solana/programs/vote/src/vote_state/mod.rs

2003 lines
69 KiB
Rust
Raw Normal View History

//! Vote state, vote program
2018-12-04 07:45:32 -08:00
//! Receive and processes votes from validators
use crate::authorized_voters::AuthorizedVoters;
use crate::{id, vote_instruction::VoteError};
2019-01-10 16:15:27 -08:00
use bincode::{deserialize, serialize_into, serialized_size, ErrorKind};
2019-05-21 21:45:38 -07:00
use log::*;
2019-03-02 13:51:26 -08:00
use serde_derive::{Deserialize, Serialize};
use solana_sdk::{
account::{Account, KeyedAccount},
account_utils::State,
clock::{Epoch, Slot, UnixTimestamp},
epoch_schedule::MAX_LEADER_SCHEDULE_EPOCH_OFFSET,
hash::Hash,
instruction::InstructionError,
pubkey::Pubkey,
rent::Rent,
slot_hashes::SlotHash,
sysvar::clock::Clock,
};
2020-02-25 17:12:01 -08:00
use std::boxed::Box;
use std::collections::{HashSet, VecDeque};
2018-12-04 07:45:32 -08:00
2020-02-25 17:12:01 -08:00
mod vote_state_0_23_5;
pub mod vote_state_versions;
pub use vote_state_versions::*;
// Maximum number of votes to keep around, tightly coupled with epoch_schedule::MIN_SLOTS_PER_EPOCH
pub const MAX_LOCKOUT_HISTORY: usize = 31;
pub const INITIAL_LOCKOUT: usize = 2;
2018-12-04 07:45:32 -08:00
// Maximum number of credits history to keep around
// smaller numbers makes
pub const MAX_EPOCH_CREDITS_HISTORY: usize = 64;
#[frozen_abi(digest = "69hYtmmcuqPbhpc64ZaNJDidaUcg66CW6wzPFiuYZ3To")]
#[derive(Serialize, Default, Deserialize, Debug, PartialEq, Eq, Clone, AbiExample)]
pub struct Vote {
/// A stack of votes starting with the oldest vote
pub slots: Vec<Slot>,
/// signature of the bank's state at the last slot
2019-05-21 21:45:38 -07:00
pub hash: Hash,
/// processing timestamp of last slot
pub timestamp: Option<UnixTimestamp>,
}
impl Vote {
pub fn new(slots: Vec<Slot>, hash: Hash) -> Self {
Self {
slots,
hash,
timestamp: None,
}
}
pub fn last_voted_slot(&self) -> Option<Slot> {
self.slots.last().copied()
}
}
#[derive(Serialize, Default, Deserialize, Debug, PartialEq, Eq, Clone, AbiExample)]
pub struct Lockout {
pub slot: Slot,
pub confirmation_count: u32,
}
impl Lockout {
pub fn new(slot: Slot) -> Self {
Self {
slot,
confirmation_count: 1,
}
}
// The number of slots for which this vote is locked
pub fn lockout(&self) -> u64 {
(INITIAL_LOCKOUT as u64).pow(self.confirmation_count)
}
// The slot height at which this vote expires (cannot vote for any slot
// less than this)
pub fn expiration_slot(&self) -> Slot {
self.slot + self.lockout()
}
pub fn is_expired(&self, slot: Slot) -> bool {
self.expiration_slot() < slot
}
}
#[derive(Default, Serialize, Deserialize, Debug, PartialEq, Eq, Clone, Copy)]
pub struct VoteInit {
pub node_pubkey: Pubkey,
pub authorized_voter: Pubkey,
pub authorized_withdrawer: Pubkey,
pub commission: u8,
}
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone, Copy)]
pub enum VoteAuthorize {
Voter,
Withdrawer,
}
#[derive(Debug, Default, Serialize, Deserialize, PartialEq, Eq, Clone, AbiExample)]
pub struct BlockTimestamp {
pub slot: Slot,
pub timestamp: UnixTimestamp,
}
// this is how many epochs a voter can be remembered for slashing
const MAX_ITEMS: usize = 32;
#[derive(Debug, Serialize, Deserialize, PartialEq, Eq, Clone, AbiExample)]
pub struct CircBuf<I> {
buf: [I; MAX_ITEMS],
/// next pointer
idx: usize,
is_empty: bool,
}
impl<I: Default + Copy> Default for CircBuf<I> {
fn default() -> Self {
Self {
buf: [I::default(); MAX_ITEMS],
idx: MAX_ITEMS - 1,
is_empty: true,
}
}
}
impl<I> CircBuf<I> {
pub fn append(&mut self, item: I) {
// remember prior delegate and when we switched, to support later slashing
self.idx += 1;
self.idx %= MAX_ITEMS;
self.buf[self.idx] = item;
self.is_empty = false;
}
pub fn buf(&self) -> &[I; MAX_ITEMS] {
&self.buf
}
pub fn last(&self) -> Option<&I> {
if !self.is_empty {
Some(&self.buf[self.idx])
} else {
None
}
}
}
#[frozen_abi(digest = "H7z93iz4PiRJqahQ9G1aJXao1huusBz47SA5WfP8g4yd")]
#[derive(Debug, Default, Serialize, Deserialize, PartialEq, Eq, Clone, AbiExample)]
2019-02-01 14:50:11 -08:00
pub struct VoteState {
/// the node that votes in this account
pub node_pubkey: Pubkey,
/// the signer for withdrawals
pub authorized_withdrawer: Pubkey,
/// percentage (0-100) that represents what part of a rewards
/// payout should be given to this VoteAccount
pub commission: u8,
pub votes: VecDeque<Lockout>,
Persistent tower (#10718) * Save/restore Tower * Avoid unwrap() * Rebase cleanups * Forcibly pass test * Correct reconcilation of votes after validator resume * d b g * Add more tests * fsync and fix test * Add test * Fix fmt * Debug * Fix tests... * save * Clarify error message and code cleaning around it * Move most of code out of tower save hot codepath * Proper comment for the lack of fsync on tower * Clean up * Clean up * Simpler type alias * Manage tower-restored ancestor slots without banks * Add comment * Extract long code blocks... * Add comment * Simplify returned tuple... * Tweak too aggresive log * Fix typo... * Add test * Update comment * Improve test to require non-empty stray restored slots * Measure tower save and dump all tower contents * Log adjust and add threshold related assertions * cleanup adjust * Properly lower stray restored slots priority... * Rust fmt * Fix test.... * Clarify comments a bit and add TowerError::TooNew * Further clean-up arround TowerError * Truly create ancestors by excluding last vote slot * Add comment for stray_restored_slots * Add comment for stray_restored_slots * Use BTreeSet * Consider root_slot into post-replay adjustment * Tweak logging * Add test for stray_restored_ancestors * Reorder some code * Better names for unit tests * Add frozen_abi to SavedTower * Fold long lines * Tweak stray ancestors and too old slot history * Re-adjust error conditon of too old slot history * Test normal ancestors is checked before stray ones * Fix conflict, update tests, adjust behavior a bit * Fix test * Address review comments * Last touch! * Immediately after creating cleaning pr * Revert stray slots * Revert comment... * Report error as metrics * Revert not to panic! and ignore unfixable test... * Normalize lockouts.root_slot more strictly * Add comments for panic! and more assertions * Proper initialize root without vote account * Clarify code and comments based on review feedback * Fix rebase * Further simplify based on assured tower root * Reorder code for more readability Co-authored-by: Michael Vines <mvines@gmail.com>
2020-09-18 22:03:54 -07:00
// This usually the last Lockout which was popped from self.votes.
// However, it can be arbitrary slot, when being used inside Tower
pub root_slot: Option<Slot>,
/// the signer for vote transactions
authorized_voters: AuthorizedVoters,
/// history of prior authorized voters and the epochs for which
/// they were set, the bottom end of the range is inclusive,
/// the top of the range is exclusive
prior_voters: CircBuf<(Pubkey, Epoch, Epoch)>,
/// history of how many credits earned by the end of each epoch
/// each tuple is (Epoch, credits, prev_credits)
epoch_credits: Vec<(Epoch, u64, u64)>,
/// most recent timestamp submitted with a vote
pub last_timestamp: BlockTimestamp,
2018-12-04 07:45:32 -08:00
}
2019-02-01 14:50:11 -08:00
impl VoteState {
pub fn new(vote_init: &VoteInit, clock: &Clock) -> Self {
Self {
node_pubkey: vote_init.node_pubkey,
authorized_voters: AuthorizedVoters::new(clock.epoch, vote_init.authorized_voter),
authorized_withdrawer: vote_init.authorized_withdrawer,
commission: vote_init.commission,
..VoteState::default()
}
2019-01-21 15:45:30 -08:00
}
pub fn get_authorized_voter(&self, epoch: Epoch) -> Option<Pubkey> {
self.authorized_voters.get_authorized_voter(epoch)
}
pub fn authorized_voters(&self) -> &AuthorizedVoters {
&self.authorized_voters
}
pub fn prior_voters(&mut self) -> &CircBuf<(Pubkey, Epoch, Epoch)> {
&self.prior_voters
}
pub fn get_rent_exempt_reserve(rent: &Rent) -> u64 {
rent.minimum_balance(VoteState::size_of())
}
pub fn size_of() -> usize {
2019-03-02 13:51:26 -08:00
// Upper limit on the size of the Vote State. Equal to
// size_of(VoteState) when votes.len() is MAX_LOCKOUT_HISTORY
2020-02-25 17:12:01 -08:00
let vote_state = VoteStateVersions::Current(Box::new(Self::get_max_sized_vote_state()));
2019-03-02 13:51:26 -08:00
serialized_size(&vote_state).unwrap() as usize
}
// utility function, used by Stakes, tests
pub fn from(account: &Account) -> Option<VoteState> {
Self::deserialize(&account.data).ok()
}
// utility function, used by Stakes, tests
2020-02-25 17:12:01 -08:00
pub fn to(versioned: &VoteStateVersions, account: &mut Account) -> Option<()> {
Self::serialize(versioned, &mut account.data).ok()
}
pub fn deserialize(input: &[u8]) -> Result<Self, InstructionError> {
2020-02-25 17:12:01 -08:00
deserialize::<VoteStateVersions>(&input)
.map(|versioned| versioned.convert_to_current())
.map_err(|_| InstructionError::InvalidAccountData)
2018-12-04 07:45:32 -08:00
}
2020-02-25 17:12:01 -08:00
pub fn serialize(
versioned: &VoteStateVersions,
output: &mut [u8],
) -> Result<(), InstructionError> {
serialize_into(output, versioned).map_err(|err| match *err {
ErrorKind::SizeLimit => InstructionError::AccountDataTooSmall,
_ => InstructionError::GenericError,
2019-01-10 16:15:27 -08:00
})
2018-12-04 07:45:32 -08:00
}
pub fn credits_from(account: &Account) -> Option<u64> {
Self::from(account).map(|state| state.credits())
}
/// returns commission split as (voter_portion, staker_portion, was_split) tuple
///
/// if commission calculation is 100% one way or other,
/// indicate with false for was_split
pub fn commission_split(&self, on: u64) -> (u64, u64, bool) {
match self.commission.min(100) {
0 => (0, on, false),
100 => (on, 0, false),
split => {
let on = u128::from(on);
// Calculate mine and theirs independently and symmetrically instead of
// using the remainder of the other to treat them strictly equally.
// This is also to cancel the rewarding if either of the parties
// should receive only fractional lamports, resulting in not being rewarded at all.
// Thus, note that we intentionally discard any residual fractional lamports.
let mine = on * u128::from(split) / 100u128;
let theirs = on * u128::from(100 - split) / 100u128;
(mine as u64, theirs as u64, true)
}
}
}
fn get_max_sized_vote_state() -> VoteState {
let mut vote_state = Self::default();
vote_state.votes = VecDeque::from(vec![Lockout::default(); MAX_LOCKOUT_HISTORY]);
vote_state.root_slot = Some(std::u64::MAX);
vote_state.epoch_credits = vec![(0, 0, 0); MAX_EPOCH_CREDITS_HISTORY];
let mut authorized_voters = AuthorizedVoters::default();
for i in 0..=MAX_LEADER_SCHEDULE_EPOCH_OFFSET {
authorized_voters.insert(i, solana_sdk::pubkey::new_rand());
}
vote_state.authorized_voters = authorized_voters;
vote_state
}
fn check_slots_are_valid(
&self,
vote: &Vote,
slot_hashes: &[(Slot, Hash)],
) -> Result<(), VoteError> {
let mut i = 0; // index into the vote's slots
let mut j = slot_hashes.len(); // index into the slot_hashes
while i < vote.slots.len() && j > 0 {
// find the last slot in the vote
if self
.last_voted_slot()
.map_or(false, |last_voted_slot| vote.slots[i] <= last_voted_slot)
{
i += 1;
continue;
}
if vote.slots[i] != slot_hashes[j - 1].0 {
j -= 1;
continue;
}
i += 1;
j -= 1;
}
if j == slot_hashes.len() {
debug!(
"{} dropped vote {:?} too old: {:?} ",
self.node_pubkey, vote, slot_hashes
);
return Err(VoteError::VoteTooOld);
}
if i != vote.slots.len() {
warn!(
"{} dropped vote {:?} failed to match slot: {:?}",
self.node_pubkey, vote, slot_hashes,
);
2020-07-13 09:11:07 -07:00
inc_new_counter_info!("dropped-vote-slot", 1);
return Err(VoteError::SlotsMismatch);
}
if slot_hashes[j].1 != vote.hash {
warn!(
"{} dropped vote {:?} failed to match hash {} {}",
self.node_pubkey, vote, vote.hash, slot_hashes[j].1
);
2020-07-13 09:11:07 -07:00
inc_new_counter_info!("dropped-vote-hash", 1);
return Err(VoteError::SlotHashMismatch);
}
Ok(())
}
pub fn process_vote(
&mut self,
vote: &Vote,
2019-09-08 11:13:59 -07:00
slot_hashes: &[SlotHash],
epoch: Epoch,
) -> Result<(), VoteError> {
if vote.slots.is_empty() {
return Err(VoteError::EmptySlots);
}
self.check_slots_are_valid(vote, slot_hashes)?;
vote.slots.iter().for_each(|s| self.process_slot(*s, epoch));
Ok(())
}
pub fn process_slot(&mut self, slot: Slot, epoch: Epoch) {
// Ignore votes for slots earlier than we already have votes for
if self
.last_voted_slot()
.map_or(false, |last_voted_slot| slot <= last_voted_slot)
{
return;
}
let vote = Lockout::new(slot);
self.pop_expired_votes(slot);
// Once the stack is full, pop the oldest lockout and distribute rewards
if self.votes.len() == MAX_LOCKOUT_HISTORY {
let vote = self.votes.pop_front().unwrap();
self.root_slot = Some(vote.slot);
self.increment_credits(epoch);
}
self.votes.push_back(vote);
self.double_lockouts();
}
/// increment credits, record credits for last epoch if new epoch
pub fn increment_credits(&mut self, epoch: Epoch) {
// increment credits, record by epoch
// never seen a credit
if self.epoch_credits.is_empty() {
self.epoch_credits.push((epoch, 0, 0));
} else if epoch != self.epoch_credits.last().unwrap().0 {
let (_, credits, prev_credits) = *self.epoch_credits.last().unwrap();
if credits != prev_credits {
// if credits were earned previous epoch
// append entry at end of list for the new epoch
self.epoch_credits.push((epoch, credits, credits));
} else {
// else just move the current epoch
self.epoch_credits.last_mut().unwrap().0 = epoch;
}
// if stakers do not claim before the epoch goes away they lose the
// credits...
if self.epoch_credits.len() > MAX_EPOCH_CREDITS_HISTORY {
self.epoch_credits.remove(0);
}
}
self.epoch_credits.last_mut().unwrap().1 += 1;
}
/// "unchecked" functions used by tests and Tower
2019-05-21 21:45:38 -07:00
pub fn process_vote_unchecked(&mut self, vote: &Vote) {
let slot_hashes: Vec<_> = vote.slots.iter().rev().map(|x| (*x, vote.hash)).collect();
let _ignored = self.process_vote(vote, &slot_hashes, self.current_epoch());
2019-05-21 21:45:38 -07:00
}
pub fn process_slot_vote_unchecked(&mut self, slot: Slot) {
self.process_vote_unchecked(&Vote::new(vec![slot], Hash::default()));
2019-05-21 21:45:38 -07:00
}
pub fn nth_recent_vote(&self, position: usize) -> Option<&Lockout> {
if position < self.votes.len() {
let pos = self.votes.len() - 1 - position;
self.votes.get(pos)
} else {
None
}
}
pub fn last_lockout(&self) -> Option<&Lockout> {
self.votes.back()
}
pub fn last_voted_slot(&self) -> Option<Slot> {
self.last_lockout().map(|v| v.slot)
}
fn current_epoch(&self) -> Epoch {
if self.epoch_credits.is_empty() {
0
} else {
self.epoch_credits.last().unwrap().0
}
}
/// Number of "credits" owed to this account from the mining pool. Submit this
/// VoteState to the Rewards program to trade credits for lamports.
pub fn credits(&self) -> u64 {
if self.epoch_credits.is_empty() {
0
} else {
self.epoch_credits.last().unwrap().1
}
}
/// Number of "credits" owed to this account from the mining pool on a per-epoch basis,
/// starting from credits observed.
/// Each tuple of (Epoch, u64, u64) is read as (epoch, credits, prev_credits), where
/// credits for each epoch is credits - prev_credits; while redundant this makes
/// calculating rewards over partial epochs nice and simple
pub fn epoch_credits(&self) -> &Vec<(Epoch, u64, u64)> {
&self.epoch_credits
}
fn set_new_authorized_voter<F>(
&mut self,
authorized_pubkey: &Pubkey,
current_epoch: Epoch,
target_epoch: Epoch,
verify: F,
) -> Result<(), InstructionError>
where
F: Fn(Pubkey) -> Result<(), InstructionError>,
{
let epoch_authorized_voter = self.get_and_update_authorized_voter(current_epoch).expect(
"the clock epoch is monotonically increasing, so authorized voter must be known",
);
verify(epoch_authorized_voter)?;
// The offset in slots `n` on which the target_epoch
// (default value `DEFAULT_LEADER_SCHEDULE_SLOT_OFFSET`) is
// calculated is the number of slots available from the
// first slot `S` of an epoch in which to set a new voter for
// the epoch at `S` + `n`
if self.authorized_voters.contains(target_epoch) {
return Err(VoteError::TooSoonToReauthorize.into());
}
// Get the latest authorized_voter
let (latest_epoch, latest_authorized_pubkey) = self.authorized_voters.last().expect(
"Earlier call to `get_and_update_authorized_voter()` guarantees
at least the voter for `epoch` exists in the map",
);
// If we're not setting the same pubkey as authorized pubkey again,
// then update the list of prior voters to mark the expiration
// of the old authorized pubkey
if latest_authorized_pubkey != authorized_pubkey {
// Update the epoch ranges of authorized pubkeys that will be expired
let epoch_of_last_authorized_switch =
self.prior_voters.last().map(|range| range.2).unwrap_or(0);
// target_epoch must:
// 1) Be monotonically increasing due to the clock always
// moving forward
// 2) not be equal to latest epoch otherwise this
// function would have returned TooSoonToReauthorize error
// above
assert!(target_epoch > *latest_epoch);
// Commit the new state
self.prior_voters.append((
*latest_authorized_pubkey,
epoch_of_last_authorized_switch,
target_epoch,
));
}
self.authorized_voters
.insert(target_epoch, *authorized_pubkey);
Ok(())
}
fn get_and_update_authorized_voter(&mut self, current_epoch: Epoch) -> Option<Pubkey> {
let pubkey = self
.authorized_voters
.get_and_cache_authorized_voter_for_epoch(current_epoch)
.expect(
"Internal functions should
only call this will monotonically increasing current_epoch",
);
self.authorized_voters
.purge_authorized_voters(current_epoch);
Some(pubkey)
}
fn pop_expired_votes(&mut self, slot: Slot) {
loop {
if self.last_lockout().map_or(false, |v| v.is_expired(slot)) {
self.votes.pop_back();
} else {
break;
}
}
}
fn double_lockouts(&mut self) {
let stack_depth = self.votes.len();
for (i, v) in self.votes.iter_mut().enumerate() {
// Don't increase the lockout for this vote until we get more confirmations
// than the max number of confirmations this vote has seen
if stack_depth > i + v.confirmation_count as usize {
v.confirmation_count += 1;
}
}
}
pub fn process_timestamp(
&mut self,
slot: Slot,
timestamp: UnixTimestamp,
) -> Result<(), VoteError> {
if (slot < self.last_timestamp.slot || timestamp < self.last_timestamp.timestamp)
|| (slot == self.last_timestamp.slot
&& BlockTimestamp { slot, timestamp } != self.last_timestamp
&& self.last_timestamp.slot != 0)
{
return Err(VoteError::TimestampTooOld);
}
self.last_timestamp = BlockTimestamp { slot, timestamp };
Ok(())
}
2018-12-04 07:45:32 -08:00
}
/// Authorize the given pubkey to withdraw or sign votes. This may be called multiple times,
2019-03-06 13:28:21 -08:00
/// but will implicitly withdraw authorization from the previously authorized
/// key
2020-02-25 17:12:01 -08:00
pub fn authorize<S: std::hash::BuildHasher>(
2020-01-22 17:54:06 -08:00
vote_account: &KeyedAccount,
authorized: &Pubkey,
vote_authorize: VoteAuthorize,
2020-02-25 17:12:01 -08:00
signers: &HashSet<Pubkey, S>,
clock: &Clock,
) -> Result<(), InstructionError> {
2020-02-25 17:12:01 -08:00
let mut vote_state: VoteState =
State::<VoteStateVersions>::state(vote_account)?.convert_to_current();
2019-03-06 13:28:21 -08:00
// current authorized signer must say "yay"
match vote_authorize {
VoteAuthorize::Voter => {
vote_state.set_new_authorized_voter(
authorized,
clock.epoch,
clock.leader_schedule_epoch + 1,
|epoch_authorized_voter| verify_authorized_signer(&epoch_authorized_voter, signers),
)?;
}
VoteAuthorize::Withdrawer => {
verify_authorized_signer(&vote_state.authorized_withdrawer, signers)?;
vote_state.authorized_withdrawer = *authorized;
}
}
2020-02-25 17:12:01 -08:00
vote_account.set_state(&VoteStateVersions::Current(Box::new(vote_state)))
}
/// Update the node_pubkey, requires signature of the authorized voter
pub fn update_validator_identity<S: std::hash::BuildHasher>(
2020-01-22 17:54:06 -08:00
vote_account: &KeyedAccount,
node_pubkey: &Pubkey,
2020-02-25 17:12:01 -08:00
signers: &HashSet<Pubkey, S>,
) -> Result<(), InstructionError> {
2020-02-25 17:12:01 -08:00
let mut vote_state: VoteState =
State::<VoteStateVersions>::state(vote_account)?.convert_to_current();
// current authorized withdrawer must say "yay"
verify_authorized_signer(&vote_state.authorized_withdrawer, signers)?;
// new node must say "yay"
verify_authorized_signer(&node_pubkey, signers)?;
vote_state.node_pubkey = *node_pubkey;
2020-02-25 17:12:01 -08:00
vote_account.set_state(&VoteStateVersions::Current(Box::new(vote_state)))
}
2020-06-09 21:15:54 -07:00
/// Update the vote account's commission
pub fn update_commission<S: std::hash::BuildHasher>(
vote_account: &KeyedAccount,
commission: u8,
signers: &HashSet<Pubkey, S>,
) -> Result<(), InstructionError> {
let mut vote_state: VoteState =
State::<VoteStateVersions>::state(vote_account)?.convert_to_current();
// current authorized withdrawer must say "yay"
verify_authorized_signer(&vote_state.authorized_withdrawer, signers)?;
vote_state.commission = commission;
vote_account.set_state(&VoteStateVersions::Current(Box::new(vote_state)))
}
2020-02-25 17:12:01 -08:00
fn verify_authorized_signer<S: std::hash::BuildHasher>(
authorized: &Pubkey,
2020-02-25 17:12:01 -08:00
signers: &HashSet<Pubkey, S>,
) -> Result<(), InstructionError> {
if signers.contains(authorized) {
Ok(())
} else {
Err(InstructionError::MissingRequiredSignature)
2019-03-06 13:28:21 -08:00
}
}
2019-07-25 23:20:47 -07:00
/// Withdraw funds from the vote account
2020-02-25 17:12:01 -08:00
pub fn withdraw<S: std::hash::BuildHasher>(
2020-01-22 17:54:06 -08:00
vote_account: &KeyedAccount,
2019-07-25 23:20:47 -07:00
lamports: u64,
2020-01-22 17:54:06 -08:00
to_account: &KeyedAccount,
2020-02-25 17:12:01 -08:00
signers: &HashSet<Pubkey, S>,
2019-07-25 23:20:47 -07:00
) -> Result<(), InstructionError> {
2020-02-25 17:12:01 -08:00
let vote_state: VoteState =
State::<VoteStateVersions>::state(vote_account)?.convert_to_current();
verify_authorized_signer(&vote_state.authorized_withdrawer, signers)?;
if vote_account.lamports()? < lamports {
2019-07-25 23:20:47 -07:00
return Err(InstructionError::InsufficientFunds);
}
vote_account.try_account_ref_mut()?.lamports -= lamports;
to_account.try_account_ref_mut()?.lamports += lamports;
2019-07-25 23:20:47 -07:00
Ok(())
}
/// Initialize the vote_state for a vote account
/// Assumes that the account is being init as part of a account creation or balance transfer and
/// that the transaction must be signed by the staker's keys
pub fn initialize_account<S: std::hash::BuildHasher>(
2020-01-22 17:54:06 -08:00
vote_account: &KeyedAccount,
vote_init: &VoteInit,
signers: &HashSet<Pubkey, S>,
clock: &Clock,
) -> Result<(), InstructionError> {
2020-02-25 17:12:01 -08:00
let versioned = State::<VoteStateVersions>::state(vote_account)?;
2020-02-25 17:12:01 -08:00
if !versioned.is_uninitialized() {
return Err(InstructionError::AccountAlreadyInitialized);
}
2020-02-25 17:12:01 -08:00
// node must agree to accept this vote account
verify_authorized_signer(&vote_init.node_pubkey, signers)?;
2020-02-25 17:12:01 -08:00
vote_account.set_state(&VoteStateVersions::Current(Box::new(VoteState::new(
vote_init, clock,
))))
}
2020-02-25 17:12:01 -08:00
pub fn process_vote<S: std::hash::BuildHasher>(
2020-01-22 17:54:06 -08:00
vote_account: &KeyedAccount,
2019-09-08 11:13:59 -07:00
slot_hashes: &[SlotHash],
clock: &Clock,
vote: &Vote,
2020-02-25 17:12:01 -08:00
signers: &HashSet<Pubkey, S>,
) -> Result<(), InstructionError> {
2020-02-25 17:12:01 -08:00
let versioned = State::<VoteStateVersions>::state(vote_account)?;
2020-02-25 17:12:01 -08:00
if versioned.is_uninitialized() {
return Err(InstructionError::UninitializedAccount);
2019-03-06 13:28:21 -08:00
}
2020-02-25 17:12:01 -08:00
let mut vote_state = versioned.convert_to_current();
let authorized_voter = vote_state
.get_and_update_authorized_voter(clock.epoch)
.expect("the clock epoch is monotonically increasing, so authorized voter must be known");
verify_authorized_signer(&authorized_voter, signers)?;
2019-02-15 12:20:34 -08:00
vote_state.process_vote(vote, slot_hashes, clock.epoch)?;
if let Some(timestamp) = vote.timestamp {
vote.slots
.iter()
.max()
.ok_or_else(|| VoteError::EmptySlots)
.and_then(|slot| vote_state.process_timestamp(*slot, timestamp))?;
}
2020-02-25 17:12:01 -08:00
vote_account.set_state(&VoteStateVersions::Current(Box::new(vote_state)))
}
pub fn create_account_with_authorized(
node_pubkey: &Pubkey,
authorized_voter: &Pubkey,
authorized_withdrawer: &Pubkey,
commission: u8,
lamports: u64,
) -> Account {
let mut vote_account = Account::new(lamports, VoteState::size_of(), &id());
2020-02-25 17:12:01 -08:00
let vote_state = VoteState::new(
&VoteInit {
node_pubkey: *node_pubkey,
authorized_voter: *authorized_voter,
authorized_withdrawer: *authorized_withdrawer,
commission,
},
&Clock::default(),
2020-02-25 17:12:01 -08:00
);
let versioned = VoteStateVersions::Current(Box::new(vote_state));
VoteState::to(&versioned, &mut vote_account).unwrap();
vote_account
}
// create_account() should be removed, use create_account_with_authorized() instead
pub fn create_account(
vote_pubkey: &Pubkey,
node_pubkey: &Pubkey,
commission: u8,
lamports: u64,
) -> Account {
create_account_with_authorized(node_pubkey, vote_pubkey, vote_pubkey, commission, lamports)
}
2018-12-04 07:45:32 -08:00
#[cfg(test)]
mod tests {
use super::*;
use crate::vote_state;
use solana_sdk::{
account::{get_signers, next_keyed_account, Account},
2020-01-22 17:54:06 -08:00
account_utils::StateMut,
hash::hash,
};
use std::cell::RefCell;
2018-12-04 07:45:32 -08:00
const MAX_RECENT_VOTES: usize = 16;
impl VoteState {
pub fn new_for_test(auth_pubkey: &Pubkey) -> Self {
Self::new(
&VoteInit {
node_pubkey: solana_sdk::pubkey::new_rand(),
authorized_voter: *auth_pubkey,
authorized_withdrawer: *auth_pubkey,
commission: 0,
},
&Clock::default(),
)
}
}
#[test]
fn test_initialize_vote_account() {
let vote_account_pubkey = solana_sdk::pubkey::new_rand();
2020-01-22 17:54:06 -08:00
let vote_account = Account::new_ref(100, VoteState::size_of(), &id());
let vote_account = KeyedAccount::new(&vote_account_pubkey, false, &vote_account);
let node_pubkey = solana_sdk::pubkey::new_rand();
let node_account = RefCell::new(Account::default());
let keyed_accounts = &[];
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
//init should fail, node_pubkey didn't sign the transaction
let res = initialize_account(
&vote_account,
&VoteInit {
node_pubkey,
authorized_voter: vote_account_pubkey,
authorized_withdrawer: vote_account_pubkey,
commission: 0,
},
&signers,
&Clock::default(),
);
assert_eq!(res, Err(InstructionError::MissingRequiredSignature));
let keyed_accounts = &[KeyedAccount::new(&node_pubkey, true, &node_account)];
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
//init should pass
let res = initialize_account(
2020-01-22 17:54:06 -08:00
&vote_account,
&VoteInit {
node_pubkey,
authorized_voter: vote_account_pubkey,
authorized_withdrawer: vote_account_pubkey,
commission: 0,
},
&signers,
&Clock::default(),
);
assert_eq!(res, Ok(()));
// reinit should fail
let res = initialize_account(
2020-01-22 17:54:06 -08:00
&vote_account,
&VoteInit {
node_pubkey,
authorized_voter: vote_account_pubkey,
authorized_withdrawer: vote_account_pubkey,
commission: 0,
},
&signers,
&Clock::default(),
);
assert_eq!(res, Err(InstructionError::AccountAlreadyInitialized));
}
fn create_test_account() -> (Pubkey, RefCell<Account>) {
let vote_pubkey = solana_sdk::pubkey::new_rand();
(
vote_pubkey,
RefCell::new(vote_state::create_account(
&vote_pubkey,
&solana_sdk::pubkey::new_rand(),
0,
100,
)),
)
}
fn create_test_account_with_authorized() -> (Pubkey, Pubkey, Pubkey, RefCell<Account>) {
let vote_pubkey = solana_sdk::pubkey::new_rand();
let authorized_voter = solana_sdk::pubkey::new_rand();
let authorized_withdrawer = solana_sdk::pubkey::new_rand();
(
vote_pubkey,
authorized_voter,
authorized_withdrawer,
RefCell::new(vote_state::create_account_with_authorized(
&solana_sdk::pubkey::new_rand(),
&authorized_voter,
&authorized_withdrawer,
0,
100,
)),
)
}
2019-05-21 21:45:38 -07:00
fn simulate_process_vote(
vote_pubkey: &Pubkey,
2020-01-22 17:54:06 -08:00
vote_account: &RefCell<Account>,
2019-05-21 21:45:38 -07:00
vote: &Vote,
2019-09-08 11:13:59 -07:00
slot_hashes: &[SlotHash],
epoch: Epoch,
2019-05-21 21:45:38 -07:00
) -> Result<VoteState, InstructionError> {
2020-01-22 17:54:06 -08:00
let keyed_accounts = &[KeyedAccount::new(&vote_pubkey, true, vote_account)];
2020-02-25 17:12:01 -08:00
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
process_vote(
2020-01-22 17:54:06 -08:00
&keyed_accounts[0],
slot_hashes,
&Clock {
epoch,
..Clock::default()
},
&vote.clone(),
&signers,
2019-05-21 21:45:38 -07:00
)?;
2020-02-25 17:12:01 -08:00
StateMut::<VoteStateVersions>::state(&*vote_account.borrow())
.map(|versioned| versioned.convert_to_current())
2019-05-21 21:45:38 -07:00
}
/// exercises all the keyed accounts stuff
fn simulate_process_vote_unchecked(
vote_pubkey: &Pubkey,
2020-01-22 17:54:06 -08:00
vote_account: &RefCell<Account>,
2019-05-21 21:45:38 -07:00
vote: &Vote,
) -> Result<VoteState, InstructionError> {
simulate_process_vote(
vote_pubkey,
vote_account,
vote,
&[(*vote.slots.last().unwrap(), vote.hash)],
0,
)
2019-05-21 21:45:38 -07:00
}
2018-12-04 07:45:32 -08:00
#[test]
fn test_vote_serialize() {
let mut buffer: Vec<u8> = vec![0; VoteState::size_of()];
let mut vote_state = VoteState::default();
vote_state
.votes
.resize(MAX_LOCKOUT_HISTORY, Lockout::default());
2020-02-25 17:12:01 -08:00
let versioned = VoteStateVersions::Current(Box::new(vote_state));
assert!(VoteState::serialize(&versioned, &mut buffer[0..4]).is_err());
VoteState::serialize(&versioned, &mut buffer).unwrap();
assert_eq!(
VoteStateVersions::Current(Box::new(VoteState::deserialize(&buffer).unwrap())),
versioned
);
}
#[test]
fn test_voter_registration() {
let (vote_pubkey, vote_account) = create_test_account();
2020-02-25 17:12:01 -08:00
let vote_state: VoteState = StateMut::<VoteStateVersions>::state(&*vote_account.borrow())
.unwrap()
.convert_to_current();
assert_eq!(vote_state.authorized_voters.len(), 1);
assert_eq!(
*vote_state.authorized_voters.first().unwrap().1,
vote_pubkey
);
assert!(vote_state.votes.is_empty());
}
#[test]
fn test_vote() {
2020-01-22 17:54:06 -08:00
let (vote_pubkey, vote_account) = create_test_account();
let vote = Vote::new(vec![1], Hash::default());
2019-05-21 21:45:38 -07:00
let vote_state =
2020-01-22 17:54:06 -08:00
simulate_process_vote_unchecked(&vote_pubkey, &vote_account, &vote).unwrap();
assert_eq!(
vote_state.votes,
vec![Lockout::new(*vote.slots.last().unwrap())]
);
assert_eq!(vote_state.credits(), 0);
}
2019-05-21 21:45:38 -07:00
#[test]
fn test_vote_slot_hashes() {
2020-01-22 17:54:06 -08:00
let (vote_pubkey, vote_account) = create_test_account();
2019-05-21 21:45:38 -07:00
let hash = hash(&[0u8]);
let vote = Vote::new(vec![0], hash);
2019-05-21 21:45:38 -07:00
// wrong hash
assert_eq!(
simulate_process_vote(
&vote_pubkey,
2020-01-22 17:54:06 -08:00
&vote_account,
&vote,
&[(0, Hash::default())],
0,
),
Err(VoteError::SlotHashMismatch.into())
);
2019-05-21 21:45:38 -07:00
// wrong slot
assert_eq!(
2020-01-22 17:54:06 -08:00
simulate_process_vote(&vote_pubkey, &vote_account, &vote, &[(1, hash)], 0),
Err(VoteError::SlotsMismatch.into())
);
2019-05-21 21:45:38 -07:00
// empty slot_hashes
assert_eq!(
2020-01-22 17:54:06 -08:00
simulate_process_vote(&vote_pubkey, &vote_account, &vote, &[], 0),
Err(VoteError::VoteTooOld.into())
);
2019-05-21 21:45:38 -07:00
}
#[test]
fn test_vote_update_validator_identity() {
let (vote_pubkey, _authorized_voter, authorized_withdrawer, vote_account) =
create_test_account_with_authorized();
let node_pubkey = solana_sdk::pubkey::new_rand();
let node_account = RefCell::new(Account::default());
let authorized_withdrawer_account = RefCell::new(Account::default());
let keyed_accounts = &[
KeyedAccount::new(&vote_pubkey, true, &vote_account),
KeyedAccount::new(&node_pubkey, false, &node_account),
KeyedAccount::new(&authorized_withdrawer, true, &authorized_withdrawer_account),
];
2020-02-25 17:12:01 -08:00
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
let res = update_validator_identity(&keyed_accounts[0], &node_pubkey, &signers);
assert_eq!(res, Err(InstructionError::MissingRequiredSignature));
let keyed_accounts = &[
KeyedAccount::new(&vote_pubkey, true, &vote_account),
KeyedAccount::new(&node_pubkey, true, &node_account),
KeyedAccount::new(
&authorized_withdrawer,
false,
&authorized_withdrawer_account,
),
];
2020-02-25 17:12:01 -08:00
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
let res = update_validator_identity(&keyed_accounts[0], &node_pubkey, &signers);
assert_eq!(res, Err(InstructionError::MissingRequiredSignature));
2020-02-25 17:12:01 -08:00
let vote_state: VoteState = StateMut::<VoteStateVersions>::state(&*vote_account.borrow())
.unwrap()
.convert_to_current();
assert!(vote_state.node_pubkey != node_pubkey);
let keyed_accounts = &[
KeyedAccount::new(&vote_pubkey, true, &vote_account),
KeyedAccount::new(&node_pubkey, true, &node_account),
KeyedAccount::new(&authorized_withdrawer, true, &authorized_withdrawer_account),
];
2020-02-25 17:12:01 -08:00
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
let res = update_validator_identity(&keyed_accounts[0], &node_pubkey, &signers);
assert_eq!(res, Ok(()));
2020-02-25 17:12:01 -08:00
let vote_state: VoteState = StateMut::<VoteStateVersions>::state(&*vote_account.borrow())
.unwrap()
.convert_to_current();
assert_eq!(vote_state.node_pubkey, node_pubkey);
}
2020-06-09 21:15:54 -07:00
#[test]
fn test_vote_update_commission() {
let (vote_pubkey, _authorized_voter, authorized_withdrawer, vote_account) =
create_test_account_with_authorized();
let authorized_withdrawer_account = RefCell::new(Account::default());
let keyed_accounts = &[
KeyedAccount::new(&vote_pubkey, true, &vote_account),
KeyedAccount::new(
&authorized_withdrawer,
false,
&authorized_withdrawer_account,
),
];
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
let res = update_commission(&keyed_accounts[0], 42, &signers);
assert_eq!(res, Err(InstructionError::MissingRequiredSignature));
let keyed_accounts = &[
KeyedAccount::new(&vote_pubkey, true, &vote_account),
KeyedAccount::new(&authorized_withdrawer, true, &authorized_withdrawer_account),
];
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
let res = update_commission(&keyed_accounts[0], 42, &signers);
assert_eq!(res, Ok(()));
let vote_state: VoteState = StateMut::<VoteStateVersions>::state(&*vote_account.borrow())
.unwrap()
.convert_to_current();
assert_eq!(vote_state.commission, 42);
let keyed_accounts = &[
KeyedAccount::new(&vote_pubkey, true, &vote_account),
KeyedAccount::new(&authorized_withdrawer, true, &authorized_withdrawer_account),
];
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
let res = update_commission(&keyed_accounts[0], u8::MAX, &signers);
assert_eq!(res, Ok(()));
let vote_state: VoteState = StateMut::<VoteStateVersions>::state(&*vote_account.borrow())
.unwrap()
.convert_to_current();
assert_eq!(vote_state.commission, u8::MAX);
}
#[test]
fn test_vote_signature() {
2020-01-22 17:54:06 -08:00
let (vote_pubkey, vote_account) = create_test_account();
let vote = Vote::new(vec![1], Hash::default());
// unsigned
2020-01-22 17:54:06 -08:00
let keyed_accounts = &[KeyedAccount::new(&vote_pubkey, false, &vote_account)];
2020-02-25 17:12:01 -08:00
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
let res = process_vote(
2020-01-22 17:54:06 -08:00
&keyed_accounts[0],
&[(*vote.slots.last().unwrap(), vote.hash)],
&Clock {
epoch: 1,
leader_schedule_epoch: 2,
..Clock::default()
},
&vote,
&signers,
);
assert_eq!(res, Err(InstructionError::MissingRequiredSignature));
// signed
2020-01-22 17:54:06 -08:00
let keyed_accounts = &[KeyedAccount::new(&vote_pubkey, true, &vote_account)];
2020-02-25 17:12:01 -08:00
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
let res = process_vote(
2020-01-22 17:54:06 -08:00
&keyed_accounts[0],
&[(*vote.slots.last().unwrap(), vote.hash)],
&Clock {
epoch: 1,
leader_schedule_epoch: 2,
..Clock::default()
},
&vote,
&signers,
);
assert_eq!(res, Ok(()));
// another voter, unsigned
2020-01-22 17:54:06 -08:00
let keyed_accounts = &[KeyedAccount::new(&vote_pubkey, false, &vote_account)];
2020-02-25 17:12:01 -08:00
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
let authorized_voter_pubkey = solana_sdk::pubkey::new_rand();
let res = authorize(
2020-01-22 17:54:06 -08:00
&keyed_accounts[0],
&authorized_voter_pubkey,
VoteAuthorize::Voter,
&signers,
&Clock {
epoch: 1,
leader_schedule_epoch: 2,
..Clock::default()
},
);
assert_eq!(res, Err(InstructionError::MissingRequiredSignature));
2020-01-22 17:54:06 -08:00
let keyed_accounts = &[KeyedAccount::new(&vote_pubkey, true, &vote_account)];
2020-02-25 17:12:01 -08:00
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
let res = authorize(
2020-01-22 17:54:06 -08:00
&keyed_accounts[0],
&authorized_voter_pubkey,
VoteAuthorize::Voter,
&signers,
&Clock {
epoch: 1,
leader_schedule_epoch: 2,
..Clock::default()
},
);
assert_eq!(res, Ok(()));
// Already set an authorized voter earlier for leader_schedule_epoch == 2
2020-02-25 17:12:01 -08:00
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
let res = authorize(
2020-01-22 17:54:06 -08:00
&keyed_accounts[0],
&authorized_voter_pubkey,
VoteAuthorize::Voter,
&signers,
&Clock {
epoch: 1,
leader_schedule_epoch: 2,
..Clock::default()
},
);
assert_eq!(res, Err(VoteError::TooSoonToReauthorize.into()));
// verify authorized_voter_pubkey can authorize authorized_voter_pubkey ;)
2020-01-22 17:54:06 -08:00
let authorized_voter_account = RefCell::new(Account::default());
let keyed_accounts = &[
KeyedAccount::new(&vote_pubkey, false, &vote_account),
KeyedAccount::new(&authorized_voter_pubkey, true, &authorized_voter_account),
];
2020-02-25 17:12:01 -08:00
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
let res = authorize(
2020-01-22 17:54:06 -08:00
&keyed_accounts[0],
&authorized_voter_pubkey,
VoteAuthorize::Voter,
&signers,
&Clock {
// The authorized voter was set when leader_schedule_epoch == 2, so will
// take effect when epoch == 3
epoch: 3,
leader_schedule_epoch: 4,
..Clock::default()
},
);
assert_eq!(res, Ok(()));
// authorize another withdrawer
// another voter
2020-01-22 17:54:06 -08:00
let keyed_accounts = &[KeyedAccount::new(&vote_pubkey, true, &vote_account)];
2020-02-25 17:12:01 -08:00
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
let authorized_withdrawer_pubkey = solana_sdk::pubkey::new_rand();
let res = authorize(
2020-01-22 17:54:06 -08:00
&keyed_accounts[0],
&authorized_withdrawer_pubkey,
VoteAuthorize::Withdrawer,
&signers,
&Clock {
epoch: 3,
leader_schedule_epoch: 4,
..Clock::default()
},
);
assert_eq!(res, Ok(()));
// verify authorized_withdrawer can authorize authorized_withdrawer ;)
2020-01-22 17:54:06 -08:00
let withdrawer_account = RefCell::new(Account::default());
let keyed_accounts = &[
KeyedAccount::new(&vote_pubkey, false, &vote_account),
KeyedAccount::new(&authorized_withdrawer_pubkey, true, &withdrawer_account),
];
2020-02-25 17:12:01 -08:00
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
let res = authorize(
2020-01-22 17:54:06 -08:00
&keyed_accounts[0],
&authorized_withdrawer_pubkey,
VoteAuthorize::Withdrawer,
&signers,
&Clock {
epoch: 3,
leader_schedule_epoch: 4,
..Clock::default()
},
);
assert_eq!(res, Ok(()));
// not signed by authorized voter
2020-01-22 17:54:06 -08:00
let keyed_accounts = &[KeyedAccount::new(&vote_pubkey, true, &vote_account)];
2020-02-25 17:12:01 -08:00
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
let vote = Vote::new(vec![2], Hash::default());
let res = process_vote(
2020-01-22 17:54:06 -08:00
&keyed_accounts[0],
&[(*vote.slots.last().unwrap(), vote.hash)],
&Clock {
epoch: 3,
leader_schedule_epoch: 4,
..Clock::default()
},
&vote,
&signers,
);
assert_eq!(res, Err(InstructionError::MissingRequiredSignature));
// signed by authorized voter
2020-01-22 17:54:06 -08:00
let authorized_voter_account = RefCell::new(Account::default());
let keyed_accounts = &[
KeyedAccount::new(&vote_pubkey, false, &vote_account),
KeyedAccount::new(&authorized_voter_pubkey, true, &authorized_voter_account),
];
2020-02-25 17:12:01 -08:00
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
let vote = Vote::new(vec![2], Hash::default());
let res = process_vote(
2020-01-22 17:54:06 -08:00
&keyed_accounts[0],
&[(*vote.slots.last().unwrap(), vote.hash)],
&Clock {
epoch: 3,
leader_schedule_epoch: 4,
..Clock::default()
},
&vote,
&signers,
);
assert_eq!(res, Ok(()));
}
#[test]
fn test_vote_without_initialization() {
let vote_pubkey = solana_sdk::pubkey::new_rand();
2020-01-22 17:54:06 -08:00
let vote_account = RefCell::new(Account::new(100, VoteState::size_of(), &id()));
2019-05-21 21:45:38 -07:00
let res = simulate_process_vote_unchecked(
&vote_pubkey,
2020-01-22 17:54:06 -08:00
&vote_account,
&Vote::new(vec![1], Hash::default()),
2019-05-21 21:45:38 -07:00
);
assert_eq!(res, Err(InstructionError::UninitializedAccount));
}
#[test]
fn test_vote_lockout() {
let (_vote_pubkey, vote_account) = create_test_account();
2020-02-25 17:12:01 -08:00
let mut vote_state: VoteState =
StateMut::<VoteStateVersions>::state(&*vote_account.borrow())
.unwrap()
.convert_to_current();
for i in 0..(MAX_LOCKOUT_HISTORY + 1) {
2019-05-21 21:45:38 -07:00
vote_state.process_slot_vote_unchecked((INITIAL_LOCKOUT as usize * i) as u64);
}
// The last vote should have been popped b/c it reached a depth of MAX_LOCKOUT_HISTORY
assert_eq!(vote_state.votes.len(), MAX_LOCKOUT_HISTORY);
assert_eq!(vote_state.root_slot, Some(0));
check_lockouts(&vote_state);
// One more vote that confirms the entire stack,
// the root_slot should change to the
// second vote
let top_vote = vote_state.votes.front().unwrap().slot;
vote_state
.process_slot_vote_unchecked(vote_state.last_lockout().unwrap().expiration_slot());
assert_eq!(Some(top_vote), vote_state.root_slot);
// Expire everything except the first vote
2019-05-21 21:45:38 -07:00
vote_state.process_slot_vote_unchecked(vote_state.votes.front().unwrap().expiration_slot());
// First vote and new vote are both stored for a total of 2 votes
assert_eq!(vote_state.votes.len(), 2);
}
#[test]
fn test_vote_double_lockout_after_expiration() {
let voter_pubkey = solana_sdk::pubkey::new_rand();
let mut vote_state = VoteState::new_for_test(&voter_pubkey);
for i in 0..3 {
2019-05-21 21:45:38 -07:00
vote_state.process_slot_vote_unchecked(i as u64);
}
check_lockouts(&vote_state);
// Expire the third vote (which was a vote for slot 2). The height of the
// vote stack is unchanged, so none of the previous votes should have
// doubled in lockout
2019-05-21 21:45:38 -07:00
vote_state.process_slot_vote_unchecked((2 + INITIAL_LOCKOUT + 1) as u64);
check_lockouts(&vote_state);
// Vote again, this time the vote stack depth increases, so the votes should
// double for everybody
2019-05-21 21:45:38 -07:00
vote_state.process_slot_vote_unchecked((2 + INITIAL_LOCKOUT + 2) as u64);
check_lockouts(&vote_state);
2019-04-05 22:11:40 -07:00
// Vote again, this time the vote stack depth increases, so the votes should
2019-04-05 22:11:40 -07:00
// double for everybody
2019-05-21 21:45:38 -07:00
vote_state.process_slot_vote_unchecked((2 + INITIAL_LOCKOUT + 3) as u64);
2019-04-05 22:11:40 -07:00
check_lockouts(&vote_state);
}
#[test]
fn test_expire_multiple_votes() {
let voter_pubkey = solana_sdk::pubkey::new_rand();
let mut vote_state = VoteState::new_for_test(&voter_pubkey);
2019-04-05 22:11:40 -07:00
for i in 0..3 {
2019-05-21 21:45:38 -07:00
vote_state.process_slot_vote_unchecked(i as u64);
2019-04-05 22:11:40 -07:00
}
assert_eq!(vote_state.votes[0].confirmation_count, 3);
// Expire the second and third votes
let expire_slot = vote_state.votes[1].slot + vote_state.votes[1].lockout() + 1;
2019-05-21 21:45:38 -07:00
vote_state.process_slot_vote_unchecked(expire_slot);
2019-04-05 22:11:40 -07:00
assert_eq!(vote_state.votes.len(), 2);
// Check that the old votes expired
assert_eq!(vote_state.votes[0].slot, 0);
assert_eq!(vote_state.votes[1].slot, expire_slot);
// Process one more vote
2019-05-21 21:45:38 -07:00
vote_state.process_slot_vote_unchecked(expire_slot + 1);
2019-04-05 22:11:40 -07:00
// Confirmation count for the older first vote should remain unchanged
assert_eq!(vote_state.votes[0].confirmation_count, 3);
// The later votes should still have increasing confirmation counts
assert_eq!(vote_state.votes[1].confirmation_count, 2);
assert_eq!(vote_state.votes[2].confirmation_count, 1);
}
#[test]
fn test_vote_credits() {
let voter_pubkey = solana_sdk::pubkey::new_rand();
let mut vote_state = VoteState::new_for_test(&voter_pubkey);
for i in 0..MAX_LOCKOUT_HISTORY {
2019-05-21 21:45:38 -07:00
vote_state.process_slot_vote_unchecked(i as u64);
}
assert_eq!(vote_state.credits(), 0);
2019-05-21 21:45:38 -07:00
vote_state.process_slot_vote_unchecked(MAX_LOCKOUT_HISTORY as u64 + 1);
assert_eq!(vote_state.credits(), 1);
2019-05-21 21:45:38 -07:00
vote_state.process_slot_vote_unchecked(MAX_LOCKOUT_HISTORY as u64 + 2);
assert_eq!(vote_state.credits(), 2);
2019-05-21 21:45:38 -07:00
vote_state.process_slot_vote_unchecked(MAX_LOCKOUT_HISTORY as u64 + 3);
assert_eq!(vote_state.credits(), 3);
}
#[test]
fn test_duplicate_vote() {
let voter_pubkey = solana_sdk::pubkey::new_rand();
let mut vote_state = VoteState::new_for_test(&voter_pubkey);
2019-05-21 21:45:38 -07:00
vote_state.process_slot_vote_unchecked(0);
vote_state.process_slot_vote_unchecked(1);
vote_state.process_slot_vote_unchecked(0);
assert_eq!(vote_state.nth_recent_vote(0).unwrap().slot, 1);
assert_eq!(vote_state.nth_recent_vote(1).unwrap().slot, 0);
assert!(vote_state.nth_recent_vote(2).is_none());
}
#[test]
fn test_nth_recent_vote() {
let voter_pubkey = solana_sdk::pubkey::new_rand();
let mut vote_state = VoteState::new_for_test(&voter_pubkey);
for i in 0..MAX_LOCKOUT_HISTORY {
2019-05-21 21:45:38 -07:00
vote_state.process_slot_vote_unchecked(i as u64);
}
for i in 0..(MAX_LOCKOUT_HISTORY - 1) {
assert_eq!(
vote_state.nth_recent_vote(i).unwrap().slot as usize,
MAX_LOCKOUT_HISTORY - i - 1,
);
}
assert!(vote_state.nth_recent_vote(MAX_LOCKOUT_HISTORY).is_none());
}
fn check_lockouts(vote_state: &VoteState) {
for (i, vote) in vote_state.votes.iter().enumerate() {
let num_votes = vote_state.votes.len() - i;
assert_eq!(vote.lockout(), INITIAL_LOCKOUT.pow(num_votes as u32) as u64);
}
}
fn recent_votes(vote_state: &VoteState) -> Vec<Vote> {
let start = vote_state.votes.len().saturating_sub(MAX_RECENT_VOTES);
(start..vote_state.votes.len())
.map(|i| Vote::new(vec![vote_state.votes.get(i).unwrap().slot], Hash::default()))
.collect()
}
/// check that two accounts with different data can be brought to the same state with one vote submission
#[test]
fn test_process_missed_votes() {
let account_a = solana_sdk::pubkey::new_rand();
let mut vote_state_a = VoteState::new_for_test(&account_a);
let account_b = solana_sdk::pubkey::new_rand();
let mut vote_state_b = VoteState::new_for_test(&account_b);
// process some votes on account a
(0..5).for_each(|i| vote_state_a.process_slot_vote_unchecked(i as u64));
assert_ne!(recent_votes(&vote_state_a), recent_votes(&vote_state_b));
// as long as b has missed less than "NUM_RECENT" votes both accounts should be in sync
let slots = (0u64..MAX_RECENT_VOTES as u64).collect();
let vote = Vote::new(slots, Hash::default());
let slot_hashes: Vec<_> = vote.slots.iter().rev().map(|x| (*x, vote.hash)).collect();
2019-05-21 21:45:38 -07:00
assert_eq!(vote_state_a.process_vote(&vote, &slot_hashes, 0), Ok(()));
assert_eq!(vote_state_b.process_vote(&vote, &slot_hashes, 0), Ok(()));
assert_eq!(recent_votes(&vote_state_a), recent_votes(&vote_state_b));
}
#[test]
fn test_process_vote_skips_old_vote() {
let mut vote_state = VoteState::default();
let vote = Vote::new(vec![0], Hash::default());
let slot_hashes: Vec<_> = vec![(0, vote.hash)];
assert_eq!(vote_state.process_vote(&vote, &slot_hashes, 0), Ok(()));
let recent = recent_votes(&vote_state);
assert_eq!(
vote_state.process_vote(&vote, &slot_hashes, 0),
Err(VoteError::VoteTooOld)
);
assert_eq!(recent, recent_votes(&vote_state));
}
#[test]
fn test_check_slots_are_valid_vote_empty_slot_hashes() {
let vote_state = VoteState::default();
let vote = Vote::new(vec![0], Hash::default());
assert_eq!(
vote_state.check_slots_are_valid(&vote, &[]),
Err(VoteError::VoteTooOld)
);
}
#[test]
fn test_check_slots_are_valid_new_vote() {
let vote_state = VoteState::default();
let vote = Vote::new(vec![0], Hash::default());
let slot_hashes: Vec<_> = vec![(*vote.slots.last().unwrap(), vote.hash)];
assert_eq!(
vote_state.check_slots_are_valid(&vote, &slot_hashes),
Ok(())
);
}
#[test]
fn test_check_slots_are_valid_bad_hash() {
let vote_state = VoteState::default();
let vote = Vote::new(vec![0], Hash::default());
let slot_hashes: Vec<_> = vec![(*vote.slots.last().unwrap(), hash(vote.hash.as_ref()))];
assert_eq!(
vote_state.check_slots_are_valid(&vote, &slot_hashes),
Err(VoteError::SlotHashMismatch)
);
}
#[test]
fn test_check_slots_are_valid_bad_slot() {
let vote_state = VoteState::default();
let vote = Vote::new(vec![1], Hash::default());
let slot_hashes: Vec<_> = vec![(0, vote.hash)];
assert_eq!(
vote_state.check_slots_are_valid(&vote, &slot_hashes),
Err(VoteError::SlotsMismatch)
);
}
#[test]
fn test_check_slots_are_valid_duplicate_vote() {
let mut vote_state = VoteState::default();
let vote = Vote::new(vec![0], Hash::default());
let slot_hashes: Vec<_> = vec![(*vote.slots.last().unwrap(), vote.hash)];
assert_eq!(vote_state.process_vote(&vote, &slot_hashes, 0), Ok(()));
assert_eq!(
vote_state.check_slots_are_valid(&vote, &slot_hashes),
Err(VoteError::VoteTooOld)
);
}
#[test]
fn test_check_slots_are_valid_next_vote() {
let mut vote_state = VoteState::default();
let vote = Vote::new(vec![0], Hash::default());
let slot_hashes: Vec<_> = vec![(*vote.slots.last().unwrap(), vote.hash)];
assert_eq!(vote_state.process_vote(&vote, &slot_hashes, 0), Ok(()));
let vote = Vote::new(vec![0, 1], Hash::default());
let slot_hashes: Vec<_> = vec![(1, vote.hash), (0, vote.hash)];
assert_eq!(
vote_state.check_slots_are_valid(&vote, &slot_hashes),
Ok(())
);
}
#[test]
fn test_check_slots_are_valid_next_vote_only() {
let mut vote_state = VoteState::default();
let vote = Vote::new(vec![0], Hash::default());
let slot_hashes: Vec<_> = vec![(*vote.slots.last().unwrap(), vote.hash)];
assert_eq!(vote_state.process_vote(&vote, &slot_hashes, 0), Ok(()));
let vote = Vote::new(vec![1], Hash::default());
let slot_hashes: Vec<_> = vec![(1, vote.hash), (0, vote.hash)];
assert_eq!(
vote_state.check_slots_are_valid(&vote, &slot_hashes),
Ok(())
);
}
#[test]
fn test_process_vote_empty_slots() {
let mut vote_state = VoteState::default();
let vote = Vote::new(vec![], Hash::default());
assert_eq!(
vote_state.process_vote(&vote, &[], 0),
Err(VoteError::EmptySlots)
);
}
#[test]
fn test_vote_state_commission_split() {
let vote_state = VoteState::default();
assert_eq!(vote_state.commission_split(1), (0, 1, false));
let mut vote_state = VoteState::default();
vote_state.commission = std::u8::MAX;
assert_eq!(vote_state.commission_split(1), (1, 0, false));
vote_state.commission = 99;
assert_eq!(vote_state.commission_split(10), (9, 0, true));
vote_state.commission = 1;
assert_eq!(vote_state.commission_split(10), (0, 9, true));
vote_state.commission = 50;
let (voter_portion, staker_portion, was_split) = vote_state.commission_split(10);
assert_eq!((voter_portion, staker_portion, was_split), (5, 5, true));
}
2019-07-25 23:20:47 -07:00
#[test]
fn test_vote_state_withdraw() {
2020-01-22 17:54:06 -08:00
let (vote_pubkey, vote_account) = create_test_account();
2019-07-25 23:20:47 -07:00
// unsigned request
2020-01-22 17:54:06 -08:00
let keyed_accounts = &[KeyedAccount::new(&vote_pubkey, false, &vote_account)];
2020-02-25 17:12:01 -08:00
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
2019-07-25 23:20:47 -07:00
let res = withdraw(
2020-01-22 17:54:06 -08:00
&keyed_accounts[0],
2019-07-25 23:20:47 -07:00
0,
2020-01-22 17:54:06 -08:00
&KeyedAccount::new(
&solana_sdk::pubkey::new_rand(),
false,
2020-01-22 17:54:06 -08:00
&RefCell::new(Account::default()),
),
&signers,
2019-07-25 23:20:47 -07:00
);
assert_eq!(res, Err(InstructionError::MissingRequiredSignature));
// insufficient funds
2020-01-22 17:54:06 -08:00
let keyed_accounts = &[KeyedAccount::new(&vote_pubkey, true, &vote_account)];
2020-02-25 17:12:01 -08:00
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
2019-07-25 23:20:47 -07:00
let res = withdraw(
2020-01-22 17:54:06 -08:00
&keyed_accounts[0],
2019-07-25 23:20:47 -07:00
101,
2020-01-22 17:54:06 -08:00
&KeyedAccount::new(
&solana_sdk::pubkey::new_rand(),
false,
2020-01-22 17:54:06 -08:00
&RefCell::new(Account::default()),
),
&signers,
2019-07-25 23:20:47 -07:00
);
assert_eq!(res, Err(InstructionError::InsufficientFunds));
// all good
2020-01-22 17:54:06 -08:00
let to_account = RefCell::new(Account::default());
let lamports = vote_account.borrow().lamports;
2020-01-22 17:54:06 -08:00
let keyed_accounts = &[KeyedAccount::new(&vote_pubkey, true, &vote_account)];
2020-02-25 17:12:01 -08:00
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
2019-07-25 23:20:47 -07:00
let res = withdraw(
2020-01-22 17:54:06 -08:00
&keyed_accounts[0],
lamports,
&KeyedAccount::new(&solana_sdk::pubkey::new_rand(), false, &to_account),
&signers,
);
assert_eq!(res, Ok(()));
assert_eq!(vote_account.borrow().lamports, 0);
assert_eq!(to_account.borrow().lamports, lamports);
// reset balance, verify that authorized_withdrawer works
vote_account.borrow_mut().lamports = lamports;
// authorize authorized_withdrawer
let authorized_withdrawer_pubkey = solana_sdk::pubkey::new_rand();
2020-01-22 17:54:06 -08:00
let keyed_accounts = &[KeyedAccount::new(&vote_pubkey, true, &vote_account)];
2020-02-25 17:12:01 -08:00
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
let res = authorize(
2020-01-22 17:54:06 -08:00
&keyed_accounts[0],
&authorized_withdrawer_pubkey,
VoteAuthorize::Withdrawer,
&signers,
&Clock::default(),
);
assert_eq!(res, Ok(()));
// withdraw using authorized_withdrawer to authorized_withdrawer's account
2020-01-22 17:54:06 -08:00
let withdrawer_account = RefCell::new(Account::default());
let keyed_accounts = &[
KeyedAccount::new(&vote_pubkey, false, &vote_account),
KeyedAccount::new(&authorized_withdrawer_pubkey, true, &withdrawer_account),
];
2020-02-25 17:12:01 -08:00
let signers: HashSet<Pubkey> = get_signers(keyed_accounts);
2020-01-22 17:54:06 -08:00
let keyed_accounts = &mut keyed_accounts.iter();
let vote_keyed_account = next_keyed_account(keyed_accounts).unwrap();
let withdrawer_keyed_account = next_keyed_account(keyed_accounts).unwrap();
let res = withdraw(
vote_keyed_account,
2019-07-25 23:20:47 -07:00
lamports,
withdrawer_keyed_account,
&signers,
2019-07-25 23:20:47 -07:00
);
assert_eq!(res, Ok(()));
assert_eq!(vote_account.borrow().lamports, 0);
assert_eq!(withdrawer_account.borrow().lamports, lamports);
2019-07-25 23:20:47 -07:00
}
#[test]
fn test_vote_state_epoch_credits() {
let mut vote_state = VoteState::default();
assert_eq!(vote_state.credits(), 0);
assert_eq!(vote_state.epoch_credits().clone(), vec![]);
let mut expected = vec![];
let mut credits = 0;
let epochs = (MAX_EPOCH_CREDITS_HISTORY + 2) as u64;
for epoch in 0..epochs {
for _j in 0..epoch {
vote_state.increment_credits(epoch);
credits += 1;
}
expected.push((epoch, credits, credits - epoch));
}
while expected.len() > MAX_EPOCH_CREDITS_HISTORY {
expected.remove(0);
}
assert_eq!(vote_state.credits(), credits);
assert_eq!(vote_state.epoch_credits().clone(), expected);
}
#[test]
fn test_vote_state_epoch0_no_credits() {
let mut vote_state = VoteState::default();
assert_eq!(vote_state.epoch_credits().len(), 0);
vote_state.increment_credits(1);
assert_eq!(vote_state.epoch_credits().len(), 1);
vote_state.increment_credits(2);
assert_eq!(vote_state.epoch_credits().len(), 2);
}
#[test]
fn test_vote_state_increment_credits() {
let mut vote_state = VoteState::default();
let credits = (MAX_EPOCH_CREDITS_HISTORY + 2) as u64;
for i in 0..credits {
vote_state.increment_credits(i as u64);
}
assert_eq!(vote_state.credits(), credits);
assert!(vote_state.epoch_credits().len() <= MAX_EPOCH_CREDITS_HISTORY);
}
#[test]
fn test_vote_process_timestamp() {
let (slot, timestamp) = (15, 1_575_412_285);
let mut vote_state = VoteState::default();
vote_state.last_timestamp = BlockTimestamp { slot, timestamp };
assert_eq!(
vote_state.process_timestamp(slot - 1, timestamp + 1),
Err(VoteError::TimestampTooOld)
);
assert_eq!(
vote_state.last_timestamp,
BlockTimestamp { slot, timestamp }
);
assert_eq!(
vote_state.process_timestamp(slot + 1, timestamp - 1),
Err(VoteError::TimestampTooOld)
);
assert_eq!(
vote_state.process_timestamp(slot, timestamp + 1),
Err(VoteError::TimestampTooOld)
);
assert_eq!(vote_state.process_timestamp(slot, timestamp), Ok(()));
assert_eq!(
vote_state.last_timestamp,
BlockTimestamp { slot, timestamp }
);
assert_eq!(vote_state.process_timestamp(slot + 1, timestamp), Ok(()));
assert_eq!(
vote_state.last_timestamp,
BlockTimestamp {
slot: slot + 1,
timestamp
}
);
assert_eq!(
vote_state.process_timestamp(slot + 2, timestamp + 1),
Ok(())
);
assert_eq!(
vote_state.last_timestamp,
BlockTimestamp {
slot: slot + 2,
timestamp: timestamp + 1
}
);
// Test initial vote
vote_state.last_timestamp = BlockTimestamp::default();
assert_eq!(vote_state.process_timestamp(0, timestamp), Ok(()));
}
#[test]
fn test_get_and_update_authorized_voter() {
let original_voter = solana_sdk::pubkey::new_rand();
let mut vote_state = VoteState::new(
&VoteInit {
node_pubkey: original_voter,
authorized_voter: original_voter,
authorized_withdrawer: original_voter,
commission: 0,
},
&Clock::default(),
);
// If no new authorized voter was set, the same authorized voter
// is locked into the next epoch
assert_eq!(
vote_state.get_and_update_authorized_voter(1).unwrap(),
original_voter
);
// Try to get the authorized voter for epoch 5, implies
// the authorized voter for epochs 1-4 were unchanged
assert_eq!(
vote_state.get_and_update_authorized_voter(5).unwrap(),
original_voter
);
// Authorized voter for expired epoch 0..5 should have been
// purged and no longer queryable
assert_eq!(vote_state.authorized_voters.len(), 1);
for i in 0..5 {
assert!(vote_state
.authorized_voters
.get_authorized_voter(i)
.is_none());
}
// Set an authorized voter change at slot 7
let new_authorized_voter = solana_sdk::pubkey::new_rand();
vote_state
.set_new_authorized_voter(&new_authorized_voter, 5, 7, |_| Ok(()))
.unwrap();
// Try to get the authorized voter for epoch 6, unchanged
assert_eq!(
vote_state.get_and_update_authorized_voter(6).unwrap(),
original_voter
);
// Try to get the authorized voter for epoch 7 and onwards, should
// be the new authorized voter
for i in 7..10 {
assert_eq!(
vote_state.get_and_update_authorized_voter(i).unwrap(),
new_authorized_voter
);
}
assert_eq!(vote_state.authorized_voters.len(), 1);
}
#[test]
fn test_set_new_authorized_voter() {
let original_voter = solana_sdk::pubkey::new_rand();
let epoch_offset = 15;
let mut vote_state = VoteState::new(
&VoteInit {
node_pubkey: original_voter,
authorized_voter: original_voter,
authorized_withdrawer: original_voter,
commission: 0,
},
&Clock::default(),
);
assert!(vote_state.prior_voters.last().is_none());
let new_voter = solana_sdk::pubkey::new_rand();
// Set a new authorized voter
vote_state
.set_new_authorized_voter(&new_voter, 0, epoch_offset, |_| Ok(()))
.unwrap();
assert_eq!(vote_state.prior_voters.idx, 0);
assert_eq!(
vote_state.prior_voters.last(),
Some(&(original_voter, 0, epoch_offset))
);
// Trying to set authorized voter for same epoch again should fail
assert_eq!(
vote_state.set_new_authorized_voter(&new_voter, 0, epoch_offset, |_| Ok(())),
Err(VoteError::TooSoonToReauthorize.into())
);
// Setting the same authorized voter again should succeed
vote_state
.set_new_authorized_voter(&new_voter, 2, 2 + epoch_offset, |_| Ok(()))
.unwrap();
// Set a third and fourth authorized voter
let new_voter2 = solana_sdk::pubkey::new_rand();
vote_state
.set_new_authorized_voter(&new_voter2, 3, 3 + epoch_offset, |_| Ok(()))
.unwrap();
assert_eq!(vote_state.prior_voters.idx, 1);
assert_eq!(
vote_state.prior_voters.last(),
Some(&(new_voter, epoch_offset, 3 + epoch_offset))
);
let new_voter3 = solana_sdk::pubkey::new_rand();
vote_state
.set_new_authorized_voter(&new_voter3, 6, 6 + epoch_offset, |_| Ok(()))
.unwrap();
assert_eq!(vote_state.prior_voters.idx, 2);
assert_eq!(
vote_state.prior_voters.last(),
Some(&(new_voter2, 3 + epoch_offset, 6 + epoch_offset))
);
// Check can set back to original voter
vote_state
.set_new_authorized_voter(&original_voter, 9, 9 + epoch_offset, |_| Ok(()))
.unwrap();
// Run with these voters for a while, check the ranges of authorized
// voters is correct
for i in 9..epoch_offset {
assert_eq!(
vote_state.get_and_update_authorized_voter(i).unwrap(),
original_voter
);
}
for i in epoch_offset..3 + epoch_offset {
assert_eq!(
vote_state.get_and_update_authorized_voter(i).unwrap(),
new_voter
);
}
for i in 3 + epoch_offset..6 + epoch_offset {
assert_eq!(
vote_state.get_and_update_authorized_voter(i).unwrap(),
new_voter2
);
}
for i in 6 + epoch_offset..9 + epoch_offset {
assert_eq!(
vote_state.get_and_update_authorized_voter(i).unwrap(),
new_voter3
);
}
for i in 9 + epoch_offset..=10 + epoch_offset {
assert_eq!(
vote_state.get_and_update_authorized_voter(i).unwrap(),
original_voter
);
}
}
#[test]
fn test_authorized_voter_is_locked_within_epoch() {
let original_voter = solana_sdk::pubkey::new_rand();
let mut vote_state = VoteState::new(
&VoteInit {
node_pubkey: original_voter,
authorized_voter: original_voter,
authorized_withdrawer: original_voter,
commission: 0,
},
&Clock::default(),
);
// Test that it's not possible to set a new authorized
// voter within the same epoch, even if none has been
// explicitly set before
let new_voter = solana_sdk::pubkey::new_rand();
assert_eq!(
vote_state.set_new_authorized_voter(&new_voter, 1, 1, |_| Ok(())),
Err(VoteError::TooSoonToReauthorize.into())
);
assert_eq!(vote_state.get_authorized_voter(1), Some(original_voter));
// Set a new authorized voter for a future epoch
assert_eq!(
vote_state.set_new_authorized_voter(&new_voter, 1, 2, |_| Ok(())),
Ok(())
);
// Test that it's not possible to set a new authorized
// voter within the same epoch, even if none has been
// explicitly set before
assert_eq!(
vote_state.set_new_authorized_voter(&original_voter, 3, 3, |_| Ok(())),
Err(VoteError::TooSoonToReauthorize.into())
);
assert_eq!(vote_state.get_authorized_voter(3), Some(new_voter));
}
#[test]
fn test_vote_state_max_size() {
let mut max_sized_data = vec![0; VoteState::size_of()];
2020-02-25 17:12:01 -08:00
let vote_state = VoteState::get_max_sized_vote_state();
let (start_leader_schedule_epoch, _) = vote_state.authorized_voters.last().unwrap();
let start_current_epoch =
start_leader_schedule_epoch - MAX_LEADER_SCHEDULE_EPOCH_OFFSET + 1;
2020-02-25 17:12:01 -08:00
let mut vote_state = Some(vote_state);
for i in start_current_epoch..start_current_epoch + 2 * MAX_LEADER_SCHEDULE_EPOCH_OFFSET {
2020-02-25 17:12:01 -08:00
vote_state.as_mut().map(|vote_state| {
vote_state.set_new_authorized_voter(
&solana_sdk::pubkey::new_rand(),
i,
i + MAX_LEADER_SCHEDULE_EPOCH_OFFSET,
|_| Ok(()),
)
2020-02-25 17:12:01 -08:00
});
let versioned = VoteStateVersions::Current(Box::new(vote_state.take().unwrap()));
VoteState::serialize(&versioned, &mut max_sized_data).unwrap();
vote_state = Some(versioned.convert_to_current());
}
}
2018-12-04 07:45:32 -08:00
}