Delete bitrotted docs

This commit is contained in:
Greg Fitzgerald 2018-06-04 17:18:17 -06:00
parent 7e788d3a17
commit 74c479fbc9
2 changed files with 0 additions and 83 deletions

View File

@ -1,65 +0,0 @@
The Historian
===
Create a *Historian* and send it *events* to generate an *event log*, where each *entry*
is tagged with the historian's latest *hash*. Then ensure the order of events was not tampered
with by verifying each entry's hash can be generated from the hash in the previous entry:
![historian](https://user-images.githubusercontent.com/55449/36950845-459bdb58-1fb9-11e8-850e-894586f3729b.png)
```rust
extern crate solana;
use solana::historian::Historian;
use solana::ledger::{Block, Entry, Hash};
use solana::event::{generate_keypair, get_pubkey, sign_claim_data, Event};
use std::thread::sleep;
use std::time::Duration;
use std::sync::mpsc::SendError;
fn create_ledger(hist: &Historian<Hash>) -> Result<(), SendError<Event<Hash>>> {
sleep(Duration::from_millis(15));
let tokens = 42;
let keypair = generate_keypair();
let event0 = Event::new_claim(get_pubkey(&keypair), tokens, sign_claim_data(&tokens, &keypair));
hist.sender.send(event0)?;
sleep(Duration::from_millis(10));
Ok(())
}
fn main() {
let seed = Hash::default();
let hist = Historian::new(&seed, Some(10));
create_ledger(&hist).expect("send error");
drop(hist.sender);
let entries: Vec<Entry<Hash>> = hist.receiver.iter().collect();
for entry in &entries {
println!("{:?}", entry);
}
// Proof-of-History: Verify the historian learned about the events
// in the same order they appear in the vector.
assert!(entries[..].verify(&seed));
}
```
Running the program should produce a ledger similar to:
```rust
Entry { num_hashes: 0, id: [0, ...], event: Tick }
Entry { num_hashes: 3, id: [67, ...], event: Transaction { tokens: 42 } }
Entry { num_hashes: 3, id: [123, ...], event: Tick }
```
Proof-of-History
---
Take note of the last line:
```rust
assert!(entries[..].verify(&seed));
```
[It's a proof!](https://en.wikipedia.org/wiki/CurryHoward_correspondence) For each entry returned by the
historian, we can verify that `id` is the result of applying a sha256 hash to the previous `id`
exactly `num_hashes` times, and then hashing then event data on top of that. Because the event data is
included in the hash, the events cannot be reordered without regenerating all the hashes.

View File

@ -1,18 +0,0 @@
msc {
client,historian,recorder;
recorder=>historian [ label = "e0 = Entry{id: h0, n: 0, event: Tick}" ] ;
recorder=>recorder [ label = "h1 = hash(h0)" ] ;
recorder=>recorder [ label = "h2 = hash(h1)" ] ;
client=>historian [ label = "Transaction(d0)" ] ;
historian=>recorder [ label = "Transaction(d0)" ] ;
recorder=>recorder [ label = "h3 = hash(h2 + d0)" ] ;
recorder=>historian [ label = "e1 = Entry{id: hash(h3), n: 3, event: Transaction(d0)}" ] ;
recorder=>recorder [ label = "h4 = hash(h3)" ] ;
recorder=>recorder [ label = "h5 = hash(h4)" ] ;
recorder=>recorder [ label = "h6 = hash(h5)" ] ;
recorder=>historian [ label = "e2 = Entry{id: h6, n: 3, event: Tick}" ] ;
client=>historian [ label = "collect()" ] ;
historian=>client [ label = "entries = [e0, e1, e2]" ] ;
client=>client [ label = "entries.verify(h0)" ] ;
}