packets.packets.append(&mut more_packets.packets)
2018-09-07 15:00:26 -07:00
}
let now = Instant::now();
inc_new_counter_debug!("streamer-recv_window-recv", packets.packets.len());
let last_root = blocktree.last_root();
let (shreds, packets_ix): (Vec<_>, Vec<_>) = thread_pool.install(|| {
packets
.packets
.par_iter_mut()
.enumerate()
.filter_map(|(i, packet)| {
if let Ok(shred) = Shred::new_from_serialized_shred(packet.data.to_vec()) {
if shred_filter(&shred, last_root) {
packet.meta.slot = shred.slot();
packet.meta.seed = shred.seed();
Some((shred, i))
} else {
None
}
} else {
None
}
})
.unzip()
});
// to avoid lookups into the `packets_ix` vec, this block manually tracks where we are in that vec
// and since `packets.packets.retain` and the `packets_ix` vec are both in order,
// we should be able to automatically drop any packets in the index gaps.
let mut retain_ix = 0;
let mut i = 0;
packets.packets.retain(|_| {
let retain = if !packets_ix.is_empty() && i == packets_ix[retain_ix] {
retain_ix = (packets_ix.len() - 1).min(retain_ix + 1);
true
} else {
false
};
i += 1;
retain
});
trace!("{:?} shreds from packets", shreds.len());
trace!(
"{} num shreds received: {}",
my_pubkey,
packets.packets.len()
);
2018-09-07 15:00:26 -07:00
if !packets.packets.is_empty() {
// Ignore the send error, as the retransmit is optional (e.g. replicators don't retransmit)
let _ = retransmit.send(packets);
}
blocktree.insert_shreds(shreds, Some(leader_schedule_cache))?;
trace!(
"Elapsed processing time in recv_window(): {}",
duration_as_ms(&now.elapsed())
);
2018-09-07 15:00:26 -07:00
Ok(())
}
// Implement a destructor for the window_service thread to signal it exited
// even on panics
struct Finalizer {
exit_sender: Arc<AtomicBool>,
}
impl Finalizer {
fn new(exit_sender: Arc<AtomicBool>) -> Self {
Finalizer { exit_sender }
}
}
// Implement a destructor for Finalizer.
impl Drop for Finalizer {
fn drop(&mut self) {
self.exit_sender.clone().store(true, Ordering::Relaxed);
}
}
pub struct WindowService {
t_window: JoinHandle<()>,
repair_service: RepairService,
}
2018-09-07 15:00:26 -07:00
impl WindowService {
2019-04-23 16:24:44 -07:00
#[allow(clippy::too_many_arguments)]
pub fn new<F>(
2019-02-07 20:52:39 -08:00
blocktree: Arc<Blocktree>,
cluster_info: Arc<RwLock<ClusterInfo>>,
r: PacketReceiver,
retransmit: PacketSender,
repair_socket: Arc<UdpSocket>,
2019-03-04 20:50:02 -08:00
exit: &Arc<AtomicBool>,
repair_strategy: RepairStrategy,
leader_schedule_cache: &Arc<LeaderScheduleCache>,
shred_filter: F,
) -> WindowService
where
F: 'static
+ Fn(&Pubkey, &Shred, Option<Arc<Bank>>, u64) -> bool
+ std::marker::Send
+ std::marker::Sync,
{
let bank_forks = match repair_strategy {
RepairStrategy::RepairRange(_) => None,
RepairStrategy::RepairAll { ref bank_forks, .. } => Some(bank_forks.clone()),
};
let repair_service = RepairService::new(
blocktree.clone(),
exit.clone(),
repair_socket,
cluster_info.clone(),
repair_strategy,
);
2019-03-04 20:50:02 -08:00
let exit = exit.clone();
let shred_filter = Arc::new(shred_filter);
let bank_forks = bank_forks.clone();
let leader_schedule_cache = leader_schedule_cache.clone();
let t_window = Builder::new()
.name("solana-window".to_string())
// TODO: Mark: Why is it overflowing
.stack_size(8 * 1024 * 1024)
.spawn(move || {
2019-03-04 20:50:02 -08:00
let _exit = Finalizer::new(exit.clone());
let id = cluster_info.read().unwrap().id();
trace!("{}: RECV_WINDOW started", id);
let mut now = Instant::now();
let thread_pool = rayon::ThreadPoolBuilder::new()
2019-09-12 11:39:39 -07:00
.num_threads(get_thread_count())
.build()
.unwrap();
loop {
if exit.load(Ordering::Relaxed) {
break;
}
if let Err(e) = recv_window(
&blocktree,
&id,
&r,
&retransmit,
|shred, last_root| {
shred_filter(
&id,
shred,
bank_forks
.as_ref()
.map(|bank_forks| bank_forks.read().unwrap().working_bank()),
last_root,
)
},
&thread_pool,
&leader_schedule_cache,
) {
match e {
Error::RecvTimeoutError(RecvTimeoutError::Disconnected) => break,
Error::RecvTimeoutError(RecvTimeoutError::Timeout) => {
if now.elapsed() > Duration::from_secs(30) {
warn!("Window does not seem to be receiving data. Ensure port configuration is correct...");
now = Instant::now();
}
}
_ => {
inc_new_counter_error!("streamer-window-error", 1, 1);
error!("window error: {:?}", e);
}
}
} else {
now = Instant::now();
}
2018-09-07 15:00:26 -07:00
}
})
.unwrap();
WindowService {
t_window,
repair_service,
}
}
}
impl Service for WindowService {
type JoinReturnType = ();
fn join(self) -> thread::Result<()> {
self.t_window.join()?;
self.repair_service.join()
}
2018-09-07 15:00:26 -07:00
}
#[cfg(test)]
mod test {
use super::*;
use crate::{
blocktree::tests::make_many_slot_entries,
blocktree::{get_tmp_ledger_path, Blocktree},
cluster_info::ClusterInfo,
contact_info::ContactInfo,
entry::{create_ticks, Entry},
genesis_utils::create_genesis_block_with_leader,
packet::{Packet, Packets},
repair_service::RepairSlotRange,
service::Service,
shred::Shredder,
shred::SIZE_OF_SHRED_TYPE,
};
use rand::{seq::SliceRandom, thread_rng};
use solana_runtime::epoch_schedule::MINIMUM_SLOTS_PER_EPOCH;
use solana_sdk::{
hash::Hash,
signature::{Keypair, KeypairUtil},
};
use std::{
net::UdpSocket,
sync::atomic::{AtomicBool, Ordering},
sync::mpsc::{channel, Receiver},
sync::{Arc, RwLock},
thread::sleep,
time::Duration,
};
fn local_entries_to_shred(
entries: Vec<Entry>,
slot: u64,
parent: u64,
keypair: &Arc<Keypair>,
) -> Vec<Shred> {
let mut shredder =
Shredder::new(slot, parent, 0.0, keypair, 0).expect("Failed to create entry shredder");
bincode::serialize_into(&mut shredder, &entries)
.expect("Expect to write all entries to shreds");
shredder.finalize_slot();
shredder.shreds.drain(..).collect()
}
#[test]
fn test_process_shred() {
let blocktree_path = get_tmp_ledger_path!();
let blocktree = Arc::new(Blocktree::open(&blocktree_path).unwrap());
let num_entries = 10;
let original_entries = create_ticks(num_entries, Hash::default());
let mut shreds =
local_entries_to_shred(original_entries.clone(), 0, 0, &Arc::new(Keypair::new()));
shreds.reverse();
blocktree
.insert_shreds(shreds, None)
.expect("Expect successful processing of shred");
assert_eq!(
blocktree.get_slot_entries(0, 0, None).unwrap(),
original_entries
);
drop(blocktree);
Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction");
}
#[test]
fn test_should_retransmit_and_persist() {
let me_id = Pubkey::new_rand();
let leader_keypair = Arc::new(Keypair::new());
let leader_pubkey = leader_keypair.pubkey();
let bank = Arc::new(Bank::new(
&create_genesis_block_with_leader(100, &leader_pubkey, 10).genesis_block,
));
let cache = Arc::new(LeaderScheduleCache::new_from_bank(&bank));
let mut shreds = local_entries_to_shred(vec![Entry::default()], 0, 0, &leader_keypair);
// with a Bank for slot 0, blob continues
assert_eq!(
should_retransmit_and_persist(&shreds[0], Some(bank.clone()), &cache, &me_id, 0,),
true
);
// If it's a coding shred, test that slot >= root
let mut coding_shred =
Shred::new_empty_from_header(Shredder::new_coding_shred_header(5, 5, 6, 6, 0));
Shredder::sign_shred(&leader_keypair, &mut coding_shred, *SIZE_OF_SHRED_TYPE);
assert_eq!(
should_retransmit_and_persist(&coding_shred, Some(bank.clone()), &cache, &me_id, 0),
true
);
assert_eq!(
should_retransmit_and_persist(&coding_shred, Some(bank.clone()), &cache, &me_id, 5),
true
);
assert_eq!(
should_retransmit_and_persist(&coding_shred, Some(bank.clone()), &cache, &me_id, 6),
false
);
// set the blob to have come from the wrong leader
let wrong_leader_keypair = Arc::new(Keypair::new());
let leader_pubkey = wrong_leader_keypair.pubkey();
let wrong_bank = Arc::new(Bank::new(
&create_genesis_block_with_leader(100, &leader_pubkey, 10).genesis_block,
));
let wrong_cache = Arc::new(LeaderScheduleCache::new_from_bank(&wrong_bank));
assert_eq!(
should_retransmit_and_persist(
&shreds[0],
Some(wrong_bank.clone()),
&wrong_cache,
&me_id,
0
),
false
);
// with a Bank and no idea who leader is, blob gets thrown out
shreds[0].set_slot(MINIMUM_SLOTS_PER_EPOCH as u64 * 3);
assert_eq!(
should_retransmit_and_persist(&shreds[0], Some(bank.clone()), &cache, &me_id, 0),
false
);
// with a shred where shred.slot() == root, blob gets thrown out
let slot = MINIMUM_SLOTS_PER_EPOCH as u64 * 3;
let shreds =
local_entries_to_shred(vec![Entry::default()], slot, slot - 1, &leader_keypair);
assert_eq!(
should_retransmit_and_persist(&shreds[0], Some(bank.clone()), &cache, &me_id, slot),
false
);
// with a shred where shred.parent() < root, blob gets thrown out
let slot = MINIMUM_SLOTS_PER_EPOCH as u64 * 3;
let shreds =
local_entries_to_shred(vec![Entry::default()], slot + 1, slot - 1, &leader_keypair);
assert_eq!(
should_retransmit_and_persist(&shreds[0], Some(bank.clone()), &cache, &me_id, slot),
false
);
// if the blob came back from me, it doesn't continue, whether or not I have a bank
assert_eq!(
should_retransmit_and_persist(&shreds[0], None, &cache, &me_id, 0),
false
);
}
fn make_test_window(
packet_receiver: Receiver<Packets>,
exit: Arc<AtomicBool>,
) -> WindowService {
let blocktree_path = get_tmp_ledger_path!();
let (blocktree, _, _) = Blocktree::open_with_signal(&blocktree_path)
.expect("Expected to be able to open database ledger");
let blocktree = Arc::new(blocktree);
let (retransmit_sender, _retransmit_receiver) = channel();
let cluster_info = Arc::new(RwLock::new(ClusterInfo::new_with_invalid_keypair(
ContactInfo::new_localhost(&Pubkey::default(), 0),
)));
let repair_sock = Arc::new(UdpSocket::bind(socketaddr_any!()).unwrap());
let window = WindowService::new(
blocktree,
cluster_info,
packet_receiver,
retransmit_sender,
repair_sock,
&exit,
RepairStrategy::RepairRange(RepairSlotRange { start: 0, end: 0 }),
&Arc::new(LeaderScheduleCache::default()),
|_, _, _, _| true,
);
window
}
#[test]
fn test_recv_window() {
let (packet_sender, packet_receiver) = channel();
let exit = Arc::new(AtomicBool::new(false));
let window = make_test_window(packet_receiver, exit.clone());
// send 5 slots worth of data to the window
let (shreds, _) = make_many_slot_entries(0, 5, 10);
let packets: Vec<_> = shreds
.into_iter()
.map(|mut s| {
let mut p = Packet::default();
p.data.copy_from_slice(&mut s.payload);
p
})
.collect();
let mut packets = Packets::new(packets);
packet_sender.send(packets.clone()).unwrap();
sleep(Duration::from_millis(500));
// add some empty packets to the data set. These should fail to deserialize
packets.packets.append(&mut vec![Packet::default(); 10]);
packets.packets.shuffle(&mut thread_rng());
packet_sender.send(packets.clone()).unwrap();
sleep(Duration::from_millis(500));
// send 1 empty packet that cannot deserialize into a shred
packet_sender
.send(Packets::new(vec![Packet::default(); 1]))
.unwrap();
sleep(Duration::from_millis(500));
exit.store(true, Ordering::Relaxed);
window.join().unwrap();
}
2018-09-07 15:00:26 -07:00
}