solana/src/blocktree_processor.rs

667 lines
24 KiB
Rust
Raw Normal View History

use crate::bank_forks::BankForks;
use crate::blocktree::Blocktree;
use crate::entry::{Entry, EntrySlice};
use crate::leader_scheduler::LeaderScheduler;
use itertools::Itertools;
use log::Level;
use rayon::prelude::*;
use solana_metrics::counter::Counter;
use solana_runtime::bank::{Bank, BankError, Result};
use solana_sdk::genesis_block::GenesisBlock;
use solana_sdk::hash::Hash;
use solana_sdk::timing::duration_as_ms;
use solana_sdk::timing::MAX_ENTRY_IDS;
use std::sync::{Arc, RwLock};
use std::time::Instant;
pub const VERIFY_BLOCK_SIZE: usize = 16;
2019-02-19 17:11:43 -08:00
pub fn process_entry(bank: &Bank, entry: &Entry) -> (Result<()>, u64) {
if !entry.is_tick() {
2019-02-19 17:11:43 -08:00
let old_results = bank.process_transactions(&entry.transactions);
let results = ignore_program_errors(old_results);
let fee = entry
.transactions
.iter()
.zip(&results)
.map(|(tx, res)| if res.is_ok() { tx.fee } else { 0 })
.sum();
(first_err(&results), fee)
} else {
bank.register_tick(&entry.id);
2019-02-19 17:11:43 -08:00
(Ok(()), 0)
}
}
fn first_err(results: &[Result<()>]) -> Result<()> {
for r in results {
r.clone()?;
}
Ok(())
}
fn ignore_program_errors(results: Vec<Result<()>>) -> Vec<Result<()>> {
results
.into_iter()
.map(|result| match result {
// Entries that result in a ProgramError are still valid and are written in the
// ledger so map them to an ok return value
Err(BankError::ProgramError(index, err)) => {
info!("program error {:?}, {:?}", index, err);
inc_new_counter_info!("bank-ignore_program_err", 1);
Ok(())
}
_ => result,
})
.collect()
}
fn par_execute_entries(bank: &Bank, entries: &[(&Entry, Vec<Result<()>>)]) -> (Result<()>, u64) {
inc_new_counter_info!("bank-par_execute_entries-count", entries.len());
let results_fees: Vec<(Result<()>, u64)> = entries
.into_par_iter()
.map(|(e, lock_results)| {
2019-02-19 17:11:43 -08:00
let old_results = bank.load_execute_and_commit_transactions(
&e.transactions,
lock_results.to_vec(),
MAX_ENTRY_IDS,
);
let results = ignore_program_errors(old_results);
bank.unlock_accounts(&e.transactions, &results);
2019-02-19 17:11:43 -08:00
let fee = e
.transactions
.iter()
.zip(&results)
.map(|(tx, res)| if res.is_ok() { tx.fee } else { 0 })
.sum();
(first_err(&results), fee)
})
.collect();
let fee = results_fees.iter().map(|(_, fee)| fee).sum();
2019-02-19 17:11:43 -08:00
let results: Vec<Result<()>> = results_fees.into_iter().map(|(res, _)| res).collect();
(first_err(&results[..]), fee)
}
/// process entries in parallel
/// 1. In order lock accounts for each entry while the lock succeeds, up to a Tick entry
/// 2. Process the locked group in parallel
/// 3. Register the `Tick` if it's available
/// 4. Update the leader scheduler, goto 1
fn par_process_entries_with_scheduler(
bank: &Bank,
entries: &[Entry],
leader_scheduler: &Arc<RwLock<LeaderScheduler>>,
) -> (Result<()>, u64) {
// accumulator for entries that can be processed in parallel
let mut mt_group = vec![];
let mut fees = 0;
for entry in entries {
if entry.is_tick() {
// if its a tick, execute the group and register the tick
let (res, fee) = par_execute_entries(bank, &mt_group);
fees += fee;
if res.is_err() {
return (res, fees);
}
bank.register_tick(&entry.id);
leader_scheduler
.write()
.unwrap()
.update_tick_height(bank.tick_height(), bank);
mt_group = vec![];
continue;
}
// try to lock the accounts
let lock_results = bank.lock_accounts(&entry.transactions);
// if any of the locks error out
// execute the current group
if first_err(&lock_results).is_err() {
let (res, fee) = par_execute_entries(bank, &mt_group);
fees += fee;
if res.is_err() {
return (res, fees);
}
mt_group = vec![];
//reset the lock and push the entry
bank.unlock_accounts(&entry.transactions, &lock_results);
let lock_results = bank.lock_accounts(&entry.transactions);
mt_group.push((entry, lock_results));
} else {
// push the entry to the mt_group
mt_group.push((entry, lock_results));
}
}
let (res, fee) = par_execute_entries(bank, &mt_group);
fees += fee;
(res, fees)
}
/// Process an ordered list of entries.
pub fn process_entries(
bank: &Bank,
entries: &[Entry],
leader_scheduler: &Arc<RwLock<LeaderScheduler>>,
) -> (Result<()>, u64) {
par_process_entries_with_scheduler(bank, entries, leader_scheduler)
}
/// Process an ordered list of entries, populating a circular buffer "tail"
/// as we go.
fn process_block(
bank: &Bank,
entries: &[Entry],
leader_scheduler: &Arc<RwLock<LeaderScheduler>>,
) -> Result<()> {
for entry in entries {
2019-02-19 17:11:43 -08:00
let (res, fee) = process_entry(bank, entry);
if let Some(leader) = leader_scheduler
.read()
.unwrap()
.get_leader_for_tick(bank.tick_height())
2019-02-19 17:11:43 -08:00
{
// Credit the accumulated fees to the current leader and reset the fee to 0
bank.deposit(&leader, fee);
}
if entry.is_tick() {
let mut leader_scheduler = leader_scheduler.write().unwrap();
leader_scheduler.update_tick_height(bank.tick_height(), bank);
}
2019-02-19 17:11:43 -08:00
res?;
}
Ok(())
}
/// Starting from the genesis block, append the provided entries to the ledger verifying them
/// along the way.
fn process_ledger<I>(
bank: &Bank,
entries: I,
leader_scheduler: &Arc<RwLock<LeaderScheduler>>,
) -> Result<(u64, Hash)>
where
I: IntoIterator<Item = Entry>,
{
let mut last_entry_id = bank.last_id();
let mut entries_iter = entries.into_iter();
trace!("genesis last_id={}", last_entry_id);
// The first entry in the ledger is a pseudo-tick used only to ensure the number of ticks
// in slot 0 is the same as the number of ticks in all subsequent slots. It is not
// registered as a tick and thus cannot be used as a last_id
let entry0 = entries_iter
.next()
.ok_or(BankError::LedgerVerificationFailed)?;
if !(entry0.is_tick() && entry0.verify(&last_entry_id)) {
warn!("Ledger proof of history failed at entry0");
return Err(BankError::LedgerVerificationFailed);
}
last_entry_id = entry0.id;
let mut entry_height = 1;
// Ledger verification needs to be parallelized, but we can't pull the whole
// thing into memory. We therefore chunk it.
for block in &entries_iter.chunks(VERIFY_BLOCK_SIZE) {
let block: Vec<_> = block.collect();
if !block.verify(&last_entry_id) {
warn!("Ledger proof of history failed at entry: {}", entry_height);
return Err(BankError::LedgerVerificationFailed);
}
process_block(bank, &block, leader_scheduler)?;
last_entry_id = block.last().unwrap().id;
entry_height += block.len() as u64;
}
Ok((entry_height, last_entry_id))
}
pub fn process_blocktree(
genesis_block: &GenesisBlock,
blocktree: &Blocktree,
leader_scheduler: &Arc<RwLock<LeaderScheduler>>,
) -> Result<(BankForks, u64, Hash)> {
let bank = Bank::new(&genesis_block);
let slot_height = 0; // Use the Bank's slot_height as its ID.
let bank_forks = BankForks::new(slot_height, bank);
leader_scheduler
.write()
.unwrap()
.update_tick_height(0, &bank_forks.finalized_bank());
let now = Instant::now();
info!("processing ledger...");
let entries = blocktree.read_ledger().expect("opening ledger");
let (entry_height, last_entry_id) =
process_ledger(&bank_forks.working_bank(), entries, leader_scheduler)?;
info!(
"processed {} ledger entries in {}ms, tick_height={}...",
entry_height,
duration_as_ms(&now.elapsed()),
bank_forks.working_bank().tick_height()
);
// TODO: probably need to return `entry_height` and `last_entry_id` for *all* banks in
// `bank_forks` instead of just for the `working_bank`
Ok((bank_forks, entry_height, last_entry_id))
}
#[cfg(test)]
mod tests {
use super::*;
use crate::blocktree::tests::entries_to_blobs;
use crate::blocktree::{create_tmp_sample_ledger, BlocktreeConfig};
use crate::entry::{create_ticks, next_entry, Entry};
use crate::leader_scheduler::LeaderSchedulerConfig;
use solana_sdk::genesis_block::GenesisBlock;
use solana_sdk::native_program::ProgramError;
use solana_sdk::signature::{Keypair, KeypairUtil};
use solana_sdk::system_transaction::SystemTransaction;
fn fill_blocktree_slot_with_ticks(
blocktree: &Blocktree,
blocktree_config: &BlocktreeConfig,
slot: u64,
parent_slot: u64,
last_entry_id: Hash,
) -> Hash {
let entries = create_ticks(blocktree_config.ticks_per_slot, last_entry_id);
let last_entry_id = entries.last().unwrap().id;
let blobs = entries_to_blobs(&entries, slot, parent_slot);
blocktree.insert_data_blobs(blobs.iter()).unwrap();
last_entry_id
}
#[test]
fn test_process_blocktree_with_two_forks() {
solana_logger::setup();
let leader_scheduler = Arc::new(RwLock::new(LeaderScheduler::default()));
let blocktree_config = &BlocktreeConfig::default();
// Create a new ledger with slot 0 full of ticks
let (
_mint_keypair,
ledger_path,
tick_height,
_last_entry_height,
_last_id,
mut last_entry_id,
) = create_tmp_sample_ledger(
"blocktree_with_two_forks",
10_000,
blocktree_config.ticks_per_slot - 1,
Keypair::new().pubkey(),
123,
&blocktree_config,
);
debug!("ledger_path: {:?}", ledger_path);
assert_eq!(tick_height, blocktree_config.ticks_per_slot);
/*
Build a blocktree in the ledger with the following fork structure:
slot 0
|
slot 1
/ \
slot 2 |
/ |
slot 3 |
|
slot 4
*/
let genesis_block =
GenesisBlock::load(&ledger_path).expect("Expected to successfully open genesis block");
let (blocktree, _ledger_signal_receiver) =
Blocktree::open_with_config_signal(&ledger_path, &blocktree_config)
.expect("Expected to successfully open database ledger");
// Fork 1, ending at slot 3
let last_slot1_entry_id =
fill_blocktree_slot_with_ticks(&blocktree, &blocktree_config, 1, 0, last_entry_id);
last_entry_id = fill_blocktree_slot_with_ticks(
&blocktree,
&blocktree_config,
2,
1,
last_slot1_entry_id,
);
let last_fork1_entry_id =
fill_blocktree_slot_with_ticks(&blocktree, &blocktree_config, 3, 2, last_entry_id);
// Fork 2, ending at slot 4
let last_fork2_entry_id = fill_blocktree_slot_with_ticks(
&blocktree,
&blocktree_config,
4,
1,
last_slot1_entry_id,
);
info!("last_fork1_entry_id: {:?}", last_fork1_entry_id);
info!("last_fork2_entry_id: {:?}", last_fork2_entry_id);
let (bank_forks, ledger_height, last_entry_id) =
process_blocktree(&genesis_block, &blocktree, &leader_scheduler).unwrap();
// The following asserts loosely demonstrate how `process_blocktree()` currently only
// processes fork1 and ignores fork2.
assert_eq!(last_entry_id, last_fork1_entry_id);
assert_eq!(ledger_height, 4 * blocktree_config.ticks_per_slot);
assert_eq!(bank_forks.working_bank().last_id(), last_entry_id);
}
#[test]
fn test_first_err() {
assert_eq!(first_err(&[Ok(())]), Ok(()));
assert_eq!(
first_err(&[Ok(()), Err(BankError::DuplicateSignature)]),
Err(BankError::DuplicateSignature)
);
assert_eq!(
first_err(&[
Ok(()),
Err(BankError::DuplicateSignature),
Err(BankError::AccountInUse)
]),
Err(BankError::DuplicateSignature)
);
assert_eq!(
first_err(&[
Ok(()),
Err(BankError::AccountInUse),
Err(BankError::DuplicateSignature)
]),
Err(BankError::AccountInUse)
);
assert_eq!(
first_err(&[
Err(BankError::AccountInUse),
Ok(()),
Err(BankError::DuplicateSignature)
]),
Err(BankError::AccountInUse)
);
}
#[test]
fn test_bank_ignore_program_errors() {
let expected_results = vec![Ok(()), Ok(())];
let results = vec![Ok(()), Ok(())];
let updated_results = ignore_program_errors(results);
assert_eq!(updated_results, expected_results);
let results = vec![
Err(BankError::ProgramError(
1,
ProgramError::ResultWithNegativeTokens,
)),
Ok(()),
];
let updated_results = ignore_program_errors(results);
assert_eq!(updated_results, expected_results);
// Other BankErrors should not be ignored
let results = vec![Err(BankError::AccountNotFound), Ok(())];
let updated_results = ignore_program_errors(results);
assert_ne!(updated_results, expected_results);
}
fn par_process_entries(bank: &Bank, entries: &[Entry]) -> (Result<()>, u64) {
let leader_scheduler = Arc::new(RwLock::new(LeaderScheduler::default()));
par_process_entries_with_scheduler(bank, entries, &leader_scheduler)
}
#[test]
fn test_process_empty_entry_is_registered() {
let (genesis_block, mint_keypair) = GenesisBlock::new(2);
let bank = Bank::new(&genesis_block);
let keypair = Keypair::new();
let entry = next_entry(&genesis_block.last_id(), 1, vec![]);
let tx = SystemTransaction::new_account(&mint_keypair, keypair.pubkey(), 1, entry.id, 0);
// First, ensure the TX is rejected because of the unregistered last ID
assert_eq!(
bank.process_transaction(&tx),
Err(BankError::LastIdNotFound)
);
// Now ensure the TX is accepted despite pointing to the ID of an empty entry.
par_process_entries(&bank, &[entry]).0.unwrap();
assert_eq!(bank.process_transaction(&tx), Ok(()));
}
// create a ledger with a tick every `tick_interval` entries and a couple other transactions
fn create_sample_block_with_ticks(
genesis_block: &GenesisBlock,
mint_keypair: &Keypair,
num_one_token_transfers: usize,
tick_interval: usize,
) -> impl Iterator<Item = Entry> {
let mut entries = vec![];
let mut last_id = genesis_block.last_id();
// Start off the ledger with the psuedo-tick linked to the genesis block
// (see entry0 in `process_ledger`)
2019-02-19 22:18:57 -08:00
let tick = Entry::new(&genesis_block.last_id(), 1, vec![]);
let mut hash = tick.id;
entries.push(tick);
for i in 0..num_one_token_transfers {
// Transfer one token from the mint to a random account
let keypair = Keypair::new();
let tx = SystemTransaction::new_account(mint_keypair, keypair.pubkey(), 1, last_id, 0);
2019-02-19 22:18:57 -08:00
let entry = Entry::new(&hash, 1, vec![tx]);
hash = entry.id;
entries.push(entry);
// Add a second Transaction that will produce a
// ProgramError<0, ResultWithNegativeTokens> error when processed
let keypair2 = Keypair::new();
let tx = SystemTransaction::new_account(&keypair, keypair2.pubkey(), 42, last_id, 0);
2019-02-19 22:18:57 -08:00
let entry = Entry::new(&hash, 1, vec![tx]);
hash = entry.id;
entries.push(entry);
if (i + 1) % tick_interval == 0 {
2019-02-19 22:18:57 -08:00
let tick = Entry::new(&hash, 1, vec![]);
hash = tick.id;
last_id = hash;
entries.push(tick);
}
}
entries.into_iter()
}
#[test]
fn test_process_ledger_simple() {
let leader_id = Keypair::new().pubkey();
let leader_scheduler_config = LeaderSchedulerConfig::new(100, 1, 1000);
let (genesis_block, mint_keypair) = GenesisBlock::new_with_leader(100, leader_id, 50);
let ledger = create_sample_block_with_ticks(&genesis_block, &mint_keypair, 3, 3);
let bank = Bank::new(&genesis_block);
assert_eq!(bank.tick_height(), 0);
assert_eq!(bank.get_balance(&mint_keypair.pubkey()), 50);
let leader_scheduler = Arc::new(RwLock::new(LeaderScheduler::new_with_bank(
&leader_scheduler_config,
&bank,
)));
let (ledger_height, last_id) = process_ledger(&bank, ledger, &leader_scheduler).unwrap();
assert_eq!(bank.get_balance(&mint_keypair.pubkey()), 50 - 3);
assert_eq!(ledger_height, 8);
assert_eq!(bank.tick_height(), 1);
assert_eq!(bank.last_id(), last_id);
}
#[test]
fn test_par_process_entries_tick() {
let (genesis_block, _mint_keypair) = GenesisBlock::new(1000);
let bank = Bank::new(&genesis_block);
// ensure bank can process a tick
let tick = next_entry(&genesis_block.last_id(), 1, vec![]);
assert_eq!(par_process_entries(&bank, &[tick.clone()]).0, Ok(()));
assert_eq!(bank.last_id(), tick.id);
}
#[test]
fn test_par_process_entries_2_entries_collision() {
let (genesis_block, mint_keypair) = GenesisBlock::new(1000);
let bank = Bank::new(&genesis_block);
let keypair1 = Keypair::new();
let keypair2 = Keypair::new();
let last_id = bank.last_id();
// ensure bank can process 2 entries that have a common account and no tick is registered
let tx =
SystemTransaction::new_account(&mint_keypair, keypair1.pubkey(), 2, bank.last_id(), 0);
let entry_1 = next_entry(&last_id, 1, vec![tx]);
let tx =
SystemTransaction::new_account(&mint_keypair, keypair2.pubkey(), 2, bank.last_id(), 0);
let entry_2 = next_entry(&entry_1.id, 1, vec![tx]);
assert_eq!(par_process_entries(&bank, &[entry_1, entry_2]).0, Ok(()));
assert_eq!(bank.get_balance(&keypair1.pubkey()), 2);
assert_eq!(bank.get_balance(&keypair2.pubkey()), 2);
assert_eq!(bank.last_id(), last_id);
}
#[test]
fn test_par_process_entries_2_txes_collision() {
let (genesis_block, mint_keypair) = GenesisBlock::new(1000);
let bank = Bank::new(&genesis_block);
let keypair1 = Keypair::new();
let keypair2 = Keypair::new();
let keypair3 = Keypair::new();
// fund: put 4 in each of 1 and 2
assert_matches!(
bank.transfer(4, &mint_keypair, keypair1.pubkey(), bank.last_id()),
Ok(_)
);
assert_matches!(
bank.transfer(4, &mint_keypair, keypair2.pubkey(), bank.last_id()),
Ok(_)
);
// construct an Entry whose 2nd transaction would cause a lock conflict with previous entry
let entry_1_to_mint = next_entry(
&bank.last_id(),
1,
vec![SystemTransaction::new_account(
&keypair1,
mint_keypair.pubkey(),
1,
bank.last_id(),
0,
)],
);
let entry_2_to_3_mint_to_1 = next_entry(
&entry_1_to_mint.id,
1,
vec![
SystemTransaction::new_account(&keypair2, keypair3.pubkey(), 2, bank.last_id(), 0), // should be fine
SystemTransaction::new_account(
&keypair1,
mint_keypair.pubkey(),
2,
bank.last_id(),
0,
), // will collide
],
);
assert_eq!(
par_process_entries(&bank, &[entry_1_to_mint, entry_2_to_3_mint_to_1]).0,
Ok(())
);
assert_eq!(bank.get_balance(&keypair1.pubkey()), 1);
assert_eq!(bank.get_balance(&keypair2.pubkey()), 2);
assert_eq!(bank.get_balance(&keypair3.pubkey()), 2);
}
#[test]
fn test_par_process_entries_2_entries_par() {
let (genesis_block, mint_keypair) = GenesisBlock::new(1000);
let bank = Bank::new(&genesis_block);
let keypair1 = Keypair::new();
let keypair2 = Keypair::new();
let keypair3 = Keypair::new();
let keypair4 = Keypair::new();
//load accounts
let tx =
SystemTransaction::new_account(&mint_keypair, keypair1.pubkey(), 4, bank.last_id(), 0);
assert_eq!(bank.process_transaction(&tx), Ok(()));
let tx =
SystemTransaction::new_account(&mint_keypair, keypair2.pubkey(), 4, bank.last_id(), 0);
assert_eq!(bank.process_transaction(&tx), Ok(()));
// ensure bank can process 2 entries that do not have a common account and no tick is registered
let last_id = bank.last_id();
let tx = SystemTransaction::new_account(&keypair1, keypair3.pubkey(), 1, bank.last_id(), 1);
let entry_1 = next_entry(&last_id, 1, vec![tx]);
let tx = SystemTransaction::new_account(&keypair2, keypair4.pubkey(), 1, bank.last_id(), 3);
let entry_2 = next_entry(&entry_1.id, 1, vec![tx]);
let (res, fee) = par_process_entries(&bank, &[entry_1, entry_2]);
assert_eq!(res, Ok(()));
assert_eq!(fee, 4);
assert_eq!(bank.get_balance(&keypair3.pubkey()), 1);
assert_eq!(bank.get_balance(&keypair4.pubkey()), 1);
assert_eq!(bank.last_id(), last_id);
}
#[test]
fn test_par_process_entries_2_entries_tick() {
let (genesis_block, mint_keypair) = GenesisBlock::new(1000);
let bank = Bank::new(&genesis_block);
let keypair1 = Keypair::new();
let keypair2 = Keypair::new();
let keypair3 = Keypair::new();
let keypair4 = Keypair::new();
//load accounts
let tx =
SystemTransaction::new_account(&mint_keypair, keypair1.pubkey(), 6, bank.last_id(), 0);
assert_eq!(bank.process_transaction(&tx), Ok(()));
let tx =
SystemTransaction::new_account(&mint_keypair, keypair2.pubkey(), 3, bank.last_id(), 0);
assert_eq!(bank.process_transaction(&tx), Ok(()));
let last_id = bank.last_id();
// ensure bank can process 2 entries that do not have a common account and tick is registered
let tx = SystemTransaction::new_account(&keypair2, keypair3.pubkey(), 1, bank.last_id(), 2);
let entry_1 = next_entry(&last_id, 1, vec![tx]);
let tick = next_entry(&entry_1.id, 1, vec![]);
let tx = SystemTransaction::new_account(&keypair1, keypair4.pubkey(), 1, tick.id, 5);
let entry_2 = next_entry(&tick.id, 1, vec![tx]);
let (res, fee) =
par_process_entries(&bank, &[entry_1.clone(), tick.clone(), entry_2.clone()]);
assert_eq!(res, Ok(()));
assert_eq!(fee, 7);
assert_eq!(bank.get_balance(&keypair3.pubkey()), 1);
assert_eq!(bank.get_balance(&keypair4.pubkey()), 1);
assert_eq!(bank.last_id(), tick.id);
// ensure that an error is returned for an empty account (keypair2)
let tx = SystemTransaction::new_account(&keypair2, keypair3.pubkey(), 1, tick.id, 0);
let entry_3 = next_entry(&entry_2.id, 1, vec![tx]);
let (res, fee) = par_process_entries(&bank, &[entry_3]);
assert_eq!(fee, 0);
assert_eq!(res, Err(BankError::AccountNotFound));
}
}