Local program allocator (#12679)

This commit is contained in:
Jack May 2020-10-06 11:03:51 -07:00 committed by GitHub
parent bff3825298
commit 630eb3b907
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 408 additions and 188 deletions

View File

@ -1784,6 +1784,13 @@ dependencies = [
"solana-sdk", "solana-sdk",
] ]
[[package]]
name = "solana-bpf-rust-custom-heap"
version = "1.4.0"
dependencies = [
"solana-sdk",
]
[[package]] [[package]]
name = "solana-bpf-rust-dep-crate" name = "solana-bpf-rust-dep-crate"
version = "1.4.0" version = "1.4.0"

View File

@ -37,6 +37,7 @@ members = [
"rust/128bit", "rust/128bit",
"rust/128bit_dep", "rust/128bit_dep",
"rust/alloc", "rust/alloc",
"rust/custom_heap",
"rust/dep_crate", "rust/dep_crate",
"rust/deprecated_loader", "rust/deprecated_loader",
"rust/dup_accounts", "rust/dup_accounts",

View File

@ -67,6 +67,7 @@ fn main() {
let rust_programs = [ let rust_programs = [
"128bit", "128bit",
"alloc", "alloc",
"custom_heap",
"dep_crate", "dep_crate",
"deprecated_loader", "deprecated_loader",
"dup_accounts", "dup_accounts",

View File

@ -0,0 +1,27 @@
# Note: This crate must be built using do.sh
[package]
name = "solana-bpf-rust-custom-heap"
version = "1.4.0"
description = "Solana BPF test program written in Rust"
authors = ["Solana Maintainers <maintainers@solana.foundation>"]
repository = "https://github.com/solana-labs/solana"
license = "Apache-2.0"
homepage = "https://solana.com/"
edition = "2018"
[dependencies]
solana-sdk = { path = "../../../../sdk/", version = "1.4.0", default-features = false }
[features]
custom-heap = []
program = ["custom-heap", "solana-sdk/program"]
default = ["program", "solana-sdk/default"]
[lib]
name = "solana_bpf_rust_custom_heap"
crate-type = ["cdylib"]
[package.metadata.docs.rs]
targets = ["x86_64-unknown-linux-gnu"]

View File

@ -0,0 +1,2 @@
[target.bpfel-unknown-unknown.dependencies.std]
features = []

View File

@ -0,0 +1,68 @@
//! @brief Example Rust-based BPF that tests out using a custom heap
use solana_sdk::{
account_info::AccountInfo,
entrypoint,
entrypoint::{ProgramResult, HEAP_LENGTH, HEAP_START_ADDRESS},
info,
pubkey::Pubkey,
};
use std::{
alloc::{alloc, Layout},
mem::{align_of, size_of},
ptr::null_mut,
usize,
};
/// Developers can implement their own heap by defining their own
/// `#[global_allocator]`. The following implements a dummy for test purposes
/// but can be flushed out with whatever the developer sees fit.
struct BumpAllocator;
unsafe impl std::alloc::GlobalAlloc for BumpAllocator {
#[inline]
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
if layout.size() == usize::MAX - 0x42 {
// Return test value
0x42 as *mut u8
} else {
const POS_PTR: *mut usize = HEAP_START_ADDRESS as *mut usize;
const TOP_ADDRESS: usize = HEAP_START_ADDRESS + HEAP_LENGTH;
const BOTTOM_ADDRESS: usize = HEAP_START_ADDRESS + size_of::<*mut u8>();
let mut pos = *POS_PTR;
if pos == 0 {
// First time, set starting position
pos = TOP_ADDRESS;
}
pos = pos.saturating_sub(layout.size());
pos &= !(layout.align().saturating_sub(1));
if pos < BOTTOM_ADDRESS {
return null_mut();
}
*POS_PTR = pos;
pos as *mut u8
}
}
#[inline]
unsafe fn dealloc(&self, _: *mut u8, _: Layout) {
// I'm a bump allocator, I don't free
}
}
#[cfg(not(test))]
#[global_allocator]
static A: BumpAllocator = BumpAllocator;
entrypoint!(process_instruction);
fn process_instruction(
_program_id: &Pubkey,
_accounts: &[AccountInfo],
_instruction_data: &[u8],
) -> ProgramResult {
info!("Custom heap");
unsafe {
let layout = Layout::from_size_align(usize::MAX - 0x42, align_of::<u8>()).unwrap();
let ptr = alloc(layout);
assert_eq!(ptr as u64, 0x42);
}
Ok(())
}

View File

@ -1,179 +1,5 @@
//! @brief Example Rust-based BPF program that issues a cross-program-invocation //! @brief Example Rust-based BPF program that issues a cross-program-invocation
#![allow(unreachable_code)]
pub mod instruction; pub mod instruction;
#[cfg(feature = "program")]
extern crate solana_sdk; pub mod processor;
use crate::instruction::*;
use solana_sdk::{
account_info::AccountInfo, bpf_loader, entrypoint, entrypoint::ProgramResult, info,
program::invoke, program_error::ProgramError, pubkey::Pubkey,
};
entrypoint!(process_instruction);
#[allow(clippy::cognitive_complexity)]
fn process_instruction(
program_id: &Pubkey,
accounts: &[AccountInfo],
instruction_data: &[u8],
) -> ProgramResult {
info!("Invoked program");
if instruction_data.is_empty() {
return Ok(());
}
match instruction_data[0] {
TEST_VERIFY_TRANSLATIONS => {
info!("verify data translations");
const ARGUMENT_INDEX: usize = 0;
const INVOKED_ARGUMENT_INDEX: usize = 1;
const INVOKED_PROGRAM_INDEX: usize = 2;
const INVOKED_PROGRAM_DUP_INDEX: usize = 3;
assert_eq!(&instruction_data[1..], &[1, 2, 3, 4, 5]);
assert_eq!(accounts.len(), 4);
assert_eq!(accounts[ARGUMENT_INDEX].lamports(), 42);
assert_eq!(accounts[ARGUMENT_INDEX].data_len(), 100);
assert!(accounts[ARGUMENT_INDEX].is_signer);
assert!(accounts[ARGUMENT_INDEX].is_writable);
assert_eq!(accounts[ARGUMENT_INDEX].rent_epoch, 0);
assert!(!accounts[ARGUMENT_INDEX].executable);
{
let data = accounts[ARGUMENT_INDEX].try_borrow_data()?;
for i in 0..100 {
assert_eq!(data[i as usize], i);
}
}
assert_eq!(
accounts[INVOKED_ARGUMENT_INDEX].owner,
accounts[INVOKED_PROGRAM_INDEX].key
);
assert_eq!(accounts[INVOKED_ARGUMENT_INDEX].lamports(), 10);
assert_eq!(accounts[INVOKED_ARGUMENT_INDEX].data_len(), 10);
assert!(accounts[INVOKED_ARGUMENT_INDEX].is_signer);
assert!(accounts[INVOKED_ARGUMENT_INDEX].is_writable);
assert_eq!(accounts[INVOKED_ARGUMENT_INDEX].rent_epoch, 0);
assert!(!accounts[INVOKED_ARGUMENT_INDEX].executable);
assert_eq!(accounts[INVOKED_PROGRAM_INDEX].key, program_id);
assert_eq!(accounts[INVOKED_PROGRAM_INDEX].owner, &bpf_loader::id());
assert!(!accounts[INVOKED_PROGRAM_INDEX].is_signer);
assert!(!accounts[INVOKED_PROGRAM_INDEX].is_writable);
assert_eq!(accounts[INVOKED_PROGRAM_INDEX].rent_epoch, 0);
assert!(accounts[INVOKED_PROGRAM_INDEX].executable);
assert_eq!(
accounts[INVOKED_PROGRAM_INDEX].key,
accounts[INVOKED_PROGRAM_DUP_INDEX].key
);
assert_eq!(
accounts[INVOKED_PROGRAM_INDEX].owner,
accounts[INVOKED_PROGRAM_DUP_INDEX].owner
);
assert_eq!(
accounts[INVOKED_PROGRAM_INDEX].lamports,
accounts[INVOKED_PROGRAM_DUP_INDEX].lamports
);
assert_eq!(
accounts[INVOKED_PROGRAM_INDEX].is_signer,
accounts[INVOKED_PROGRAM_DUP_INDEX].is_signer
);
assert_eq!(
accounts[INVOKED_PROGRAM_INDEX].is_writable,
accounts[INVOKED_PROGRAM_DUP_INDEX].is_writable
);
assert_eq!(
accounts[INVOKED_PROGRAM_INDEX].rent_epoch,
accounts[INVOKED_PROGRAM_DUP_INDEX].rent_epoch
);
assert_eq!(
accounts[INVOKED_PROGRAM_INDEX].executable,
accounts[INVOKED_PROGRAM_DUP_INDEX].executable
);
{
let data = accounts[INVOKED_PROGRAM_INDEX].try_borrow_data()?;
assert!(accounts[INVOKED_PROGRAM_DUP_INDEX]
.try_borrow_mut_data()
.is_err());
info!(data[0], 0, 0, 0, 0);
}
}
TEST_RETURN_ERROR => {
info!("return error");
return Err(ProgramError::Custom(42));
}
TEST_DERIVED_SIGNERS => {
info!("verify derived signers");
const DERIVED_KEY1_INDEX: usize = 1;
const DERIVED_KEY2_INDEX: usize = 2;
const DERIVED_KEY3_INDEX: usize = 3;
assert!(accounts[DERIVED_KEY1_INDEX].is_signer);
assert!(!accounts[DERIVED_KEY2_INDEX].is_signer);
assert!(!accounts[DERIVED_KEY3_INDEX].is_signer);
}
TEST_VERIFY_NESTED_SIGNERS => {
info!("verify nested derived signers");
const DERIVED_KEY1_INDEX: usize = 0;
const DERIVED_KEY2_INDEX: usize = 1;
const DERIVED_KEY3_INDEX: usize = 2;
assert!(!accounts[DERIVED_KEY1_INDEX].is_signer);
assert!(accounts[DERIVED_KEY2_INDEX].is_signer);
assert!(accounts[DERIVED_KEY3_INDEX].is_signer);
}
TEST_VERIFY_WRITER => {
info!("verify writable");
const ARGUMENT_INDEX: usize = 0;
assert!(!accounts[ARGUMENT_INDEX].is_writable);
}
TEST_VERIFY_PRIVILEGE_ESCALATION => {
info!("Success");
}
TEST_NESTED_INVOKE => {
info!("nested invoke");
const ARGUMENT_INDEX: usize = 0;
const INVOKED_ARGUMENT_INDEX: usize = 1;
const INVOKED_PROGRAM_INDEX: usize = 3;
assert!(accounts[INVOKED_ARGUMENT_INDEX].is_signer);
**accounts[INVOKED_ARGUMENT_INDEX].lamports.borrow_mut() -= 1;
**accounts[ARGUMENT_INDEX].lamports.borrow_mut() += 1;
if accounts.len() > 2 {
info!("Invoke again");
let invoked_instruction = create_instruction(
*accounts[INVOKED_PROGRAM_INDEX].key,
&[
(accounts[ARGUMENT_INDEX].key, true, true),
(accounts[INVOKED_ARGUMENT_INDEX].key, true, true),
],
vec![TEST_NESTED_INVOKE],
);
invoke(&invoked_instruction, accounts)?;
} else {
info!("Last invoked");
{
let mut data = accounts[INVOKED_ARGUMENT_INDEX].try_borrow_mut_data()?;
for i in 0..10 {
data[i as usize] = i;
}
}
}
}
_ => panic!(),
}
Ok(())
}
// Pull in syscall stubs when building for non-BPF targets
solana_sdk::program_stubs!();

View File

@ -0,0 +1,174 @@
//! @brief Example Rust-based BPF program that issues a cross-program-invocation
use crate::instruction::*;
use solana_sdk::entrypoint;
use solana_sdk::{
account_info::AccountInfo, bpf_loader, entrypoint::ProgramResult, info, program::invoke,
program_error::ProgramError, pubkey::Pubkey,
};
entrypoint!(process_instruction);
#[allow(clippy::cognitive_complexity)]
fn process_instruction(
program_id: &Pubkey,
accounts: &[AccountInfo],
instruction_data: &[u8],
) -> ProgramResult {
info!("Invoked program");
if instruction_data.is_empty() {
return Ok(());
}
match instruction_data[0] {
TEST_VERIFY_TRANSLATIONS => {
info!("verify data translations");
const ARGUMENT_INDEX: usize = 0;
const INVOKED_ARGUMENT_INDEX: usize = 1;
const INVOKED_PROGRAM_INDEX: usize = 2;
const INVOKED_PROGRAM_DUP_INDEX: usize = 3;
assert_eq!(&instruction_data[1..], &[1, 2, 3, 4, 5]);
assert_eq!(accounts.len(), 4);
assert_eq!(accounts[ARGUMENT_INDEX].lamports(), 42);
assert_eq!(accounts[ARGUMENT_INDEX].data_len(), 100);
assert!(accounts[ARGUMENT_INDEX].is_signer);
assert!(accounts[ARGUMENT_INDEX].is_writable);
assert_eq!(accounts[ARGUMENT_INDEX].rent_epoch, 0);
assert!(!accounts[ARGUMENT_INDEX].executable);
{
let data = accounts[ARGUMENT_INDEX].try_borrow_data()?;
for i in 0..100 {
assert_eq!(data[i as usize], i);
}
}
assert_eq!(
accounts[INVOKED_ARGUMENT_INDEX].owner,
accounts[INVOKED_PROGRAM_INDEX].key
);
assert_eq!(accounts[INVOKED_ARGUMENT_INDEX].lamports(), 10);
assert_eq!(accounts[INVOKED_ARGUMENT_INDEX].data_len(), 10);
assert!(accounts[INVOKED_ARGUMENT_INDEX].is_signer);
assert!(accounts[INVOKED_ARGUMENT_INDEX].is_writable);
assert_eq!(accounts[INVOKED_ARGUMENT_INDEX].rent_epoch, 0);
assert!(!accounts[INVOKED_ARGUMENT_INDEX].executable);
assert_eq!(accounts[INVOKED_PROGRAM_INDEX].key, program_id);
assert_eq!(accounts[INVOKED_PROGRAM_INDEX].owner, &bpf_loader::id());
assert!(!accounts[INVOKED_PROGRAM_INDEX].is_signer);
assert!(!accounts[INVOKED_PROGRAM_INDEX].is_writable);
assert_eq!(accounts[INVOKED_PROGRAM_INDEX].rent_epoch, 0);
assert!(accounts[INVOKED_PROGRAM_INDEX].executable);
assert_eq!(
accounts[INVOKED_PROGRAM_INDEX].key,
accounts[INVOKED_PROGRAM_DUP_INDEX].key
);
assert_eq!(
accounts[INVOKED_PROGRAM_INDEX].owner,
accounts[INVOKED_PROGRAM_DUP_INDEX].owner
);
assert_eq!(
accounts[INVOKED_PROGRAM_INDEX].lamports,
accounts[INVOKED_PROGRAM_DUP_INDEX].lamports
);
assert_eq!(
accounts[INVOKED_PROGRAM_INDEX].is_signer,
accounts[INVOKED_PROGRAM_DUP_INDEX].is_signer
);
assert_eq!(
accounts[INVOKED_PROGRAM_INDEX].is_writable,
accounts[INVOKED_PROGRAM_DUP_INDEX].is_writable
);
assert_eq!(
accounts[INVOKED_PROGRAM_INDEX].rent_epoch,
accounts[INVOKED_PROGRAM_DUP_INDEX].rent_epoch
);
assert_eq!(
accounts[INVOKED_PROGRAM_INDEX].executable,
accounts[INVOKED_PROGRAM_DUP_INDEX].executable
);
{
let data = accounts[INVOKED_PROGRAM_INDEX].try_borrow_data()?;
assert!(accounts[INVOKED_PROGRAM_DUP_INDEX]
.try_borrow_mut_data()
.is_err());
info!(data[0], 0, 0, 0, 0);
}
}
TEST_RETURN_ERROR => {
info!("return error");
return Err(ProgramError::Custom(42));
}
TEST_DERIVED_SIGNERS => {
info!("verify derived signers");
const DERIVED_KEY1_INDEX: usize = 1;
const DERIVED_KEY2_INDEX: usize = 2;
const DERIVED_KEY3_INDEX: usize = 3;
assert!(accounts[DERIVED_KEY1_INDEX].is_signer);
assert!(!accounts[DERIVED_KEY2_INDEX].is_signer);
assert!(!accounts[DERIVED_KEY3_INDEX].is_signer);
}
TEST_VERIFY_NESTED_SIGNERS => {
info!("verify nested derived signers");
const DERIVED_KEY1_INDEX: usize = 0;
const DERIVED_KEY2_INDEX: usize = 1;
const DERIVED_KEY3_INDEX: usize = 2;
assert!(!accounts[DERIVED_KEY1_INDEX].is_signer);
assert!(accounts[DERIVED_KEY2_INDEX].is_signer);
assert!(accounts[DERIVED_KEY3_INDEX].is_signer);
}
TEST_VERIFY_WRITER => {
info!("verify writable");
const ARGUMENT_INDEX: usize = 0;
assert!(!accounts[ARGUMENT_INDEX].is_writable);
}
TEST_VERIFY_PRIVILEGE_ESCALATION => {
info!("Success");
}
TEST_NESTED_INVOKE => {
info!("nested invoke");
const ARGUMENT_INDEX: usize = 0;
const INVOKED_ARGUMENT_INDEX: usize = 1;
const INVOKED_PROGRAM_INDEX: usize = 3;
assert!(accounts[INVOKED_ARGUMENT_INDEX].is_signer);
**accounts[INVOKED_ARGUMENT_INDEX].lamports.borrow_mut() -= 1;
**accounts[ARGUMENT_INDEX].lamports.borrow_mut() += 1;
if accounts.len() > 2 {
info!("Invoke again");
let invoked_instruction = create_instruction(
*accounts[INVOKED_PROGRAM_INDEX].key,
&[
(accounts[ARGUMENT_INDEX].key, true, true),
(accounts[INVOKED_ARGUMENT_INDEX].key, true, true),
],
vec![TEST_NESTED_INVOKE],
);
invoke(&invoked_instruction, accounts)?;
} else {
info!("Last invoked");
{
let mut data = accounts[INVOKED_ARGUMENT_INDEX].try_borrow_mut_data()?;
for i in 0..10 {
data[i as usize] = i;
}
}
}
}
_ => panic!(),
}
Ok(())
}
// Pull in syscall stubs when building for non-BPF targets
solana_sdk::program_stubs!();

View File

@ -146,6 +146,7 @@ fn test_program_bpf_sanity() {
programs.extend_from_slice(&[ programs.extend_from_slice(&[
("solana_bpf_rust_128bit", true), ("solana_bpf_rust_128bit", true),
("solana_bpf_rust_alloc", true), ("solana_bpf_rust_alloc", true),
("solana_bpf_rust_custom_heap", true),
("solana_bpf_rust_dep_crate", true), ("solana_bpf_rust_dep_crate", true),
("solana_bpf_rust_external_spend", false), ("solana_bpf_rust_external_spend", false),
("solana_bpf_rust_iter", true), ("solana_bpf_rust_iter", true),
@ -663,12 +664,12 @@ fn assert_instruction_count() {
("solana_bpf_rust_128bit", 543), ("solana_bpf_rust_128bit", 543),
("solana_bpf_rust_alloc", 19082), ("solana_bpf_rust_alloc", 19082),
("solana_bpf_rust_dep_crate", 2), ("solana_bpf_rust_dep_crate", 2),
("solana_bpf_rust_external_spend", 485), ("solana_bpf_rust_external_spend", 538),
("solana_bpf_rust_iter", 723), ("solana_bpf_rust_iter", 723),
("solana_bpf_rust_many_args", 231), ("solana_bpf_rust_many_args", 231),
("solana_bpf_rust_noop", 459), ("solana_bpf_rust_noop", 512),
("solana_bpf_rust_param_passing", 54), ("solana_bpf_rust_param_passing", 46),
("solana_bpf_rust_sanity", 2223), ("solana_bpf_rust_sanity", 1989),
]); ]);
} }

View File

@ -5,8 +5,10 @@ extern crate alloc;
use crate::{account_info::AccountInfo, program_error::ProgramError, pubkey::Pubkey}; use crate::{account_info::AccountInfo, program_error::ProgramError, pubkey::Pubkey};
use alloc::vec::Vec; use alloc::vec::Vec;
use std::{ use std::{
alloc::Layout,
cell::RefCell, cell::RefCell,
mem::{align_of, size_of}, mem::{align_of, size_of},
ptr::null_mut,
rc::Rc, rc::Rc,
// Hide Result from bindgen gets confused about generics in non-generic type declarations // Hide Result from bindgen gets confused about generics in non-generic type declarations
result::Result as ResultGeneric, result::Result as ResultGeneric,
@ -17,24 +19,39 @@ pub type ProgramResult = ResultGeneric<(), ProgramError>;
/// User implemented function to process an instruction /// User implemented function to process an instruction
/// ///
/// program_id: Program ID of the currently executing program /// program_id: Program ID of the currently executing program accounts: Accounts
/// accounts: Accounts passed as part of the instruction /// passed as part of the instruction instruction_data: Instruction data
/// instruction_data: Instruction data
pub type ProcessInstruction = pub type ProcessInstruction =
fn(program_id: &Pubkey, accounts: &[AccountInfo], instruction_data: &[u8]) -> ProgramResult; fn(program_id: &Pubkey, accounts: &[AccountInfo], instruction_data: &[u8]) -> ProgramResult;
/// Programs indicate success with a return value of 0 /// Programs indicate success with a return value of 0
pub const SUCCESS: u64 = 0; pub const SUCCESS: u64 = 0;
/// Declare the entry point of the program. /// Start address of the memory region used for program heap.
pub const HEAP_START_ADDRESS: usize = 0x300000000;
/// Length of the heap memory region used for program heap.
pub const HEAP_LENGTH: usize = 32 * 1024;
/// Declare the entry point of the program and use the default local heap
/// implementation
/// ///
/// Deserialize the program input arguments and call /// Deserialize the program input arguments and call the user defined
/// the user defined `process_instruction` function. /// `process_instruction` function. Users must call this macro otherwise an
/// Users must call this macro otherwise an entry point for /// entry point for their program will not be created.
/// their program will not be created. ///
/// If the program defines the feature `custom-heap` then the default heap
/// implementation will not be included and the program is free to implement
/// their own `#[global_allocator]`
#[macro_export] #[macro_export]
macro_rules! entrypoint { macro_rules! entrypoint {
($process_instruction:ident) => { ($process_instruction:ident) => {
#[cfg(all(not(feature = "custom-heap"), not(test)))]
#[global_allocator]
static A: $crate::entrypoint::BumpAllocator = $crate::entrypoint::BumpAllocator {
start: $crate::entrypoint::HEAP_START_ADDRESS,
len: $crate::entrypoint::HEAP_LENGTH,
};
/// # Safety /// # Safety
#[cfg(not(feature = "skip-no-mangle"))] #[cfg(not(feature = "skip-no-mangle"))]
#[no_mangle] #[no_mangle]
@ -49,6 +66,35 @@ macro_rules! entrypoint {
}; };
} }
/// The bump allocator used as the default rust heap when running programs.
pub struct BumpAllocator {
pub start: usize,
pub len: usize,
}
unsafe impl std::alloc::GlobalAlloc for BumpAllocator {
#[inline]
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
let pos_ptr = self.start as *mut usize;
let mut pos = *pos_ptr;
if pos == 0 {
// First time, set starting position
pos = self.start + self.len;
}
pos = pos.saturating_sub(layout.size());
pos &= !(layout.align().wrapping_sub(1));
if pos < self.start + size_of::<*mut u8>() {
return null_mut();
}
*pos_ptr = pos;
pos as *mut u8
}
#[inline]
unsafe fn dealloc(&self, _: *mut u8, _: Layout) {
// I'm a bump allocator, I don't free
}
}
/// Maximum number of bytes a program may add to an account during a single realloc /// Maximum number of bytes a program may add to an account during a single realloc
pub const MAX_PERMITTED_DATA_INCREASE: usize = 1_024 * 10; pub const MAX_PERMITTED_DATA_INCREASE: usize = 1_024 * 10;
@ -143,3 +189,70 @@ pub unsafe fn deserialize<'a>(input: *mut u8) -> (&'a Pubkey, Vec<AccountInfo<'a
(program_id, accounts, instruction_data) (program_id, accounts, instruction_data)
} }
#[cfg(test)]
mod test {
use super::*;
use std::alloc::GlobalAlloc;
#[test]
fn test_bump_allocator() {
// alloc the entire
{
let heap = vec![0u8; 128];
let allocator = BumpAllocator {
start: heap.as_ptr() as *const _ as usize,
len: heap.len(),
};
for i in 0..128 - size_of::<*mut u8>() {
let ptr = unsafe {
allocator.alloc(Layout::from_size_align(1, size_of::<u8>()).unwrap())
};
assert_eq!(
ptr as *const _ as usize,
heap.as_ptr() as *const _ as usize + heap.len() - 1 - i
);
}
assert_eq!(null_mut(), unsafe {
allocator.alloc(Layout::from_size_align(1, 1).unwrap())
});
}
// check alignment
{
let heap = vec![0u8; 128];
let allocator = BumpAllocator {
start: heap.as_ptr() as *const _ as usize,
len: heap.len(),
};
let ptr =
unsafe { allocator.alloc(Layout::from_size_align(1, size_of::<u8>()).unwrap()) };
assert_eq!(0, ptr.align_offset(size_of::<u8>()));
let ptr =
unsafe { allocator.alloc(Layout::from_size_align(1, size_of::<u16>()).unwrap()) };
assert_eq!(0, ptr.align_offset(size_of::<u16>()));
let ptr =
unsafe { allocator.alloc(Layout::from_size_align(1, size_of::<u32>()).unwrap()) };
assert_eq!(0, ptr.align_offset(size_of::<u32>()));
let ptr =
unsafe { allocator.alloc(Layout::from_size_align(1, size_of::<u64>()).unwrap()) };
assert_eq!(0, ptr.align_offset(size_of::<u64>()));
let ptr =
unsafe { allocator.alloc(Layout::from_size_align(1, size_of::<u128>()).unwrap()) };
assert_eq!(0, ptr.align_offset(size_of::<u128>()));
let ptr = unsafe { allocator.alloc(Layout::from_size_align(1, 64).unwrap()) };
assert_eq!(0, ptr.align_offset(64));
}
// alloc entire block (minus the pos ptr)
{
let heap = vec![0u8; 128];
let allocator = BumpAllocator {
start: heap.as_ptr() as *const _ as usize,
len: heap.len(),
};
let ptr =
unsafe { allocator.alloc(Layout::from_size_align(120, size_of::<u8>()).unwrap()) };
assert_ne!(ptr, null_mut());
assert_eq!(0, ptr.align_offset(size_of::<u64>()));
}
}
}